
Annales Univ. Sci. Budapest., Sect. Comp. 53 (2022) 159–173

ON THE EQUATION G(n) = F (n2 − 1) + D
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Abstract. We give all solutions (D,G, F ) of the equation

G(n) = F (n2 − 1) +D for every n ∈ N,

where G,F are completely multiplicative functions and D ∈ C.

1. Introduction

In the following let P, N, and C denote the set of primes, positive integers
and complex numbers, respectively. Let N1 := N\{1}. We denote by M (M∗)
the set of all complex-valued multiplicative (completely multiplicative) func-
tions, respectively. For each m ∈ N,m ≥ 2 let χm(n) (χ∗

m(n)) be the real
principal (non-principal) Dirichlet character (mod m), respectively.

Let E (n) = 1, I (n) = n for every n ∈ N and O (1) = 1,O (n) = 0 if n ≥ 2.
For each ω ∈ C with ω3 = −1 we define the function Ψω : N → C such that

Ψω(n) =

⎧
⎪⎨
⎪⎩

0 if 3|n
ω

2(n−1)
3 if n ≡ 1 (mod 3)

ω
4(n−2)

3 +1 if n ≡ 2 (mod 3).

One can check that Ψω ∈ M∗ and Ψ−1 = χ∗
3.

Key words and phrases: Completely multiplicative function, the identity function, Dirichlet
character.
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The problem concerning the characterization of the identity function as
multiplicative arithmetical function with some equation was studied by several
authors. C. Spiro proved that if f ∈ M satisfies the following relations

f(p+ q) = f(p) + f(q) (∀p, q ∈ P) and f(p0) �= 0 for some p0 ∈ P,

then f is the identity function.

Recently, in [1] we gave all solutions of the equation

F (n2 +m2 + k) = H(n) +H(m) +K for every n ∈ N,

where k ∈ N is the sum of two fixed squares, K ∈ C and F,H are completely
multiplicative functions. The equation

f(n2 +Dm2) = f2(n) +Df2(m)

was completely solved for arithmetic functions f in [3] and [4].

Here we shall prove the following

Theorem 1. Assume that D ∈ C and the functions G,F ∈ M∗ satisfy the
relation

(1.1) G(n) = F (n2 − 1) +D for every n ∈ N1.

Then the following assertions hold.

(a) If D = 0 and F (3) �= 0, then G = F = E.

(b) If D = 0 and F (3) = 0, then G = O and

F (2) = F (3) = F (5) = F (7) = 0, F (n2 − 1) = 0 for every n ∈ N1.

(c) If D �= 0, F (2) = F (3) = 0, then D = 1, G(n) = 1 for every n ∈ N
and F (n2 − 1) = 0 for every n ∈ N1.

(d) If D �= 0, F (2) = 0 and F (3) �= 0, then (D,G, F ) = (1, χ2, χ
∗
4).

(e) If D �= 0, ω = F (2) �= 0 and F (3) = 0, then ω3 = −1 and (D,G, F ) =
= (1, χ3,Ψω)}.

(f) If D �= 0 and F (2)F (3) �= 0, then (D,G, F ) = {(−1,O,E), (1, I2, I)}.
Remark 1. Let F be the set of all F ∈ M∗, for which F (n2 − 1) = 0 holds
for every n ∈ N1. Then |F| = ∞. For the proof of this assertion, we consider
k ∈ N primes p1 < p2 < . . . < pk of the form 4t+ 1. Let

B := {pα1
1 · · · pαk

k | αi ∈ Z, αi ≥ 0 (i = 1, . . . , k)}.
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We define f ∈ M∗ as follows:

f(n) =

�
1 if n ∈ B
0 if n �∈ B .

Then f ∈ F . Indirectly, assume that f(n2 − 1) = f(n − 1)f(n + 1) �= 0, then
n− 1 ∈ B, n+1 ∈ B, which imply n− 1 = 4m+1 and n+1 = 4�+1 for some
m, � ∈ N. Then 2 = 4(�−m), which is impossible.

2. Lemmas

In this section we assume that D ∈ C and the functions G,F ∈ M∗ satisfy
the relation (1.1) for every n ∈ N1.

