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Abstract. We give an asymptotic for the expected number of complete
factorisations of natural numbers of the form fq ≤ n, utilising probabilistic
factorisation methods, where f is a b(n)-smooth number, and q is a prime
larger than b(n), with b(n) : N → [e,

√
n).

1. Introduction

Through the elliptic curve primality proving method, one tries to prove
the primality of a probable prime n0 using a recursive strategy, descending
through probable primes n1, n2, . . . until some small number, whose primality
can be proven easily, as it is explained in the paper of Atkin and Morain [2].
A crucial point of the recursive step, which deals with probable prime ni, is
the factorisation of certain values into the form fni+1, where f is a smooth
number with known prime divisors, and ni+1 is the next probable prime.

In the elliptic curve primality proving method, one main control point is
the smoothness bound during this factorisation step, a bound we are going to
denote as b(n) for a given natural number n. The authors of article [7] ask what
would be the expected number of complete factorisations during this step using
different kinds of probabilistic factoring methods, where we cannot guarantee
that we find all the prime factors below b(n).
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algorithm, probabilistic factoring.
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To achieve good running time, it is crucial to use factorisation methods
whose running time is governed by the size of the smallest prime factor of the
to-be-factored number. These methods are called first category algorithms.

The most fundamental methods of this category includes the trial division
(see for example section 8.1 of [8]), and the batch trial division (see articles
[4, 5, 6] and [10]). Note that these algorithms are not probabilistic. Hafner
and McCurly gave asymptotics for the function F (n, t, A), which denotes the
number of integers m ≤ n, which can be completely factored by algorithm
A in at most t arithmetic operations involving integers of O(lnn) bits (see
article [11]). Here A can be a single factorization method or the combination
of multiple ones. By arithmetic operations the authors mean a comparison,
assignment; computation of the binary representation arising from an addition,
subtraction, multiplication, division (giving both remainder and quotient); or
an application of the Euclidean algorithm. They gave the following theorem
in the case when only the trial division method is applied with the Adleman–
Pomerance–Rumely primality test, see article [1].

Theorem 1.1. If t satisfies

t

(lnn)C ln ln lnn
→ ∞

for some positive constant C and lnn/ ln t → ∞ then

F (n, t, A) ∼ eγ
n

lnn
ln t(1.1)

when A is the trial division method combined with the Adleman–Pomerance–
Rumely primality test, where γ is the Euler–Mascheroni constant.

When A is a probabilistic algorithm, then F (n, t, A) denotes the number
of integers m ≤ n for which A will factor m in at most t operations with
probability at least 1/2. For a more rigorous definition, see the original paper.
By applying the Solovay–Strassen probabilistic primality test (see articles [25]
and [26]), Hafner and McCurly got the following result.

Theorem 1.2. If t satisfies

t

(lnn)2 ln lnn
→ ∞

and lnn/ ln t → ∞ then

F (n, t, A) ∼ eγ
n

lnn
ln t(1.2)

when A is the trial division method combined with the Solovay–Strassen prob-
abilistic primality test.
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Using the Miller–Rabin probabilistic primality test (see articles [17] and
[20]) one can deduce a similar result by following the article of Hafner and
McCurly [11]. The only difference is in the hidden constants, because the
probability 1/2 of success can be achieved with fewer witnesses in the case of
the Miller–Rabin test, than in the case of the Solovay–Strassen test.

The other methods of interest are Pollard’s ρ method [19], Pollard’s p − 1
algorithm [18], Williams’ p + 1 algorithm [28], and the Lenstra elliptic curve
factorisation method [15]. Hafner and McCurly gave the following theorem for
the case when the trial division method is combined with the elliptic curve
factorisation method (see article [11]).

Theorem 1.3. Let θ > 5/6. If t ≥ ln4 n and ln t = o(lnθ n), then

F (n, t, A) ≥ eγ
n

lnn

(
ln

t

lnn

)1/θ

(1 + o(1))(1.3)

where A is a combination of the trial division and the elliptic curve method
combined with the Solovay–Strassen probabilistic primality test.

