
Annales Univ. Sci. Budapest., Sect. Comp. 54 (2023) 71–94
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Abstract. We give some sufficient conditions for the zero set of a poly-
nomial to be a unique range set for meromorphic functions, in cases of
ignoring multiplicity and with m-truncated multipilicity. As consequences,
we obtained some previous results of Yi ([23]).

1. Introduction. Main results

In this paper, by a meromorphic function we mean a meromorphic function
on the complex plane C.

Let f be a non-constant meromorphic function on C. For every a ∈ C, we
define the function νaf : C → N by

νaf (z) =

{
0 if f(z) ̸= a

d if f(z) = a with multiplicity d,

and set ν∞f = ν01
f

. Define the function νaf : C → N by νaf (z) = min {νaf (z), 1}
and set ν∞f = ν01

f
.
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Let m be a positive integer. For every a ∈ C∪ {∞}, we define the function
νaf,m) from C ∪ {∞} into N by

νaf,m)(z) =

{
0 if νaf (z) > m

νaf (z) if νaf (z) ≤ m,

and set ν∞f,m) = ν01
f ,m)

, and define the function νaf,m) from C ∪ {∞} into N by

νaf,m)(z) = min {νaf,m)(z), 1}, and set ν∞f,m) = ν01
f ,m)

.

We denote byM(C) the field of meromorphic functions in C. For f ∈ M(C)
and S ⊂ C∪ {∞}, S ̸= ∅, we define the preimage of S counting multiplicity by

Ef (S) =
⋃
a∈S

{(z, νaf (z)) : z ∈ C},

and the preimage of S ignoring multiplicity by

Ef (S) =
⋃
a∈S

{(z, νaf (z)) : z ∈ C}.

Furthermore, we define the preimage of S counting multiplicity with m-trunca-
ted multiplicity by

Ef,m)(S) =
⋃
a∈S

{(z, νaf,m)(z)) : z ∈ C},

and by a similar manner,

Ef,m)(S) =
⋃
a∈S

{(z, νaf,m)(z)) : z ∈ C}.

Note that Ef,1)(S) = Ef,1)(S) and Ef,1)(S) ⊂ Ef (S).

Let F be a nonempty subset of M(C) and let a set S ⊂ C ∪ {∞}. Two func-
tions f, g of F are said to share S, counting multiplicity (share S CM) if Ef (S) =
= Eg(S), to share S, ignoring multiplicity (share S IM) if Ef (S) = Eg(S),
and to share S, counting multiplicity with m-truncated multiplicity (share Sm)

CM) if Ef,m)(S) = Eg,m)(S), and to share S, ignoring multiplicity with m-

truncated multiplicity (share Sm) IM) if Ef,m)(S) = Eg,m)(S). Let f, g be two
non-constant meromorphic (entire) functions. If the condition Ef (S) = Eg(S)
(resp., Ef (S) = Eg(S)) implies f = g for any two non-constant meromorphic
(entire) functions f, g, then S is called a unique range set counting multi-
plicity (resp., ignoring multiplicity) for meromorphic (entire) functions, or in
brief, URSM (URSE) (resp., URSM-IM (URSE-IM)). Sm) is called a unique
range set counting multiplicity with m-truncated multiplicity (resp., ignoring
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multiplicity with m-truncated multiplicity) for meromorphic (entire) functions
if the condition Ef,m)(S) = Eg,m)(S) (resp., Ef,m)(S) = Eg,m)(S) ) implies
f = g for any pair of non-constant meromorphic (entire) functions, or in brief,
URSMm)-CM (URSEm) -CM) (resp., URSMm)-IM (URSEm) -IM)).

In 1976 F. Gross ([9]) proved that there exist three finite sets Sj (j =
= 1, 2, 3) such that any two entire functions f and g satisfying Ef (Sj) = Eg(Sj),
j = 1, 2, 3 must be identical. In the same paper F. Gross posed the following
question:

Question 1. Can one find two (or possible even one) finite set Sj (j = 1, 2)
such that any two entire functions f and g must be identical if Ef (Sj) = Eg(Sj)
(j = 1, 2)?

H. X. Yi [18]–[20], [22], [24] first gave an affirmative answer to Question 1.
Since then, many results have been obtained for this and related topics (see
[2]–[14], [16],[18]–[24]).

Concerning Question 1, a natural question is the following.

Question 2. What is the smallest cardinality for such a finite set S such
that any two non-constant meromorphic functions f and g must be identical,
if either Ef (S) = Eg(S) or Ef (S) = Eg(S)?

So far, the best answer to Question 2 for the case of URSM was obtained
by Frank and Reinders ([6]). They proved the following result.

Theorem A. The set {z ∈ C| PFR(z) = (n−1)(n−2)
2 zn + n(n − 2)zn−1 +

+ (n−1)n
2 zn−2 − c = 0}, where n ≥ 11 and c ̸= 0, 1, is a unique range set for

meromorphic functions counting multiplicity.

In 1997, H. X. Yi ([21]) first gave an answer to Question 2 for the case of
URSM-IM with 19 elements. He considered polynomials of the form

PY (z) ∈ C[z] : PY (z) = zn + am + b,

where (m,n) = 1, n > 2m + 14 and m ≥ 2 and proved that S = {z ∈ C |
| PY (z) = 0} is a URSM-IM. Bartels’s Theorem ([3]) said that S = {z ∈ C |
| PFR(z) = 0} is a URSM-IM if n ≥ 17. So far, the best answer to Question
2 for the case of URSM-IM was obtained by B. Chakraborty ([4]). He proved
the following result.

Theorem B. Let S = {z ∈ C | PFR(z) = 0}. If n ≥ 15, then S is a URSM-IM.

In [1] the following new class of unique range sets for meromorphic functions
ignoring multiplicity with 15 elements was given.
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Let n ∈ N∗, n ≥ 3. Consider polynomial P (z):

(1.1) PK(z) = zn − 2na

n− 1
zn−1 +

na2

n− 2
zn−2 + 1 = QK(z) + 1,

where a ∈ C, a ̸= 0. Suppose that

(1.2) QK(a) ̸= −1, −2

Theorem C ([1]). Let PK(z) be defined by (1.1) with condition (1.2), and let
S = {z ∈ C | P (z) = 0}. If n ≥ 15, then S is a URSM-IM.

In 2000, H. Fujimoto established a sufficient condition for a finite subset S
of C to be a uniqueness range set for meromorphic functions. Let us recall his
result.