Let F (2) = ω and F (3) = μ. First we apply (1.1) with n ∈ {2, 3, 5, 7, 11, 13}.
We have

(2.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(2) = F (3) +D = μ+D,

G(3) = F (2)3 +D = ω3 +D,

G(5) = F (2)3F (3) +D = ω3μ+D,

G(7) = F (2)4F (3) +D = ω4μ+D,

G(11) = F (2)3F (3)F (5) +D = ω3μF (5) +D,

G(13) = F (2)3F (3)F (7) +D = ω3μF (7) +D.

By using this system and by applying (1.1) with n ∈ {4, 6, 8, 9, 15, 26, 49, 55},
we obtain that

E1 = G(2)2 − F (3)F (5)−D = D2 + 2μD − μF (5) + μ2 −D = 0,

E2 = G(2)G(3)− F (5)F (7)−D =

= Dω3 + ω3μ+ μD − F (5)F (7) +D2 −D = 0,

E3 = G(2)3 − F (3)2F (7)−D = D3 + 3D2μ+ 3Dμ2 − μ2F (7) + μ3 −D = 0,

E4 = G(3)2 − F (2)4F (5)−D = ω6 − ω4F (5) + 2Dω3 +D2 −D = 0,

E5 = G(3)G(5)− F (2)5F (7)−D =

= μω6 − ω5F (7) +Dμω3 +Dω3 +D2 −D = 0,

E6 = G(2)G(13)− F (3)3F (5)2 −D =

= DF (7)μω3 + F (7)μ2ω3 − μ3F (5)2 +D2 + μD −D = 0,

E7 = G(7)2 − F (2)5F (3)F (5)2 −D =

= μ2ω8 − ω5μF (5)2 + 2Dμω4 +D2 −D = 0,

E8 = G(5)G(11)− F (2)4F (3)3F (7)−D =

= F (5)μ2ω6 − ω4μ3F (7) +DF (5)μω3 +Dμω3 +D2 −D = 0.
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Lemma 1. Assume that D = 0 and the functions G,F ∈ M∗ satisfy the
relation (1.1). Then we have

(a) If F (3) ̸= 0, then G = F = E,

(b) If F (3) = 0, then G = O and

F (2) = F (3) = F (5) = F (7) = 0, F (n2 − 1) = 0 for every n ∈ N1.

Proof. (a) Assume that µ = F (3) ̸= 0. We shall prove that G = F = E.
Since D = 0 and µ ̸= 0, the equations

E1 = −µ(F (5)− µ) = 0 and E3 = −µ2(F (7)− µ) = 0

imply that

F (5) = µ and F (7) = µ.

Then

E2 = Dω3+ω3µ+µD−F (5)F (7)+D2−D = ω3µ−F (5)F (7) = µ(ω3−µ) = 0,

which shows that

µ = ω3 and ω ̸= 0.

Consequently

F (7) = µ = ω3,

E5 = µω6−ω5F (7)+Dµω3+Dω3+D2−D = ω6µ−ω5F (7) = ω8(ω− 1) = 0

from which ω = 1 follows. Thus the above relations with (2.1) imply that µ =
= ω3 = 1, F (2) = F (3) = F (5) = F (7) = µ = 1 and G(2) = G(3) = G(5) = 1.

Now we shall prove that G = F = E.
Assume that G(n) = F (n) = 1 for every n < P , where P > 5. It is obvious

that G(P ) = F (P ) = 1 if P ̸∈ P. Thus we may assume that P ∈ P, P ≥ 7.
Then we infer from (1.1) that

G(P ) = F (P − 1)F (P + 1) +D = F (2)F (P − 1)F
(P + 1

2

)
= 1

and

1 = G(P − 1) = F (P − 2)F (P ) +D = F (P ),

which proves that G(P ) = F (P ) = 1. The proof of (a) is complete.

(b) Assume that D = 0 and µ = F (3) = 0. In this case we prove that
ω = F (2) = 0.
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Assume in contradiction that ω �= 0. Then it follows from E4 that

E4 = ω6 − ω4F (5) + 2Dω3 +D2 −D =

= ω6 − ω4F (5) = ω4(ω2 − F (5)) = 0,

which implies that
F (5) = ω2 �= 0.

Since

E2 = Dω3 + ω3μ+ μD − F (5)F (7) +D2 −D = −F (5)F (7) = −ω2F (7) = 0

we have F (7) = 0. These are impossible, because

G(3) = F (2)F (4) = ω3

and
0 = G(27)− F (26)F (28)−D = G(3)3 = F (2)9 = ω9 �= 0.