The authors note that Lenstra’s conjecture would allow one to prove this
theorem with any θ > 1/2. For more information on Lenstra’s conjecture, see
articles [15] and [11]. Furthermore the analysis using the Adleman–Pomerance–
Rumely, or Miller–Rabin tests instead of the Solovay–Strassen test is very sim-
ilar.

Hafner and McCurly also state that the analysis of Pollard’s ρ method,
Pollard’s p− 1 method, and Williams’ p+ 1 method is more complicated, but
they expect the results to fall in between those of trial division and the elliptic
curve method.

Now we give a model for the expected number of complete factorisations
of numbers m ≤ n having form m = fq, where f is b(n) smooth, and q is a
prime larger than b(n). This model will supply us with asymptotics similar to
expressions (1.1), (1.2), or (1.3).

Taking one of the above mentioned probabilistic factorisation methods, one
can say that it will successfully identify a prime factor with a given probability
in a given time, which time depends on the size of the prime factor. We
present a few articles regarding the factorisation probability of these methods.
The factorisation probability of Pollard’s ρ method is partially investigated in
articles [3] and [21]. Kruppa examined the factoring probability of p− 1, p+1,
and elliptic curve factorisation methods in his thesis, see [14]. A factoring
probability for the later method can also be found in the original article of
Lenstra, see [15].

One also needs to apply a primality test, which will succeed also with a given
probability. When the primality test is deterministic, then this probability is 1,
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otherwise when the test is probabilistic, then this probability is strictly between
0 and 1.

Assuming that the event of factorisation, and the event of primality test
are independent, we can express the overall probability of identifying a prime
factor as α, which will be the product of the above mentioned probabilities.
(Or one can work with probabilities αmin ≤ α ≤ αmax instead of just α.)

Having such probability α, the probability of acquiring the prime factors
of a number m ≤ n will be αω(m)−1, assuming that the identifications of the
different primes are independent events. Here ω(m) denotes the number of
distinct prime factors of m, with the convention ω(1) = 1. To get the expected
number of completely factored m ≤ n, we need to sum these αω(m)−1 probabil-
ities for those m, for which P2(m) ≤ b(n). Here, Pi(m) denotes the ith largest
prime factor of m, for m having at least i prime factors.

Now we state our result.

Claim 1.4. We have
∑

1≤m≤n
P2(m)≤b(n)

ω(m)>1

αω(m)−1 = Θ
( n

lnn
lnα b(n)

)
,

where α ∈ (0, 1), and b : N → [e,
√
n).

2. Proofs

First we briefly summarise the strategy of the proof of Claim 1.4. We are
going to split the sum in the claim based on the values of the function ω, gaining
a finite number of separate sums. After this, the summands can be extracted
from these sums as

αk−1
∑

1≤m≤n
P2(m)≤b(n)

ω(m)=k

1

where we are going to bound the value of the remaining sum. The traditional
notation for the number of positive integers not greater than n, which have
exactly k different prime divisors is πk(n) or π(n, k). Now we introduce the
notations

π∗
i,θ(n)(n, k) :=

∑
1≤m≤n

Pi(m)≤nθ(n)

ω(m)=k

μ2(m) and πi,θ(n)(n, k) :=
∑

1≤m≤n

Pi(m)≤nθ(n)

ω(m)=k

1
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where 1 ≤ i ≤ k. We are going to bound π∗
2,θ(n)(n, k) and π2,θ(n)(n, k), when

k ≥ 2, based on the proof techniques presented by Hardy, and Ramanujan in
their article [12]. (Note that they’ve used the notation πk(n) for the count of
positive square-free integers not greater than n, which have k different prime
divisors; and the notation �k(n) for the previously mentioned πk(n).) We
denote the binary logarithm of a number x as log2 x.

Lemma 2.1. Let θ : N → (0, 1/2) be a function. Assume that there exists a
natural number n0, such that the inequalities 1/ log2 n ≤ θ(n) < 1/2 hold for
every n ≥ n0. Then there is an absolute constant C, such that the inequality

∑
p≤nθ(n)

1

p ln(n/p)
<

C + ln lnnθ(n)

lnn
(2.1)

holds for every n ≥ n0.