For a discrete subset S = {a1, a2, ..., an} ⊂ C, we consider its generated
polynomial with the following form

(1.3) P (z) = (z − a1)(z − a2) · · · (z − an).

Assume that the derivative of P (z) has mutually distinct k zeros d1, d2, . . . , dk
with multiplicitiesm1,m2, . . . ,mk, respectively. We often consider polynomials
satisfying the following condition introduced by Fujimoto [7]:

(1.4) P (di) ̸= P (dj), 1 ≤ i < j ≤ k.

The number k is called the derivative index of P (z).

A polynomial P (z) is called a strong uniqueness polynomial for meromor-
phic (entire) functions if for arbitrary two non-constant meromorphic (entire)
functions f and g, and a nonzero constant c, the condition P (f) = cP (g)
implies f = g (see [2], [8], [12]). In this case we say P (z) is a SUPM (SUPE).

Theorem D ([7]). Let P (z) be a polynomial of the form (1.3) satisfying the
condition (1.4). Suppose that k ≥ 3, or k = 2 and min{m1,m2} ≥ 2, and P (z)
is a strong uniqueness polynomial.

1. If n > 2k + 6 (n > 2k + 2), then S is a URSM (URSE).

2. If n > 2k + 12 (n > 2k + 5) , then S is a URSM-IM (URSE-IM).

Remark 1. Regarding theorems A, B, C, D, it is easy to see that, in the case
of URSM (counting multiplicity), Theorem A is a consequence of Theorem D,
since PFR is a strong uniqueness polynomial of degree 8 [6, p. 191, Case 2].
However, in the case of URS-IM (ignoring multiplicity), Theorem B and Theo-
rem C are not consequences of Theorem D, because with k = 2 we have n ≥ 17.
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From Remark 1, a natural question is the following.

Question 3. Can one give some sufficient conditions for polynomial P (z) such
that S = {z ∈ C | P (z) = 0} is a URSM-IM (URSE-IM) for meromorphic (en-
tire) functions, and then obtain Theorem B and Theorem C as consequences?

Concerning Question 3, in 1997 H. X. Yi [23] considered URSMm) for poly-
nomial PFR and proved the following

Theorem E. Let S = {z ∈ C | PFR(z) = 0}.
1/ If n ≥ 11, then S is a URSM3)-CM.

2/ If n ≥ 12 (n ≥ 7), then S is a URSM2)-CM (URSE2)-CM).

3/ If n ≥ 15 (n ≥ 9), then S is a URSM1)-CM (URSE1)-CM).

In [12] it is given a sufficient condition for a finite subset S of C to be a
URSMm)-CM.

Theorem F. Let P (z) be a strong uniqueness polynomial of the form (1.3)
satisfying the condition (1.4) with P

′
(z) = nzm1(z − d2)

m2 · · · (z − dk)
mk and

S = {z ∈ C | P (z) = 0}. Suppose that k ≥ 3, or k = 2 and min{m1,m2} ≥ 2,
and all zeros and poles of f and g have multiplicity at least s, l, respectively.

1. If n > 2k− 2 + 4
s +

4
l (n > 2k− 2 + 4

s ), then S is a URSM (URSE) and
is a URSMm)-CM (URSEm)-CM) with m ≥ 3.

2. If n > 2k − 3
2 + 4

s + 9
2l (n > 2k − 3

2 + 4
s ), then S is a URSM2)-CM

(URSE2)-CM)

3. If n > 2k+ 4
s +

6
l (n > 2k+ 4

s ), then S is a URSM1)-CM (URSE1)-CM).

Remark 2. Regarding Theorems E, F, it is easy to see that, in the case of
URSMm), Theorem E is a consequence of Theorem F, since PFR is a strong
uniqueness polynomial of degree 8 [6, p. 191, Case 2] and by taking k = 2,
s = 1, l = 1 in Theorem F.

Note that Ef,1)(S) = Ef,1)(S), Ef,1)(S) ⊂ Ef (S) and P
′

FR(z) and P
′

K(z)
both have a zero at 0 with higher multiplicities:

P
′

FR(z) =
n(n− 1)(n− 2)

2
zn−3(z − 1)2, P

′

K(z) = nzn−3(z − a)2.

These facts and Remark 1, Remark 2 suggest us to consider polynomial P (z)
with P

′
(z) = nzm1(z − d2)

m2 ...(z − dk)
mk .

We give some sufficient conditions for polynomial P (z) such that S = {z ∈
∈ C | P (z) = 0} is a uniqueness range set for the cases of ignoring multiplicity
(URSM-IM and URSE-IM) and of ignoring multiplicity with m-truncated mul-
tiplicity (URSMm)-IM and URSEm)-IM). As consequences, we obtain Theorem
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D in the case of URSM-IM and construct new uniqueness range sets for the
cases of URSM-IM and URSE-IM, and of URSMm)-IM and URSEm)-IM. In
particular, we obtain again Theorem B and Theorem C.

Now let us describe main results of the paper. We first give a sufficient
condition for a finite subset S of C to be a uniqueness range set for the cases
of URSM-IM and URSE-IM and of URSMm)-IM and URSEm)-IM.

Theorem 1. Let P (z) be a strong uniqueness polynomial of the form (1.3)
satisfying the condition (1.4) with P

′
(z) = nzm1(z − d2)

m2 · · · (z − dk)
mk and

S = {z ∈ C | P (z) = 0}, and let m be a positive integer. Suppose k ≥ 3, or
k = 2 and min{m1,m2} ≥ 2.

If n > 2k + 10 (n > 2k + 4), then S is a URSM-IM (URSE-IM) and
URSMm)-IM (URSEm)-IM).

Corollary 2. Theorem 1 implies Theorem D in the case of URSM-IM (URSE-
IM).

Indeed, suppose that P (z) with P
′
(z) = n(z−d1)

m1(z−d2)
m2 · · · (z−dk)

mk

satisfies the conditions of Theorem D in the case of URSM-IM. Write

P (z) = (z − d1)
n + b1(z − d1)

n−1 + · · ·+ bn−1z + b0,

and set

R(z) = zn + b1z
n−1 + · · ·+ bn−1z + b0, ti = di − d1, i = 1, . . . , k,

and T = {z ∈ C | R(z) = 0}. Then

P (z) = R(z − d1), R
′
(z) = nzm1(z − t2)

m2 · · · (z − tk)
mk .