Thus, we proved that ω = μ = 0. Then G(3) = ω3 = 0 and F (2) = F (3) =
= F (5) = F (7) = 0. By using the fact n2 − 1 ≡ 0 (mod 3) if (n, 3) = 1, we
have

G(n) = F (n2 − 1) +D = 0 if n ∈ N1 and (n, 3) = 1.

Therefore G(n) = 0 for every n ∈ N1, that is G = O. Then F (n2 − 1) =
= G(n)−D = 0 for every n ∈ N1. The proof of Lemma 1 is complete. �

Lemma 2. Assume that D ∈ C \ {0} and the functions G,F ∈ M∗ satisfy the
relation (1.1). Then we have

(c) If F (2) = F (3) = 0, then D = 1, G(n) = 1 for every n ∈ N and
F (n2 − 1) = 0 for every n ∈ N1.

(d) If F (2) = 0 and F (3) �= 0, then (D,G, F ) = (1, χ2, χ
∗
4).

(e) If ω = F (2) �= 0 and F (3) = 0, then ω3 = −1 and (D,G, F ) =
= (1, χ3,Ψω).

Proof. (c) Assume that F (2) = F (3) = 0, i.e. ω = μ = 0. Then we have

E4 = ω6 − ω4F (5) + 2Dω3 +D2 −D = D2 −D = 0,

which with D �= 0 implies that D = 1. Then G(n) = F (n2 − 1) + 1 for every
n ∈ N1.

Since ω = F (2) = 0, we have G(3) = F (2)3 + 1 = 1. It is well-known that
n2 − 1 ≡ 0 (mod 3) if (n, 3) = 1, therefore we infer from μ = F (3) = 0 that

G(n) = F (n2 − 1) + 1 = 1 if (n, 3) = 1.
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Consequently

G(n) = 1 for every n ∈ N and F (n2 − 1) = 0 for every n ∈ N1.

The proof of (c) is finished.

(d) Now assume that F (2) = ω = 0 and F (3) = μ �= 0. Then

E4 = ω6 − ω4F (5) + 2Dω3 +D2 −D = D2 −D = 0,

which with D �= 0 gives D = 1. Now we have

E1 = D2 + 2μD − μF (5) + μ2 −D = −μ(−μ+ F (5)− 2) = 0

and

E3 = D3+3D2μ+3Dμ2−μ2F (7)+μ3−D = −μ(−μ2+F (7)μ− 3μ− 3) = 0,

which imply

(2.2) F (5) = μ+ 2 and F (7) =
μ2 + 3μ+ 3

μ
.

Therefore

E2 = Dω3 + ω3μ+ μD − F (5)F (7) +D2 −D =

= −μ3 + 5μ2 + 9μ− μ2 + 6

μ
= − (μ+ 1)(μ2 + 3μ+ 6)

μ
= 0

and

E6 = DF (7)μω3 + F (7)μ2ω3 − μ3F (5)2 +D2 + μD −D =

= −μ(μ+ 1)2(μ2 + 2μ− 1) = 0.

These with μ �= 0 imply that μ = −1, because in the other case μ2 + 3μ+ 6 =
= 0 and μ2 + 2μ− 1 = 0 would satisfied, which are impossible. Therefore, we
infer from (2.1) and (2.2) that

F (2) = 0, F (3) = −1, F (5) = 1, F (7) = −1

and
G(2) = 0, G(3) = G(5) = G(7) = 1.

We shall prove that in this case (G,F ) = (χ2, χ
∗
4).

We have F (n) = χ∗
4(n) and G(n) = χ2(n) for n ∈ N, n ≤ 7. Assume that

F (n) = χ∗
4(n) and G(n) = χ2(n) hold for every n < P , where P ∈ N, P > 7.
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It is obvious that F (P ) = χ∗
4(P ) and G(P ) = χ2(P ) if P �∈ P. Thus we may

assume that P ∈ P. Then

G(P ) = F (P − 1)F (P + 1) +D = F (2)F (P − 1)F
(P + 1

2

)
+ 1 = 1 = χ2(P )

and

0 = χ2(P − 1) = G(P − 1) = F (P − 2)F (P ) +D =

= χ∗
4(P − 2)F (P ) + 1 = −χ∗

4(P )F (P ) + 1,

because χ∗
4(k−2) = −χ∗

4(k) for every k ∈ N . The above relation shows that
χ∗
4(P )F (P ) = 1, which with (χ∗

4(P ))2 = 1 implies that F (P ) = χ∗
4(P ).