Proof. This proof is a slightly modified version of a certain part of the proof
of Lemma A in article [12]. Let n ≥ n0. As in the mentioned proof, we have
that

1

ln(n/p)
=

1

lnn
+

ln p

ln2 n

(
1 +

ln p

lnn
+

(
ln p

lnn

)2

+ · · ·
)

<
1

lnn
+

2 ln p

ln2 n

because

1 +
ln p

lnn
+

(
ln p

lnn

)2

+ · · · ≤ 1 + θ(n) + θ(n)2 + · · · < 2

as the inequalities p ≤ nθ(n) and θ(n) < 1/2 hold. Using this, we have that the
sum on the left hand side of inequality (2.1) is less than

1

lnn

∑
p≤nθ(n)

1

p
+

2

ln2 n

∑
p≤nθ(n)

ln p

p
<

C + ln lnnθ(n)

lnn

when nθ(n) ≥ 2, which is satisfied based on the properties of θ(n). This is
because by Mertens’ second theorem, we have

∑
p≤nθ(n)

1

p
= ln lnnθ(n) +B1 + o(1)

when nθ(n) ≥ 2, where B1 = 0.26149 . . . is the Mertens constant; and by
Mertens’ first theorem, we have

∑
p≤nθ(n)

ln p

p
= θ(n) lnn+O(1)
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where the constant term does not exceed 2 in absolute value when nθ(n) ≥ 2,
see article [16]. �

Lemma 2.2. Let θ : N → (0, 1/2) be a function. Assume that there exists
a natural number n0, such that the inequalities 1/ log2 n ≤ θ(n) < 1/2 hold
for every n ≥ n0. Then there are absolute constants c1 and c2, such that the
inequality

π∗
2,θ(n)(n, k) < c1

n

lnn

(c2 + ln lnnθ(n))k−1

(k − 1)!
(2.2)

holds for k ≥ 2, when n ≥ n0.

Proof. We are going to prove our statement by using induction, similarly as
in the proof of Lemma A in article [12]. Let n ≥ n0. One can construct the
numbers counted in π∗

2,θ(n)(n, 2) by selecting a prime p ≤ nθ(n), and multiplying
it with a prime q, for which the inequalities

nθ(n) < q ≤ n/p

hold. But if we multiply a prime p with all primes q, which are less than-, or
equal to n/p, then we do an overestimation, so we have that the inequality

π∗
2,θ(n)(n, 2) <

∑
p≤nθ(n)

π(n/p)(2.3)

holds. There exists a small positive constant cπ, such that the inequality

π(x) < cπ
x

lnx
(2.4)

holds when x > 1, see article [22], so the right hand side of inequality (2.3) is
less than

cπn
∑

p≤nθ(n)

1

p ln(n/p)
< cπ

n

lnn
(C + ln lnnθ(n))

based on Lemma 2.1. The heart of our inductive reasoning will be the inequality

kπ∗
2,θ(n)(n, k + 1) <

∑
p≤nθ(n)

π∗
2,θ(n)(n/p, k)

which holds, because we count the numbers contributing into π∗
2,θ(n)(n, k + 1)

at least k times on the right hand side. Indeed, if a number which we take into
account in π∗

2,θ(n)(n, k + 1) has the form p1p2 . . . pkpk+1, then we will count it



ECPP: Probabilistic factorisation 151

on the right hand side when p = p1, p = p2, and so forth, until p = pk during
the summation. Assuming that inequality (2.2) is true up until k, we get

π∗
2,θ(n)(n, k + 1) < cπ

n

k!

∑
p≤nθ(n)

1

p ln(n/p)
(C + ln ln(n/p)θ(n))k−1 <

< cπn
(C + ln lnnθ(n))k−1

k!

∑
p≤nθ(n)

1

p ln(n/p)
<

< cπ
n

lnn

(C + ln lnnθ(n))k

k!

based on Lemma 2.1. �

Lemma 2.3. There exists a natural number n1, such that the inequality

k k
√
n <

√
n

holds when 2 < k < log2 n, and n ≥ n1.