Since P (z) is a strong uniqueness polynomial and Ef (S) = Eg(S), we see
that R(z) is a strong uniqueness polynomial of the form (1.3) satisfying the
condition (1.4) with R

′
(z) = nzm1(z− t2)

m2 · · · (z− tk)
mk and k ≥ 3, or k = 2

and min{m1,m2} ≥ 2 and Ef (T ) = Eg(T ). Then, applying Theorem 1, we
conclude that if n > 2k+10 ( n > 2k+4), then T is a URSM-IM (URSE-IM).
Therefore, S is a URSM-IM (URSE-IM) if n > 2k + 10( n > 2k + 4).

As a consequence of Theorem 1, we construct following new uniqueness
range sets, which are URSM-IM (URSE-IM) and URSMm)-IM (URSEm)-IM).

Let l, p be positive integers, and let a ∈ C be a nonzero constant. Set

(1.5) P (z) = (l + p+ 1)

( p∑
i=0

(
p

i

)
(−1)i

l + p+ 1− i
aizl+p+1−i

)
+ 1,
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For simplicity, we set n = l + p+ 1 and

Q(z) = (l + p+ 1)

( p∑
i=0

(
p

i

)
(−1)i

l + p+ 1− i
aizl+p+1−i

)
.

Then P (z) = Q(z) + 1. Suppose that

(1.6) Q(a) ̸= −1, ̸= −2.

Note that P (z), defined by (1.5) with condition (1.6), is a polynomial of degree
n = l + p+ 1 having no multiple zeros.

So, P
′
(z) = nzl(z − a)p has a zero at 0 of order l.

Note that polynomials of the form (1.6) were investigated in [2] and [12].

Then we prove the following

Theorem 2. Let P (z) be defined by (1.5) with conditions (1.6) and let S =
= {z ∈ C | P (z) = 0}. If n ≥ 15 (n ≥ 7), then S is a URSM-IM (URSE-IM)
and URSMm)-IM (URSEm)-IM).

Remark 3. By using Theorem 1, we can construct uniqueness range sets for
case k ≥ 2. In paticular, we obtain Yi’s Theorem in [21], Bartels’s Theorem
in [3], Theorem B, and Theorem C, by taking PY , PFR, PK to be strong
uniqueness polynomials, respectively.

2. Lemmas and definitions

We assume that the reader is familiar with the notations of the Nevanlinna
theory (see, for example, [5], [15]). We need some lemmas.

Lemma 2.1. ([5, p. 98], [15, p. 43]) Let f be a non-constant meromorphic
function on C and let a1, a2, . . . , aq be distinct points of C. Then

(q − 1)T (r, f) ≤ N(r, f) +

q∑
i=1

N(r,
1

f − ai
)−N0(r,

1

f ′ ) + S(r, f),

where N0(r,
1
f ′ ) is the counting function of those zeros of f ′, which are not

zeros of function (f − a1) · · · (f − aq), and S(r, f) = o(T (r, f)) for all r, except
for a set of finite Lebesgue measure.

Lemma 2.2. ([17, Lemma 3]) For any non-constant meromorphic function f,

N(r,
1

f ′ ) ≤ N(r,
1

f
) +N(r, f) + S(r, f).
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Definition. Let f be a non-constant meromorphic function, and k be a positive
integer. For simplicity, we set νf (z) = ν0f (z) and denote by N (k(r, f) (resp.,

N (k(r,
1
f )) the counting function of the poles (resp., zeros of f with νf (z) ≥ k)

with ν∞f ≥ k, where each pole (zero) is counted only once. We also denote by

N(r, 1
f ′ ; f ̸= 0) the counting function of the zeros z of f

′
satisfying f(z) ̸= 0,

where each zero is counted only once.

Let be given two non-constant meromorphic functions f and g. For simplic-
ity, denote by ν1(z) = νf (z) (resp., ν2(z) = νg(z)), if z is a zero of f (resp., g).
Let Ef (0) = Eg(0). We denote byN(r, 1

f ; ν1 = ν2 = 1) (resp., N(r, 1
f ; ν1 > ν2))

the counting function of the common zeros z, satisfying ν1(z) = ν2(z) = 1
(resp., ν1(z) > ν2(z) ≥ 1), where each zero is counted only once) and by
N(r, 1

f ; ν1 ≥ 2) the counting function of the zeros z of f , satisfying ν1(z) ≥ 2.

Similarly, we define the counting functions N(r, 1
g ; ν2 > ν1), N(r, 1

g ; ν2 ≥ 2).

Let m be a positive integer and Ef,m)(0) = Eg,m)(0).

We denote by N(r, 1
f ;m ≥ ν1 > ν2) (resp., N(r, 1

g ;m ≥ ν2 > ν1) the

counting function of the common zeros z, satisfying m ≥ ν1(z) > ν2(z) ≥ 1
(resp., m ≥ ν2(z) > ν1(z) ≥ 1), where each zero is counted only once and by
N(r, 1

f ;m ≥ ν1 ≥ 2) (resp., N(r, 1
g ; ν2 ≥ 2)) the counting function of the zeros

z of f , satisfying m ≥ ν1(z) ≥ 2 (resp., m ≥ ν2(z) ≥ 2).

Lemma 2.3. Let f, g be two non-constant meromorphic functions. Set

F =
1

f
, G =

1

g
, L =

F
′′

F ′ − G
′′

G′ , S(r) = S(r, f) + S(r, g).

Suppose that L ̸≡ 0.

1) If Ef,1)(0) = Eg,1)(0), then

i) N(r,
1

f
) +N(r,

1

g
) ≤ N(r, L) +

1

2
(N(r,

1

f
) +N(r,

1

g
)) + S(r).