The proof of (d) is complete.

(e) Assume that ω �= 0 and μ = 0. First we prove that

(2.3) ω3 = −1.

Since μ = 0, we have

E1 = D2 + 2μD − μF (5) + μ2 −D = D2 −D = 0,

which with D �= 0 shows that D = 1. Then

E5 = μω6 − ω5F (7) +Dμω3 +Dω3 +D2 −D = ω3
(
1− ω2F (7)

)
= 0,

consequently

(2.4) F (7) =
1

ω2

and

E2 = Dω3 + ω3μ+ μD − F (5)F (7) +D2 −D = ω3 − F (5)F (7) =

= ω3 − F (5)

ω2
=

ω5 − F (5)

ω2
= 0.

The last relation implies that

(2.5) F (5) = ω5.

Now we apply (1.1) for n ∈ {21, 351}, we shall obtain from (2.1), (2.4) and
(2.5) that

(2.6) G(3) = ω3 + 1, G(7) = G(13) = 1, F (5) = ω5, F (7) =
1

ω2



166 I. Kátai, B.M.M. Khanh and B.M. Phong

and so

0 = G(21)− bF (20)F (22)−D = G(3)G(7)− F (2)3F (5)F (11)− 1 =

= (ω3 + 1)− ω8F (11)− 1 = ω3(1− ω5F (11)).

This with ω �= 0 implies that F (11) = 1
ω5 , consequently

0 = G(351)− F (350)F (352)−D =

= G(3)3G(13)− F (2)6F (5)2F (7)F (11)− 1 =

= (ω3 + 1)3 − ω16

ω7
− 1 = 3ω3(ω + 1)(ω2 − ω + 1).

Since ω �= 0, the last relation shows that

ω3 + 1 = (ω + 1)(ω2 − ω + 1) = 0,

which proves (2.3).

It follows from (2.3) that G(3) = ω3 + 1 = 0. Since μ = F (3) = 0 and
n2 − 1 ≡ 0 (mod 3) if (n, 3) = 1, we infer from (1.1) that

G(n) = F (n2 − 1) +D = D = 1 if (n, 3) = 1.

This implies that G = χ3.

Now we prove that F (n) = Ψω(n) for every n ∈ N. Since F (3) = Ψω(3) = 0
and F,Ψω ∈ M∗, we have F (n) = Ψω(n) = 0 if 3|n.

It follows from (1.1) that

0 = χ3(3m) = G(3m) = F (3m− 1)F (3m+ 1) + 1 for every m ∈ N,

which implies that

(2.7) F (3m− 1)F (3m+ 1) = −1 = ω3 for every m ∈ N.

It is clear to check from (2.7) that

F (3m+ 1)F (3m+ 2) =
F (6m+ 2)F (6m+ 4)

ω2
=

=
F
(
3(2m+ 1)− 1

)
F
(
3(2m+ 1) + 1

)

ω2
=

ω3

ω2
= ω

(2.8)

holds for every m ∈ N. Thus we infer from (2.7) and (2.8) that

F (3m− 1)F (3m+ 1) = ω3 = ω2 · ω = ω2F (3m+ 1)F (3m+ 2),
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which with ω6 = 1 implies that

F
(
3(m+ 1)− 1

)
= F (3m+ 2) = ω4F (3m− 1) for every m ∈ N.

Hence
F (3m+ 2) = ω4m+1 for every m ∈ N,

and so (2.8) shows that

ω = F (3m+ 1)F (3m+ 2) = ω4m+1F (3m+ 1) = ω−2m+1F (3m+ 1).

Since ω6m = 1 for every m ∈ N, we obtain from the above relation that

F (3m+ 1) = ω2m for every m ∈ N.

Thus, we have proved that F = Ψω.

The proof of (e) is complete. �

Lemma 3. Assume that D ∈ C \ {0} and the functions G,F ∈ M∗ satisfy the
relation (1.1). If F (2)F (3) �= 0, then

(
D,F (2), F (3)

)
∈
{
(−1, 1, 1), (1, 2, 3)

}
.

Proof. Let F (2) = ω and F (3) = μ. Then it follows from our assumptions
that Dωμ �= 0.

Now we infer from E1 and E3 that

F (5) =
μ2 + 2Dμ+D2 −D

μ
and F (7) =

μ3 + 3Dμ2 + 3D2μ+D3 −D

μ2
.