Proof. Based on the requirements imposed on k, we have that the inequality

k

n1/2−1/k
<

log2 n

n1/6

holds, where the right hand side is less than 1 when n is big enough, because
the numerator grows slower than the denominator. �

Lemma 2.4. Let θ : N → (0, 1/2) be a function. Assume that there exists
a natural number n0 such that the inequalities 1/ log2 n ≤ θ(n) < 1/2 hold
for every n ≥ n0. Then there are absolute constants c1 and c2, such that the
inequality

π2,θ(n)(n, k) < c1
n

lnn

(c2 + ln lnnθ(n))k−1

(k − 1)!
(2.5)

holds for k ≥ 2, when n ≥ max(n0, n1), where n1 is from Lemma 2.3.

Proof. We are going to prove this statement by using induction, as in the
proof of Lemma B in article [12]. Let n ≥ max(n0, n1). First, we are going
to give an upper found for π2,θ(n)(n, 2). We introduce the values βi, which
overestimate the count of numbers of the form piqj ≤ n, where p and q are
distinct primes, p ≤ nθ(n) < q, i ≥ 1 is fixed, and j ≥ 1. To simplify the
discussion, we also introduce the values δi,n := min(1/(i+ 1), θ(n)). Based on
these, we set

βi :=
∑

p≤nδi,n

π(n/pi) +
∑

p≤nδi,n

π(
√
n/pi) + · · ·+

∑

p≤nδi,n

π( mi

√
n/pi)
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where mi := �log2 n− i�, because the prime counting function is zero when its
argument is less than 2, so we don’t have to take more sums into account than
mi. Using these values, we have the inequality

π2,θ(n)(n, 2) < β1 + β2 + · · ·+ β�log2 n−1�(2.6)

where we do have a finite number of summands on the right hand side of the
inequality based on the previous reasoning. Now we are going to bound these
βi, separately in the case when i = 1 holds and when i > 1 holds.

� First we look at the case i = 1. We have

β1 =
∑

p≤nθ(n)

π(n/p) +
∑

p≤nθ(n)

π(
√
n/p) + · · ·+

∑
p≤nθ(n)

π( m1
√

n/p)

because δ1,n = θ(n). Here, we have a bound for the first sum from the
proof of Lemma 2.2. Using inequality (2.4), we have that the remaining
sums are less than

cπ
∑

p≤nθ(n)

2

√
n√

p ln(n/p)
+ 3

3
√
n

3
√
p ln(n/p)

+ · · ·+m1

m1
√
n

m1
√
p ln(n/p)

which is less than

cπ
√
n

∑
p≤nθ(n)

1√
p ln(n/p)

+
1

3
√
p ln(n/p)

+ · · ·+ 1
m1
√
p ln(n/p)

(2.7)

based on Lemma 2.3. Removing the prime roots from the denominators,
and using the fact that inequality m1 < C1 lnn holds for some constant
C1, we have that expression (2.7) is less than

cπC1

√
n lnn

∑
p≤nθ(n)

1

ln(n/p)
<

cπC1

(1− θ(n))

√
n

∑
p≤nθ(n)

1

because ln(n/p) ≥ (1 − θ(n)) lnn. Using inequality (2.4) again, we have
that the right hand side is less than

c2πC1

(1− θ(n))θ(n)

n1/2+θ(n)

lnn
= O

( n

lnn

)

because of the requirements concerning θ(n).

� Now we look at the case i > 1. As in the case of the previous item,
we are going to look at the first sum in βi, then handle the remaining
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sums separately. Based on p ≤ nδi,n , when 1/(i + 1) ≤ θ(n), then the
inequalities

ln
n

pi
≥ ln

n

ni/(i+1)
≥ lnn

i+ 1

hold, otherwise when θ(n) < 1/(i+ 1), then the inequalities

ln
n

pi
≥ (1− iθ(n)) lnn >

(
1− i

i+ 1

)
lnn =

lnn

i+ 1

hold. Based on these and inequality (2.4), we have

∑

p≤nδi,n

π(n/pi) < cπn
∑

p≤nδi,n

1

pi ln(n/pi)
< cπ(i+ 1)P (i)

n

lnn

where P (s) is the prime zeta function, defined as
∑

p p
−s for �(s) > 1.