Moreover, if a is a common simple zero of f and g, then L(a) = 0.

ii) N(r, L) ≤ N (2(r, f) +N (2(r, g) +N (2(r,
1

f
) +N (2(r,

1

g
)+

+N(r,
1

f ′ ; f ̸= 0) +N(r,
1

g′ ; g ̸= 0).
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2) If Ef,m)(0) = Eg,m)(0), m ≥ 1, then

i) N(r,
1

f
) +N(r,

1

g
) +N(r,

1

f
;m ≥ ν1 > ν2)+

+N(r,
1

g
;m ≥ ν2 > ν1) ≤ N(r, L) +

1

2
(N(r,

1

f
) +N(r,

1

g
))+

+N(r,
1

f
;m ≥ ν1 ≥ 2) +N(r,

1

g
;m ≥ ν2 ≥ 2) + S(r).

ii) N(r, L) ≤ N (2(r, f) +N (2(r, g) +N(r,
1

f
;m ≥ ν1 > ν2)+

+N(r,
1

g
;m ≥ ν2 > ν1) +N (m+1(r,

1

f
) +N (m+1(r,

1

g
)+

+N(r,
1

f ′ ; f ̸= 0) +N(r,
1

g′ ; g ̸= 0).

iii) N(r,
1

f
) +N(r,

1

g
) ≤ N (2(r, f) +N (2(r, g)+

+
1

2
(N(r,

1

f
)+N(r,

1

g
))+N(r,

1

f
; ν1 ≥ 2)+N(r,

1

g
; ν2 ≥ 2)+

+N(r,
1

f ′ ; f ̸= 0) +N(r,
1

g′ ; g ̸= 0) + S(r).

3) If Ef (0) = Eg(0), then (see: [13, Lemma 2.4], [14, Lemma 2.2],
[1, Lemma 2.3])

i) N(r, L) ≤ N (2(r, f) +N (2(r, g) +N(r,
1

f
; ν1 > ν2)+

+N(r,
1

g
; ν2 > ν1) +N(r,

1

f ′ ; f ̸= 0) +N(r,
1

g′ ; g ̸= 0).

ii) N(r,
1

f
)+N(r,

1

g
)+N(r,

1

f
; ν1 > ν2)+N(r,

1

g
; ν2 > ν1) ≤ N(r, L)+

+
1

2
(N(r,

1

f
) +N(r,

1

g
)) +N(r,

1

f
; ν1 ≥ 2)+

+N(r,
1

g
; ν2 ≥ 2) + S(r).

iii) N(r,
1

f
)+N(r,

1

g
) ≤ N (2(r, f)+N (2(r, g)+

1

2
(N(r,

1

f
)+N(r,

1

g
))+

+N(r,
1

f
; ν1 ≥ 2) +N(r,

1

g
; ν2 ≥ 2) +N(r,

1

f ′ ; f ̸= 0)+

+N(r,
1

g′ ; g ̸= 0) + S(r).

Proof. We have

(2.1) L =
f”

f ′ − 2
f

′

f
− g”

g′ + 2
g

′

g
.



80 V.H. An, H.H. Khoai and N.D. Phuong

We now consider the poles of L. By (2.1), it is clear that L has only simple
poles, moreover, if a is a pole of L, then:

+ f(a) = ∞, or f
′
(a) = 0 with f(a) ̸= 0, or f(a) = 0, or

+ g(a) = ∞, or g
′
(a) = 0 with g(a) ̸= 0, or g(a) = 0.

Now let a be a pole of f with ν∞f (a) = 1, set

F (z) = R(z)(z − a),

where R(z) is a holomorphic function; R(a) ̸= 0. Then, we have

(2.2)
F ”

F ′ =
R”.(z − a) + 2R

′

R′ .(z − a) +R
,

and similarly for a pole of g. From this, it implies that L has no poles at simple
poles of f and g

1) i) Note that

N(r,
1

f
; ν1 ≥ 2) ≤ 1

2
(N(r,

1

f
; ν1 ≥ 2), N(r,

1

g
; ν2 ≥ 2) ≤ 1

2
(N(r,

1

g
; ν2 ≥ 2).

From this and since Ef,1)(0) = Eg,1)(0), we have

N(r,
1

f
; ν1 = 1) = N(r,

1

g
; ν2 = 1),

N(r,
1

f
) = N(r,

1

f
; ν1 = 1) +N(r,

1

f
; ν1 ≥ 2) ≤

≤ 1

2
N(r,

1

f
; ν1 = 1) +

1

2
(N(r,

1

f
; ν1 = 1) +N(r,

1

f
; ν1 ≥ 2) =

=
1

2
N(r,

1

f
; ν1 = 1) +

1

2
N(r,

1

f
),

N(r,
1

g
) = N(r,

1

g
; ν2 = 1) +N(r,

1

g
; ν2 ≥ 2) ≤

≤ 1

2
N(r,

1

g
; ν1 = 1) +

1

2
(N(r,

1

g
; ν1 = 1) +N(r,

1

g
; ν1 ≥ 2) =

=
1

2
N(r,

1

g
; ν1 = 1) +

1

2
N(r,

1

g
), N(r,

1

f
) +N(r,

1

g
) ≤

≤ N(r,
1

f
; ν1 = ν2 = 1) +

1

2
(N(r,

1

f
) +N(r,

1

g
)).(2.3)

Suppose a is a zero of f with multiplicity ν1 = 1. Since Ef,1)(0) = Eg,1)(0), a
is a zero of g with multiplicity ν2 = 1. Set

F =
F1

z − a
, G =

G1

z − a
,

where F1, G1 are holomorphic functions; F1(a) ̸= 0;G1(a) ̸= 0.
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By straight calculations, we have

(2.4) L =
F ”
1 .(z − a)

F
′
1.(z − a)− F1

− G”
1.(z − a)

G
′
1.(z − a)−G1

.

This shows L(a) = 0 if a is a common simple zero of f and g.

Moreover, by the logarithmic derivative lemma, we have

m(r, L) = m(r,
F

′′

F ′ − G
′′

G′ ) ≤ m(r,
F

′′

F ′ ) +m(r,
G

′′

G′ ) =

= S(r, F
′
) + S(r,G

′
).

On the other hand, from Lemma 2.2 we get

T (r, F
′
) ≤ 2T (r, f) + S(r, f), T (r,G

′
) ≤ 2T (r, g) + S(r, g).

So
S(r, F

′
) = S(r, f), S(r,G

′
) = S(r, g).

From this and (2.4) we get

N(r,
1

f
; ν1 = ν2 = 1) ≤ N(r,

1

L
) ≤ T (r,

1

L
) = T (r, L) +O(1) =

= N(r, L) +m(r, L) +O(1) ≤
≤ N(r, L) + S(r, f) + S(r, g).

From this and (2.3) we obtain conclusion i).

ii) By (2.1)- (2.4) and note that L has only simple poles, we can see that if
a is a pole of L, then

+ f(a) = ∞ with ν∞f (a) ≥ 2, or f
′
(a) = 0 with f(a) ̸= 0, or f(a) = 0 with

νf (a) ≥ 2,

or

+ g(a) = ∞ with ν∞g (a) ≥ 2, or g
′
(a) = 0 with g(a) ̸= 0, or g(a) = 0 with

νg(a) ≥ 2.