By using a computer, we obtain the following equations:

F1 = μE4 = μω6 −D2ω4 − 2Dμω4 − μ2ω4 + 2Dμω3 +Dω4 +D2μ−Dμ = 0

F2 = μ2E5 = μ3ω6 −D3ω5 − 3D2μω5 − 3Dμ2ω5 − μ3ω5 +Dμ3ω3 +Dμ2ω3+

+Dω5 +D2μ2 −Dμ2 = 0

F3 = μE7 = μ3ω8 −D4ω5 − 4D3μω5 − 6D2μ2ω5 − 4Dμ3ω5 − μ4ω5+

+ 2D3ω5 + 4D2μω5 + 2Dμ2ω5 −D2ω5 + 2Dμ2ω4+

+D2μ−Dμ = 0

F4 = E8 = D2μω6 + 2Dμ2ω6 + μ3ω6 −D3μω4 − 3D2μ2ω4 − 3Dμ3ω4−
−Dμω6 − μ4ω4 +D3ω3 + 2D2μω3 +Dμ2ω3 +Dμω4 −D2ω3+

+Dμω3 +D2 −D = 0.
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We now follow the method which was used in [5] to prove Lemma 3.

Let f(x, y, z) ∈ Q[x, y, z] be a polynomial in three variables x, y, z. Then
we can write the polynomial f(x, y, z) in the following form

f(x, y, z) = a0(x, y)z
k + a1(x, y)z

k−1 + . . .+ ak(x, y),

where ai(x, y) ∈ Q[x, y] (i = 1, . . . , k) and we write f(x, y, z) ∈ (Q[x, y])[z].

Let a(x, y, z), b(x, y, z) be polynomials in (Q[x, y])[z] with b(x, y, z) �= 0.
Then unique polynomials exist q(x, y, z) and r(x, y, z) in (Q[x, y])[z] with

a(x, y, z) = q(x, y, z)b(x, y, z) + r(x, y, z)

and such that the degree of r(x, y, z) is smaller than the degree of b(x, y, z)
in z. The polynomials q(x, y, z) and r(x, y, z) are uniquely determined by
a(x, y, z) and b(x, y, z). Similarly, we can define rem(a(x, y, z), b(x, y, z), x)
and rem(a(x, y, z), b(x, y, z), y). Now let

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(x, y, z) = x6y − x4z2 − 2x4yz − x4y2 + x4z + 2x3yz + yz2 − yz,

F2(x, y, z) = x6y3 − x5z3 − 3x5yz2 − 3x5y2z − x5y3 + x3y3z + x5z+

+x3y2z + y2z2 − y2z,

F3(x, y, z) = x8y3 − x5z4 − 4x5yz3 − 6x5y2z2 − 4x5y3z − x5y4 + 2x5z3+

+4x5yz2 + 2x5y2z − x5z2 + 2x4y2z + yz2 − yz,

F4(x, y, z) = x6yz2 + 2x6y2z + x6y3 − x4yz3 − 3x4y2z2 − x6yz−
−3x4y3z − x4y4 + x3z3 + 2x3yz2 + x4yz + x3y2z − x3z2+

+x3yz + z2 − z.

Let ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a1(x, y, z) = rem
�

−(x4−y)2

x3y F2(x, y, z), F1(x, y, z), z
�
,

a2(x, y, z) = rem
�

−(x4−y)3

x3y2 F3(x, y, z), F1(x, y, z), z
�
,

a3(x, y, z) = rem
�

(x4−y)2

x3y F4(x, y, z), F1(x, y, z), z
�
.

By using a computer we can determinate the polynomials a1(x, y, z), a2(x, y, z)
and a3(x, y, z) as follows:

a1(x, y, z) = x12y + x12z − x11y2 + x12 + 2x11y − x10y − x10z − 2x9y2−
− 2x9yz − x8y2z + 4x9z − 3x8y2 + 2x8yz + 2x7y3 − x8y − x7y2 + x6y3+

+ x6y2z + x6y2 − 2x6yz + x5y3 − 4x5y2z + 2x4y3z − 4x5yz − x3y4 + x3y3+

+ x2y4 + 3x2y3z + 3x2y2z − xy4 − 2xy3z − y4z + y3z,
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a2(x, y, z) = x18 − x17y + 4x15z + 3x14y + 3x13y2 − 2x13z − 6x12y2−
− 12x12yz + 4x12z − 8x11y2 + 4x11yz + 5x9y3 + 12x9y2z − x11 − 2x9yz+