Using inequality (2.4), we have that the remaining sums in βi are less
than

cπ
∑

p≤nδi,n

2

√
n√

pi ln(n/pi)
+ 3

3
√
n

3
√
pi ln(n/pi)

+ · · ·+mi

mi
√
n

mi

√
pi ln(N/pi)

which is less than

cπ
√
n

∑

p≤nδi,n

1√
pi ln(n/pi)

+
1

3
√

pi ln(n/pi)
+ · · ·+ 1

mi

√
pi ln(n/pi)

(2.8)

because of Lemma 2.3. Removing the prime roots from the denominators,
and using the fact that inequality mi < Ci lnN holds for some constant
Ci, we have that expression (2.8) is less than

cπCi

√
n lnn

∑

p≤nδi,n

1

ln(n/pi)
<

cπCi

(1− iδi,n)

√
n

∑

p≤nδi,n

1

where the right hand side is less than

c2πCi

(1− iδi,n)δi,n

n1/2+δi,n

lnn
= O

(
n5/6

lnn

)

based again on inequality (2.4).

Based on these calculations, we have that the right hand side of inequality (2.6)
is less than

c1
n

lnn
(c2 + ln lnnθ(n)) + c3

n

lnn

∞∑
i=2

(i+ 1)P (i)
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for some constants c1, c2, and c3. According to the proof of Lemma B in [12],
the value of the infinite sum is a constant, so we have shown that inequality
(2.5) holds for k = 2, when n ≥ max(n0, n1). Based on a reasoning like the
one found in the proof of Lemma 2.2, this time the inequality

kπ2,θ(n)(n, k + 1) <
�

p≤nδ1,n

π2,θ(n/p, k) +
�

p≤nδ2,n

π2,θ(n/p
2, k) + . . .(2.9)

is the base of the induction. Assuming that inequality (2.5) is true up until k,
we get that the right hand side of inequality (2.9) is less than

c1n
(c2 + ln lnnθ)k−1

k!

⎛
⎝ �

p≤nδ1,n

1

p ln(n/p)
+

�

p≤nδ2,n

1

p2 ln(n/p2)
+ · · ·

⎞
⎠

where the value of the first sum inside the parentheses is known due to Lemma
2.1. As in article [12], the remaining sums inside the parentheses can be
bounded by C �/ lnn for some constant C �. Note that even if c2 and the con-
stant inside the parentheses differ, one can still fine-tune the value of c2, so
that the upper bound can be expressed in the form (2.5). �
Lemma 2.5. Let θ : N → (0, 1/2) be a function. There is an absolute constant
C > 0, such that the inequality

π2,θ(n)(n, k) > C
n

lnn

(ln lnnθ(n)/2)k−2

(k − 2)!

holds for sufficiently large n, when 2 ≤ k ≤ ln lnn.

Proof. Let 2 ≤ k ≤ ln lnn. One can construct the numbers counted in
π2,θ(n)(n, k) by taking powers of primes n1−θ(n) < p, and by multiplying the
numbers counted in π(n/pi, k− 1) with these prime powers. Using the restric-
tion p < n1−θ(n)/2, and only counting the power i = 1, we get that the lower
estimate

π2,θ(n)(n, k) ≥
�

n1−θ(n)<p<n1−θ(n)/2

π(n/p, k − 1)(2.10)

holds. Based on Sathe [23], and Selberg [24], we have that

π(n, k) = F (y)
n

lnn

(ln lnn)k−1

(k − 1)!