From this we obtain conclusion ii).

2) If m = 1, then

N(r,
1

f
;m ≥ ν1 > ν2) = 0, N(r,

1

g
;m ≥ ν1 > ν2) = 0, N(r,

1

f
;m ≥ ν1 ≥ 2) = 0,

N(r,
1

g
;m ≥ ν1 ≥ 2) = 0, N (m+1(r,

1

f
) = N (2(r,

1

f
), N (m+1(r,

1

f
) = N (2(r,

1

f
).

From this and Part 1) it follows that inequality 2) holds with m = 1.
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Now we prove the inequality for m ≥ 2.

i) By the hypothesis we have Ef,m)(0) = Eg,m)(0), m ≥ 2.

By using properties of the Stieltjes integral (see [5, p. 14]), we get:

N(r,
1

f
)− n(0,

1

f
) =

∑
0<|ai|<r

log
r

|ai|
,

where ai are zeros of f , counting multiplicity and

N(m(r,
1

f
)− n(0,

1

f
) =

∑
0<|ai|<r

log
r

|ai|
,

where ai are zeros of f , counting multiplicity with m-truncated multiplicity
and

N(r,
1

f
)− n(0,

1

f
) =

∑
0<|ai|<r

log
r

|ai|
,

where ai are zeros of f , ignoring multiplicity and

N (m(r,
1

f
)− n(0,

1

f
) =

∑
0<|ai|<r

log
r

|ai|
,

where ai are zeros of f , ignoring multiplicity with m-truncated multiplicity.

We obtain the similar equalities for N(r,
1

f
;m ≥ ν1 ≥ 2), N(r,

1

g
), N(m(r,

1

g
),

N (m(r,
1

g
), N(r,

1

f
;m ≥ ν1 > ν2), N(r,

1

g
;m ≥ ν2 ≥ 2), N(r,

1

g
;m ≥ ν2 > ν1).

We are going to prove Part 2 by using these inequalities and the arguments in
[13, Lemma 2.4], [14, Lemma 2.2], and [4, Lemma 2.6].

Set

M = Nm)(r,
1

f
) +Nm)(r,

1

g
) +N(r,

1

f
;m ≥ ν1 > ν2) +N(r,

1

g
;m ≥ ν2 > ν1),

T = N(r,
1

f
; ν1 = ν2 = 1) +

1

2
(Nm)(r,

1

f
) +Nm)(r,

1

g
))+

+N(r,
1

f
;m ≥ ν1 ≥ 2) +N(r,

1

g
;m ≥ ν2 ≥ 2).

We first prove that M ≤ T.

Let a be a zero of f with multiplicity p ≤ m. From Ef,m)(0) = Eg,m)(0) it
follows that a is a zero of g with multiplicity q ≤ m. We consider the following
cases:
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Case 1. p = q ≤ m.

If p = q = 1, then a is counted with 1 + 1 + 0 + 0 = 2 times in M and it is
counted with 1 + 1

2 (1 + 1) = 2 times in T .

If p = q ≥ 2, then a is counted with 1 + 1 + 0 + 0 = 2 times on M and it is
counted with 0 + 1

2 (p+ p) + p+ p = 3p > 2 times in T .

Case 2. q < p ≤ m.

If q = 1, then p ≥ 2 and a is counted with 1+1+1+0 = 3 times in M and
we see that a is counted with 0 + 1

2 (p+ 1) + p+ 0 = p+ p+1
2 > 3 times in T .

If q ≥ 2, then p > 2 and a is counted with 1 + 1 + 1 + 0 = 3 times in M .

we see that a is counted with 0+ 1
2 (p+ q) + p+ q = 0+ 3(p+q)

2 > 3 times in T .

Case 3. p < q ≤ m.

The proof of Case 3 is completed by using the arguments similar to ones in
Case 2.

So M ≤ T. Moreover,

N(r,
1

f
) = Nm)(r,

1

f
) +N (m+1(r,

1

f
), N(r,

1

g
) = Nm)(r,

1

g
) +N (m+1(r,

1

g
);

N(r,
1

f
) = Nm)(r,

1

f
) +N(m+1(r,

1

f
), N(r,

1

g
) = Nm)(r,

1

g
) +N(m+1(r,

1

g
);

N (m+1(r,
1

f
) ≤ 1

2
N(m+1(r,

1

f
), N (m+1(r,

1

g
) ≤ 1

2
N(m+1(r,

1

g
).

From this and M ≤ T it follow that

N(r,
1

f
) +N(r,

1

g
) +N(r,

1

f
;m ≥ ν1 > ν2) +N(r,

1

g
;m ≥ ν2 > ν1) ≤

≤ N(r,
1

f
; ν1 = ν2 = 1) +

1

2
(N(r,

1

f
) +N(r,

1

g
))+

+N(r,
1

f
;m ≥ ν1 ≥ 2) +N(r,

1

g
;m ≥ ν2 ≥ 2).

By the proof of i) of Part 1) we get N(r, 1
f ; ν1 = ν2 = 1) ≤ N(r, L) + S(r).

Combining above inequalities we obtain conclusion i) of 2.

ii) Suppose a is a zero of f with multiplicity ν1 = p ≤ m. Since Ef,m)(0) =

= Eg,m)(0), a is a zero of g with multiplicity ν2 = q ≤ m. Set

F =
F1

(z − a)p
, G =

G1

(z − a)q
,

where F1, G1 are holomorphic functions; F1(a) ̸= 0;G1(a) ̸= 0. By straight
calculations, we have

(2.5) L =
F ”
1 .(z − a) + (1− p)F

′

1

F
′
1.(z − a)− pF1

− G”
1.(z − a) + (1− q)G

′

1

G
′
1.(z − a)− qG1

+
q − p

z − a
.
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This relation shows that L has a pole at a only if p ̸= q with p ≤ m and
q ≤ m, i.e. when f and g have a zero at a with different multiplicities and both
multiplicities are ≤ m. By (2.1)- (2.5) and note that L has only simple poles,
we can see that if a is a pole of L, then

+ f(a) = ∞ with ν∞f (a) ≥ 2, or f
′
(a) = 0 with f(a) ̸= 0,

or

+ f(a) = 0 with m ≥ ν1(a) > ν2(a), or g(a) = 0 with m ≥ ν2(a) > ν1(a),

or

+ f(a) = 0 with νf (a) ≥ m+ 1, or g(a) = ∞ with ν∞g (a) ≥ 2,

or

+ g
′
(a) = 0 with g(a) ̸= 0, or g(a) = 0 with νg(a) ≥ m+ 1.