+ 6x8y3 − 12x8y2z + x9y + 2x9z − 4x8yz − 3x6y4 − 4x6y3z − 2x8z+

+ 4x6y2z + x5y4 + 12x5y3z + 2x7y + 2x5y2z − 2x5y2 − 4x5yz − x2y5−
− 4x2y4z + 4x4yz − 4x2y3z − x3y2 + 2xy3z + xy3 + 2xy2z − 2y2z,

a3(x, y, z) = x13y − x11y2 − x11yz − x11y − 2x10y2 + 2x10yz + x10z + x9yz+

+ 2x8y3 + 2x8y2z + 2x9y − 4x8yz + 2x7y3 − 5x7y2z + x8z − x7y2 − 4x7yz−
− 2x6y2z − x5y4 − x5y3z + 2x7z − 2x6y2 + 3x6yz − x5y3 + 2x5y2z+

+ 6x4y3z + x7 + 2x4y3 + 7x4y2z + x3y4 + 2x3y3z − x5y − 2x5z − 4x4yz−
− 4x3y2z − xy5 − 3xy4z + 2x4z − 2x3yz − 3xy3z − x3y + y3z + xy2+

+ 2xyz + 3y2z − 2yz.

In the next step, we compute the following polynomials:

b1(x, y, z) = rem
(
(x12 − x10 − 2x9y − x8y2 + 4x9 + 2x8y + x6y2 − 2x6y−

− 4x5y2 + 2x4y3 − 4x5y + 3x2y3 + 3x2y2−
− 2xy3 − y4 + y3)2F1(x, y, z), a1(x, y, z), z

)
=

= x(x4 − y)2(x21y − x17y4 − 3x19y − 3x18y2 + 4x17y3 − 2x19 − 2x17y2+

+ 2x14y5 + 3x17y + 11x16y2 + 4x15y3 − 15x14y4 + 2x13y5 + x17 + 2x16y+

+ 9x15y2 + 7x14y3 − 2x13y4 − x11y6 − 4x16 − 2x15y − 7x14y2 − 18x13y3−
− 7x12y4 + 20x11y5 − 4x10y6 + 4x14y − x13y2 − 14x12y3 − x11y4 + 5x10y5−
− x9y6 + 2x13y + 3x12y2 − 7x11y3 + 5x10y4 + 12x9y5 − 14x8y6 + 2x7y7+

+ 4x12y + 2x11y2 + 9x10y3 + 18x9y4 − 11x8y5 + 2x7y6 + 2x6y7 − 4x10y2−
− 7x9y3 + 4x8y4 + 4x7y5 − 13x6y6 + 4x5y7 − 3x9y2 − 4x7y4 − 6x6y5+

+ 11x5y6 − 2x4y7 − x3y8 − 2x7y3 − 4x6y4 + 5x5y5 − 7x4y6 + 3x3y7+

+ 5x5y4 + 4x3y6 − x2y7 + 3x4y4 + x3y5 − 7x2y6 − 2x2y5 + 3xy6 + y7 − y6),

b2(x, y, z) = rem
(−4(2x15 − x13 − 6x12y + 2x12 + 2x11y + 6x9y2 − x9y−

− 6x8y2 + x9 − 2x8y − 2x6y3 − x8 + 2x6y2 + 6x5y3 + x5y2 − 2x5y − 2x2y4+

+ 2x4y − 2x2y3 + xy3 + xy2 − y2)2F1(x, y, z), a2(x, y, z), z)
)
=

= x(x4 − y)3
(
x27 − 2x26y + x25y2 − 8x24y + 8x23y2 + 4x24 − 4x23y−

− 12x22y2 − 4x21y3 + 4x22y + 24x21y2 − 12x20y3 − 2x22 − 6x21y + 24x20y2+

+ 48x19y3 + 4x21 − 4x20y − 24x19y2 − 58x18y3 + 14x17y4 − 2x20 − 2x19y−
− 16x17y3 − 72x16y4 + 2x18y + 10x17y2 + 20x16y3 + 78x15y4 − 2x14y5+