�
1 +O

�
1

ln lnn

��

holds uniformly for n ≥ 3, and 1 ≤ k ≤ ε ln lnn, for any given fixed ε > 0;
using y := k/ ln lnn, and

F (z) :=
1

Γ(z + 1)

�
p

�
1 +

z

p− 1

��
1− 1

p

�z



ECPP: Probabilistic factorisation 155

where the product iterates over the prime numbers. We fix ε to be 1, this way
y will be in (0, 1]. Based on section 6.1 of [27], by setting s = σ + iτ , we have
that

fs(z) :=
∏
p

(
1 +

z

ps − 1

)(
1− 1

ps

)z

converges absolutely for σ > 1/2, so the value of F is positive on (0, 1]. Thus
there exists a positive constant c such that

π(n, k) ≥ c
n

lnn

(ln lnn)k−1

(k − 1)!

holds for sufficiently large n, when 1 ≤ k ≤ ln lnn. Based on this, the sum on
the right hand side of inequality (2.10) is greater than

c
n

(k − 2)!

∑
n1−θ(n)<p<n1−θ(n)/2

1

p ln(n/p)
(ln ln(n/p))k−2

which is greater than

c
n(ln lnnθ(n)/2)k−2

(k − 2)!

∑
n1−θ(n)<p<n1−θ(n)/2

1

p ln(n/p)
.

Based on the proof of Lemma 2.1, this last sum is greater than

1

lnn

∑
n1−θ(n)<p<n1−θ(n)/2

1

p
+

1

ln2 n

∑
n1−θ(n)<p<n1−θ(n)/2

ln p

p

where, based on Mertens’ theorems, the first sum is a small constant, and the
second sum is greater than c�/ lnn for some c� constant. �

Now we give our proof for Claim 1.4.

Proof. Fix an α ∈ (0, 1), and a function b : N → [e,
√
n). For the extremal

order of ω, we have

ω(n) ≤ (1 + on(1))
lnn

ln lnn
as n keeps to infinity, see section 5.3 in [27]. Based on this, we can do the split

∑
1≤m≤n

P2(m)≤nθ(n)

ω(m)>1

αω(m)−1 =
∑

1≤m≤n

P2(m)≤nθ(n)

ω(m)=2

α+
∑

1≤m≤n

P2(m)≤nθ(n)

ω(m)=3

α2 + · · ·+
∑

1≤m≤n

P2(m)≤nθ(n)

ω(m)=λn

αλn−1

with a finite λn depending on n. Note that the summands are independent of
the sums now, so the right hand side is equal to

απ2,θ(n)(n, 2) + α2π2,θ(n)(n, 3) + · · ·+ αλn−1π2,θ(n)(n, λn)(2.11)

which we are going to bound from above, and from below.
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� Based on Lemma 2.4, for sufficiently large n, expression (2.11) is less than

c1
n

lnn

λn−1∑
k=1

(αc2 + α ln lnnθ(n))k

k!

where, by using equality

s−1∑
k=0

zk

k!
= ez

Γ(s, z)

Γ(s)
(2.12)

see section 9.2.1 of [9], we get

c1
n

lnn

(
eαc2+α ln lnnθ(n) Γ(λn, αc2 + α ln lnnθ(n))

Γ(λn)
− 1

)

where the fraction inside the parentheses is the cumulative distribution
function of a Poisson distribution with parameter αc2+α ln lnnθ(n). (The
parameter should be a positive real number, which holds in our case for
sufficiently large n.) Because λn grows much faster than the parameter,
the value of the fraction is close to one for large n. So we have that
expression (2.11) is in O(θ(n)αn lnα−1 n).

� For a lower bound, we take only λ�
n < λn number of summands from

expression (2.11), where λ�
n is defined as ln lnn, so the indexes 2 ≤ k ≤ λ�

n

satisfy the requirements of Lemma 2.5. Then we get that expression
(2.11) is greater than

Cα
n

lnn

λ′
n∑

k=0

(α ln lnnθ(n)/2)k

k!

by applying Lemma 2.5 on the remaining summands. We can apply
equality (2.12) again, to get

Cα
n

lnn
eα ln lnnθ(n)/2 Γ(λ�

n + 1, α ln lnnθ(n)/2)

Γ(λ�
n + 1)

where the second fraction is the cumulative distribution function of a
Poisson distribution again, for sufficiently large n. As λ�

n still grows
faster than the parameter, the value of this fraction is positive for larger
n, and we get that expression (2.11) is in Ω(θ(n)αn lnα−1 n).

Taking θ(n) := ln b(n)/ lnn in both cases, we get our result. �
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