From this we obtain conclusion ii).

iii) Note that

N(r,
1

f
;m ≥ ν1 ≥ 2) +N (m+1(r,

1

f
) = N(r,

1

f
;m ≥ ν1 ≥ 2)+

+N(r,
1

f
; ν1 ≥ m+ 1) ≤

≤ N(r,
1

f
; ν1 ≥ 2).

Similarly,

N(r,
1

g
;m ≥ ν1 ≥ 2) +N (m+1(r,

1

g
) ≤ N(r,

1

g
; ν1 ≥ 2).

From the above inequalities and i), ii) it follows iii).

3. iii) The proof of this part is completed by using the arguments similar
to ones in 2. iii). ■

Lemma 2.4. ([8, Theorem 1.4]) Let P (z) be a polynomial of degree n satisfying
the condition (1.4). Then P (z) is a uniqueness polynomial if and only if

∑
1≤l<m≤k

qlqm >

k∑
i=1

ql,

where k is the derivative index of P.

In particular, the above inequality is always satisfied whenever k ≥ 4. When
k = 3 and max{m1,m2,m3} ≥ 2, or when k = 2, min{m1,m2} ≥ 2, and
m1 +m2 ≥ 5, the above inequality also holds.

H. Fujimoto [7, Proposition 7.1] proved the following:
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Lemma 2.5. Let P (z) be a polynomial of degree n satisfying the condition
(1.4). Assume furthermore that n ≥ 5 and there are two non-constant mero-
morphic function f and g such that

1

P (f)
=

c0
P (g)

+ c1

for two constants c0 ̸= 0 and c1. If k ≥ 3 or if k = 2, min{m1,m2} ≥ 2, then
c1 = 0.

Lemma 2.6. ([2, Lemma 2.2])
∑p

i=0

(
p
i

) (−1)i

l+p+1−i is not an integer, where l, p ≥
≥ 1 are integers.

In [2, Lemma 2.2], Banerjee proved Lemma 2.6 for l, p ≥ 3, but it is clear
that this lemma is valid for l, p ≥ 1.

We recall that, P (z) is defined by (1.5):

P (z) = (l + p+ 1)
( p∑
i=0

(
p

i

)
(−1)i

l + p+ 1− i
aizl+p+1−i

)
+ 1 = Q(z) + 1.

Q(z) = (l + p+ 1)
( p∑
i=0

(
p

i

)
(−1)i

l + p+ 1− i
aizl+p+1−i

)
,

with the condition (1.6) Q(a) ̸= −1, ̸= −2, and degree of P (z) is n = l+ p+1.

Lemma 2.7. Let P (z) be defined by (1.5) with condition (1.6), and let l ≥ 3
and p ≥ 2. Then P (z) is a strong uniqueness polynomial for meromorphic
functions.

Proof. Note that, P
′
(z) = nzl(z − a)p, and P

′
(z) has a zero at 0 with multi-

plicity l and a zero at a with multiplicity p.

By Lemma 2.6, we see that
∑p

i=0

(p
i

) (−1)i

l+p+1−i is not an integer. Set

A =

p∑
i=0

(p
i

) (−1)i

l + p+ 1− i
.

Then A ̸= 0. We have P (0) = Q(0) + 1 = 1, P (a) = Q(a) + 1 = nAan + 1.
From this and a ̸= 0, we get P (a) ̸= P (0). Set F = P (f), G = P (g). From
P (f) = cP (g), c ̸= 0, it implies

(2.6) F = cG, T (r, f) + S(r, f) = T (r, g) + S(r, g), S(r, f) = S(r, g).

Now we consider the following possible cases:
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Case 1. c ̸= 1.

If c = P (a), from (2.6) we have

(2.7) F − 1 = P (a)(G− 1

P (a)
).

We consider P (z) − 1
P (a) . By P (0) = 1 and P (a) = c ̸= 1 we obtain P (0) −

− 1
P (a) ̸= 0. Because P (z) satisfies the condition (1.6) we have Q(a) + 1 ̸= −1.

Moreover, since P (a) = nAan + 1 = Q(a) + 1 ̸= −1 and P (a) = c ̸= 1 we
obtain P (a) − 1

P (a) ̸= 0. Therefore P (z) − 1
P (a) has only simple zeros, let

they be given by b
′

i, i = 1, 2, . . . , n. Note that P (z) − 1 has a zero at 0 with

multiplicity n− p = l+ 1, and p distinct simple zeros. Let c
′

i, i = 1, 2, . . . , p be
distinct simple zeros of P (z) − 1. Applying Lemma 2.1 to the function g and
the values b

′

1, b
′

2, . . . , b
′

n, and by (2.6), (2.7) we get

(n− 1)T (r, g) = (l + p)T (r, g) ≤

≤ N(r, g) +

n∑
i=1

N(r,
1

g − b
′
i

) + S(r, g) ≤

≤ T (r, g) +N(r,
1

f
) +

p∑
i=1

N(r,
1

f − c
′
i

) + S(r, g) ≤

≤ T (r, g) + T (r, f) + pT (r, f) + S(r, g) =

= (p+ 2)T (r, g) + S(r, g)

So (l − 2)T (r, g) ≤ S(r, g), a contradiction to the assumption that l ≥ 3.

If c ̸= P (a), then from (2.6) we have

(2.8) F − c = c(G− 1).

We consider P (z) − c. By P (0) = 1 and c ̸= 1 we have P (0) − c = 1 − c ̸= 0.
Moreover c ̸= P (a). So P (a)− c ̸= 0, P (0)− c ̸= 0. Therefore P (z)− c has only
simple zeros, let they be given by ei, i = 1, 2, . . . , n. Now we consider P (z)− 1.
We see that P (0) = 1, P (z)−P (0) = P (z)− 1 has a zero at 0 with multiplicity
n − p = l + 1, and p distinct simple zeros. Let ti, i = 1, 2, . . . , p be distinct
simple zeros of P (z)−1. Applying Lemma 2.1 to the function f and the values
e1, e2, . . . , en, and by (2.8) we get

(n− 1)T (r, f) = (l + p)T (r, f) ≤

≤ N(r, f) +

n∑
i=1

N(r,
1

g − ei
) + S(r, f) ≤
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≤ T (r, f) +N(r,
1

g
) +

p∑
i=1

N(r,
1

f − ti
) + S(r, f) ≤

≤ T (r, f) + T (r, g) + pT (r, g) + S(r, f) =

= (p+ 2)T (r, f) + S(r, f).