+ 2x18 − 2x17y − 4x16y2 + 16x15y3 + 12x14y4 + 44x13y5 − 6x17 − 2x15y2−
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− 20x14y3 − 20x13y4 − 68x12y5 + 8x15y + 8x14y2 − 2x13y3 − 12x12y4−
− 12x10y6 + 2x15 + 6x14y + 10x13y2 + 24x12y3 + 24x11y4 − 4x10y5 + 37x9y6−
− 4x14 − 4x13y − 18x12y2 − 30x11y3 − 2x10y4 + 24x9y5 + x13 + 4x12y−
− 12x11y2 − 12x10y3 − 2x9y4 − 20x8y5 − 10x6y7 + 20x10y2 + 14x9y3+

+ 6x8y4 − 12x6y6 − 2x11 + 4x10y − x9y2 − 6x8y3 + 14x7y4 − 2x6y5 + 4x5y6+

+ x3y8 + 2x10 − 8x8y2 − 12x7y3 − 2x6y4 + 4x3y7 − 2x8y + 2x7y2 + 8x5y4−
− 2x4y5 + 4x3y6 + 4x7y + 6x4y4 − 4x2y6 − 4x6y − 3x5y2 + 4x4y3 − 6x2y5+

+ 4x4y2 − 4x3y3 − 4x2y4 + 2xy5 − 2x3y2 + 3xy4 + 2x2y2 + 2xy3 − 2y3
)

and

b3(x, y, z) = rem
(
−(x11y − 2x10y − x10 − x9y − 2x8y2 + 4x8y + 5x7y2 − x8+

+ 4x7y + 2x6y2 + x5y3 − 2x7 − 3x6y − 2x5y2 − 6x4y3 − 7x4y2 − 2x3y3+

+ 2x5 + 4x4y + 4x3y2 + 3xy4 − 2x4 + 2x3y + 3xy3 − y3 − 2xy−
− 3y2 + 2y)2F1(x, y, z), a3(x, y, z), z

)
=

= x(x2 − y)(x4 − y)2
(
x19y2 − 3x17y2 − 6x16y3 + 2x16y2 − x15y3 + x16y+

+ 5x15y2 + 12x14y3 + 15x13y4 − x15y − 6x14y2 − 3x13y3 + 4x12y4 − 9x13y2−
− 16x12y3 − 18x11y4 − 20x10y5 + 2x13y + 11x12y2 + 6x11y3 − 6x10y4−
− 6x9y5 − 3x12y + 10x11y2 + 26x10y3 + 17x9y4 + 12x8y5 + 15x7y6−
− 8x11y − 9x10y2 − 6x9y3 + 2x8y4 + 16x7y5 + 4x6y6 + 4x10y − 4x9y2−
− 14x8y3 − 25x7y4 − 6x6y5 − 3x5y6 − 6x4y7 + x10 + 5x9y + 8x8y2 − 2x7y3−
− 10x6y4 − 2x5y5 − 12x4y6 − x3y7 − 4x8y + x7y2 + 13x6y3 + 3x5y4 + 3x4y5+

+ xy8 + x8 − 6x7y − 6x6y2 + x5y3 + 11x4y4 + 9x3y5 + 3xy7 + 3x7 + 3x6y+

+ x4y3 − 4x3y4 + 3xy6 − x5y + 7x4y2 + x3y3 − 2xy5 − y6 − 2x5 − 4x4y−
− 2x3y2 − 5xy4 − 3y5 + 2x4 − 3x3y − 3xy3 + 2y4 + xy2 + y3+

+ 2xy + 3y2 − 2y
)
.

Since F1(ω, μ,D) = F1 = 0, F2(ω, μ,D) = F2 = 0, F3(ω, μ,D) = F3 = 0 and
F4(ω, μ,D) = F4 = 0, it easy to check that

a1(ω, μ,D) = 0, a2(ω, μ,D) = 0, a3(ω, μ,D) = 0

and
b1(ω, μ,D) = 0, b2(ω, μ,D) = 0, b3(ω, μ,D) = 0.

If μ = ω4, then F1(ω, μ,D) = −ω7(ω − 1)(ω4 + ω3 + 2D) = 0, which implies
either ω = 1 or Q = ω4 + ω3 + 2D = 0. If ω = 1, then F2 = −D(D + 1)2 = 0,
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which with D �= 0 implies that D = −1. Thus we have (D,F (2), F (3)) =
= (−1, 1, 1).

Now assume that μ = ω4 and Q = ω4 + ω3 + 2D = 0. Let Q(x, z) =
= x4 + x3 + 2z. Then we infer from F2(x, y, z), F3(x, y, z), F4(x, y, z) with
y = x4 that

P1(x) = rem(−8F2(x, y, z), Q(x, z), z) =

= x8(x− 1)(4x10 + x8 − 4x7 − x6 − 4x3 − 8x2 − 8x− 4)

and

P2(x) = rem(−16F3(x, y, z), Q(x, z), z) =

= x7(x− 1)(x13 − 19x12 − 13x11 − 17x10 − 12x9+

+ 12x7 + 16x6 + 20x5 + 24x4 + 20x3 + 16x2 + 16x+ 8).

Since P1(ω) = P2(ω) = 0 and gcd(P1(x), P2(x)) = x7(x − 1), therefore these
relations with ω �= 0 imply that ω = 1 and Q = 2+ 2D = 0, D = −1. Thus we
also have (D,F (2), F (3)) = (−1, 1, 1).

It can check as above that if μ = ω2, then (D,F (2), F (3)) = (−1, 1, 1).

In the following we can assume that ω(ω4 − μ)(ω2 − μ) �= 0. We consider
the following system of equations

(2.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

B1(x, y, z) =
b1(x, y, z)

x(x4 − y)2
= 0,

B2(x, y, z) =
b2(x, y, z)

x(x4 − y)3
= 0,

B3(x, y, z) =
b3(x, y, z)

x(x2 − y)(x4 − y)2
= 0.

With help of a computer and Maple program, the system (2.9) has three solu-
tions: (x, y) ∈ {(0, 0), (1, 1), (2, 3)}. Since

B1(ω, μ,D) = B2(ω, μ,D) = B3(ω, μ,D) = 0 and ωμ �= 0,

we have (ω, μ) ∈ {(1, 1), (2, 3)}.
If (ω, μ) = (1, 1), then F2 = −D(D + 1)2 = 0, consequently D = −1.

If (ω, μ) = (2, 3), then

F1 = −(13D + 48)(D − 1) = 0 and F2 = −(D − 1)(32D2 + 311D + 864) = 0.

These imply that D = 1, and so (D,ω, μ) ∈ {(−1, 1, 1), (1, 2, 3)}.
Lemma 3 is proved. �



172 I. Kátai, B.M.M. Khanh and B.M. Phong

3. Proof of Theorem 1

To complete the proof of Theorem 1, we need to prove the assertion (f).

By using Lemma 3, we have (D,ω, μ) ∈ {(−1, 1, 1), (1, 2, 3)}.
◦ Assume that (D,ω, μ) = (−1, 1, 1). Then G(2) = F (3) − 1 = 0 and

G(3) = F (2)F (4) − 1 = F (2)3 − 1 = 0. Assume that G(n) = 0 and F (n) = 1
for every n < P , where P > 3. It is obvious that G(P ) = 0 and F (P ) = 1 if
P �∈ P. Therefore we may assume that P ∈ P, P ≥ 5. Then

G(P ) = F (P − 1)F (P + 1)− 1 = F (2)F (P − 1)F
(P − 1

2

)
− 1 = 1− 1 = 0

and
0 = G(P − 1) = F (P − 2)F (P )− 1 = F (P )− 1, F (P ) = 1.

Thus (D,G, F ) = (1,O,E).
◦ Assume that (D,ω, μ) = (1, 2, 3). Then we infer from (2.1) that G(2) =

= μ +D = 22, G(3) = ω3 + 1 = 32 and G(7) = ω4μ +D = 72. On the other
hand, we obtain from E1, E2 that F (5) = 5, F (7) = 7. Assume that G(n) = n2

and F (n) = n for every n < P , where P > 7. Similarly as above, we can
assume that P ∈ P, P ≥ 11. Then

G(P ) = F (P − 1)F (P + 1) + 1 = F (2)F (P − 1)F
(P − 1

2

)
+ 1 =

= 2(P − 1)
(P − 1

2

)
+ 1 = P 2

and

(P − 1)2 = G(P − 1) = F (P − 2)F (P ) + 1 = (P − 2)F (P ) + 1, F (P ) = P.

Thus we proved that (D,G, F ) = (1, I2, I).
The proof of Theorem 1 is complete. �
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[1] Kátai, I., B.M.M. Khanh and B.M. Phong, On the equation F (n2 +
+m2 + k) = H(n) +H(m) +K, J. Math. Math. Sci., 2022(1), 132–148.
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