So, (l − 2)T (r, f) ≤ S(r, f), a contradiction to the assumption that l ≥ 3.

Case 2. c = 1. Then
P (f) = P (g).

Applying Lemma 2.4 to (2.8) we obtain f = g. ■

3. Proof of Theorems

3.1. Proof of Theorem 1.

Recall that P (z) is a strong uniqueness polynomial of the form (1.3), P (z) =
= (z − a1) · · · (z − an) with P

′
(z) = nzm1(z − d2)

m2 · · · (z − dk)
mk and P (z)

satisfies the condition (1.4), P (di) ̸= P (dj), 1 ≤ i < j ≤ k, where k is the
derivative index of P (z).

Let S = {z ∈ C| P (z) = 0} andm be a positive integer. Suppose that k ≥ 3,
or k = 2 and min{m1,m2} ≥ 2. We are going to prove that, if n > 2k + 10
(n > 2k + 4), then S is a URSM-IM (URSE-IM) and URSMm)-IM (URSEm)-
IM).

3.1.1. n > 2k + 10. In this case we will prove that S is a URSM-IM. Set

F =
1

P (f)
, G =

1

P (g)
, L =

F
′′

F ′ − G
′′

G′ ,

T (r) = T (r, f) + T (r, g), S(r) = S(r, f) + S(r, g).

Then T (r, P (f)) = nT (r, f) + S(r, f) and T (r, P (g)) = nT (r, g) + S(r, g), and
hence S(r, P (f)) = S(r, f) and S(r, P (g)) = S(r, g).

We consider two following cases:

Case 1. L ≡ 0. Then we have 1
P (f) = c

P (g) + c1 for some constants c ̸= 0

and c1. By Lemma 2.5 we obtain c1 = 0.

Therefore, there is a constant C ̸= 0 such that P (f) = CP (g). Because
P (z) is a strong uniqueness polynomial, we obtain f = g.

Case 2. L ̸≡ 0.

Claim 1. We show that

(3.1) (n− 2)T (r) ≤ N(r,
1

P (f)
) +N(r,

1

P (g)
)−N0(r,

1

f ′ )−N0(r,
1

g′ ) + S(r),
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where N0(r,
1
f ′ ) (N0(r,

1
g′ )) is the counting function of those zeros of f ′, which

are not zeros of function

(f − a1)...(f − an)f(f − d2)...(f − dk)((g − a1)...(g − an)g(g − d2)...(g − dk)).

Indeed, applying Lemma 2.1 to the functions f, g and the values a1, . . . , an,
0, d2, ..., dk, and noting that

n∑
i=1

N(r,
1

f − ai
) = N(r,

1

P (f)
),

n∑
i=1

N(r,
1

g − ai
) = N(r,

1

P (g)
),

we obtain

(n+ k − 1)T (r) ≤N(r, f) +N(r, g) +N(r,
1

P (f)
) +N(r,

1

P (g)
)+

+N(r,
1

f
) +N(r,

1

g
) +

k∑
i=2

N(r,
1

f − di
)+

+

k∑
i=2

N(r,
1

g − di
)−N0(r,

1

f ′ )−N0(r,
1

g′ ) + S(r).(3.2)

On the other hand,

N(r, f) +N(r, g) ≤ (T (r, f) + T (r, g)) + S(r) = T (r) + S(r),

N(r,
1

f
) +N(r,

1

g
) ≤ (T (r, f) + T (r, g)) + S(r) = T (r) + S(r),

N(r,
1

f − di
) +N(r,

1

g − di
) ≤ (k − 1)(T (r, f) + T (r, g)) + S(r)

= (k − 1)T (r) + S(r), i = 2, . . . , k.

From this and (3.2) we obtain (3.1).

Claim 2. We show that

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤(

n

2
+ 3)T (r) +N(r,

1

[P (f)]′
;P (f) ̸= 0)+

+N(r,
1

[P (g)]′
;P (g) ̸= 0) + S(r).

Indeed, by Ef (S) = Eg(S) we get (P (f))−1(0) = (P (g))−1(0). For simplicity,
we set ν1 = ν1(z), ν2 = ν2(z), where ν1(z) = νP (f)(z), ν2(z) = νP (g)(z). Note
that

N (2(r, P (f)) = N(r, f), N (2(r, P (g)) = N(r, g),

S(r, P (f)) = S(r, f), S(r, P (g)) = S(r, g), S(r) = S(r, f) + S(r, g).
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Applying Part 3).iii) of Lemma 2.3 to the functions P (f), P (g), we obtain

N(r,
1

P (f)
)+N(r,

1

P (g)
) ≤ N(r, f) +N(r, g) +

1

2
(N(r,

1

P (f)
) +N(r,

1

P (g)
))+

+N(r,
1

P (f)
; ν1 ≥ 2) +N(r,

1

P (g)
; ν2 ≥ 2))+

+N(r,
1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0) + S(r).(3.3)

Moreover,

(3.4) N(r, f) +N(r, g) ≤ T (r) + S(r).

Obviously,

N(r,
1

P (f)
) ≤nT (r, f) + S(r, f);

N(r,
1

P (g)
) ≤nT (r, g) + S(r, g),

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤nT (r) + S(r).(3.5)

On the other hand, from P (f) = (f − a1) · · · (f − an) it follows that, if z0 is a
zero of P (f) with multiplicity ≥ 2, then z0 is a zero of f − ai with multiplicity
≥ 2 for some i ∈ {1, 2, . . . , n}, and therefore, it is a zero of f

′
, so we have

N(r,
1

P (f)
; ν1 ≥ 2) ≤ N(r, f

′
).

From this and Lemma 2.2 we obtain

N(r,
1

P (f)
; ν1 ≥ 2) ≤ N(r, f

′
) ≤ N(r,

1

f
)+N(r, f)+S(r, f) ≤ 2T (r, f)+S(r, f).

Similarly, we have

N(r,
1

P (g)
; ν2 ≥ 2) ≤ N(r, g

′
) ≤ N(r,

1

g
)+N(r, g)+S(r, g) ≤ 2T (r, g)+S(r, g).

Therefore,

(3.6) N(r,
1

P (f)
; ν1 ≥ 2) +N(r,

1

P (g)
; ν2 ≥ 2) ≤ 2T (r) + S(r).

Combining (3.1)–(3.6) we get

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤(

n

2
+ 3)T (r) +N(r,

1

[P (f)]′
;P (f) ̸= 0)+

+N(r,
1

[P (g)]′
;P (g) ̸= 0) + S(r).

Claim 2 is proved.
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Claim 3. We have

N(r,
1

[P (f)]′
;P (f) ̸= 0)+N(r,

1

[P (g)]′
;P (g) ̸= 0) ≤

≤ kT (r) +N0(r,
1

f ′ ) +N0(r,
1

g′ ) + S(r).

Indeed,

N(r,
1

[P (f)]′
;P (f) ̸= 0) = N(r,

1

fm1(f − d2)m2 · · · (f − dk)mkf ′ ;P (f) ̸= 0) ≤

≤ N(r,
1

f
) +

k∑
i=2

N(r,
1

f − di
) +N0(r,

1

f ′ ) ≤

≤ kT (r, f) +N0(r,
1

f ′ ) + S(r, f).(3.7)

Similarly,

(3.8) N(r,
1

[P (g)]′
;P (g) ̸= 0) ≤ kT (r, g) +N0(r,

1

g′ ) + S(r, g).

Inequalities (3.7) and (3.8) give us

N(r,
1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0) ≤

≤ kT (r) +N0(r,
1

f ′ ) +N0(r,
1

g′ ) + S(r).

Claim 3 is proved.

Claim 1, 2, 3 give us:

(n− 2)T (r) ≤ (
n

2
+ 3 + k)T (r) + S(r).

Therefore, (n− 2k− 10)T (r) ≤ S(r), this is a contradiction to the assumption
that n > 2k + 10. So L ≡ 0. Therefore f = g.

3.1.2. n > 2k+4. We will prove that S is a URSE-IM. Note that, if f, g are
entire functions, then

N(r, f) = 0, N(r, g) = 0,

N(r, f
′
) ≤ N(r,

1

f
) +N(r, f) + S(r, f) ≤

≤ T (r, f) + S(r, f),

N(r, g
′
) ≤ N(r,

1

g
) +N(r, g) + S(r, g) ≤

≤ T (r, g) + S(r, g).
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From this and by similar arguments as in the case of URSM-IM we see that,
if L ̸≡ 0, then

(n− 1)T (r) ≤ N(r,
1

P (f)
) +N(r,

1

P (g)
)−N0(r,

1

f ′ )−N0(r,
1

g′ ) + S(r),

N(r,
1

P (f)
) +N(r,

1

P (g)
) ≤ (

n

2
+ 1)T (r) +N(r,

1

[P (f)]′
;P (f) ̸= 0)+

+N(r,
1

[P (g)]′
;P (g) ̸= 0) + S(r),

N(r,
1

[P (f)]′
;P (f) ̸= 0) = N(r,

1

fm1(f − d2)m2 · · · (f − dk)mkf ′ ;P (f) ̸= 0) ≤

≤ N(r,
1

f
) +

k∑
i=2

N(r,
1

f − di
) +N0(r,

1

f ′ ) ≤

≤ kT (r, f) +N0(r,
1

f ′ ) + S(r, f),

N(r,
1

[P (g)]′
;P (g) ̸= 0) ≤ kT (r, g) +N0(r,

1

g′ ) + S(r, g).

Combining above inequalities we obtain:

(n− 1)T (r) ≤ (
n

2
+ 1 + k)T (r) + S(r).

So, (n−2k−4)T (r) ≤ S(r), a contradiction to the assumption that n > 2k+4.
Thus we have L ≡ 0. The proof of this case is completed by using the arguments
similar to ones in the case of URSM-IM.

3.1.3. n > 2k+10. We prove that S is a URSMm). By the similar arguments
as in the case of URSM-IM we can see that if L ̸≡ 0, then

(n− 2)T (r) ≤ N(r,
1

P (f)
) +N(r,

1

P (g)
)−N0(r,

1

f ′ )−N0(r,
1

g′ ) + S(r).

Note that Ef,m)(S) = Ef,m)(S) and

N (2(r, P (f)) =N(r, f) ≤ T (r, f) + S(r, f),

N (2(r, P (g)) =N(r, g) ≤ T (r, g) + S(r, g),

S(r, P (f)) =S(r, f), S(r, P (g)) = S(r, g), S(r) = S(r, f) + S(r, g).
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Then applying Part 2).iii) of Lemma 2.3 to the functions P (f), P (g) we get

N(r,
1

P (f)
)+N(r,

1

P (g)
) ≤ N(r, f) +N(r, g) +

1

2
(N(r,

1

P (f)
)+

+N(r,
1

P (g)
)) +N(r,

1

P (f)
; ν1 ≥ 2) +N(r,

1

P (g)
; ν2 ≥ 2))+

+N(r,
1

[P (f)]′
;P (f) ̸= 0) +N(r,

1

[P (g)]′
;P (g) ̸= 0) + S(r).

By the similar argument as in Claims 2, 3 of the case URSM-IM we get
a contradiction to the assumption that n > 2k + 10. So L ≡ 0. The proof of
this case is completed by using the arguments similar to ones in the case of
URSM-IM.

3.1.4. n > 2k + 4. By using the arguments similar to ones in the cases of
URSE-IM and URSMm) we can prove that S is a URSEm).

Theorem 1 is proved. ■

3.2. Proof of Theorem 2.

We recall that, P (z) is defined by (1.5),

P (z) = (l + p+ 1)
( p∑
i=0

(p
i

) (−1)i

l + p+ 1− i
aizl+p+1−i

)
+ 1 = Q(z) + 1.

Q(z) = (l + p+ 1)
( p∑
i=0

(p
i

) (−1)i

l + p+ 1− i
aizl+p+1−i

)
,

with the condition (1.6), Q(a) ̸= −1, Q(a) ̸= −2, and the degree of P (z) is
n = l + p+ 1.

Then applying Lemma 2.7 we see that P (z) is a strong uniqueness polyno-
mial for meromorphic functions of degree n ≥ 6, if l ≥ 3 and p ≥ 2. Polynomial
P (z) satisfies the conditions of Theorem 1 with k = 2. Then applying Theo-
rem 1 to polynomial P (z) we conclude that S is a URSM-IM (URSE-IM) and
URSMm)-IM (URSEm)-IM) if n ≥ 15( n ≥ 7).
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