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Abstract. In this paper, the so-called compressed Chebyshev polynomials
are studied, which are obtained from the original Chebyshev polynomials
by suitable scaling transformations. By introducing the concept of cy-
clotomic pre-polynomials that are in one-to-one correspondence with the
well known cyclotomic polynomials, explicit formulas for the irreducible
factorization of all four kinds of compressed Chebyshev polynomials are
developed. The correspondence between the cyclotomic pre-polynomials
and cyclotomic polynomials is based on a polynomial transformation. The
same transformation maps all four kinds of the compressed Chebyshev
polynomials into polynomials having the property that all their roots are
primitive roots of unity, and consequently they are easy to factorize. Gen-
eralizations of the applied methods, suitable for the factorization of similar
classes of polynomials are also given in the paper.

1. Introduction

Chebyshev polynomials are very important in the fields of numerical analy-
sis, approximation theory and differential equations, see, e.g. Natanson [7]. For
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readers, who are mainly interested in the application of Chebyshev-like poly-
nomials to approximation theory and related areas, we suggest to consider and
test for applicability some of the more general polynomials that are studied in
the last two sections of this paper.

There are known results for the irreducible factorization of the Chebyshev
polynomials of the first and the second kinds in Hsiao [1], Rivlin [9] and Rayes,
Trevisan and Wang [8]. Their main relevant results are formulated within the
frames of Theorems 1 and 2 in [8]. In this paper, we give direct constructive
methods for the factorization of certain scaled equivalents of all four kinds of
Chebyshev polynomials (which we call compressed Chebyshev polynomials) by
the help of cyclotomic pre-polynomials and cyclotomic polynomials. However,
not only the method but also the presentation is quite different, which can
be seen if we compare our formula shown in (54) with the formula given in
[8, Theorem 1], and similarly (44) with the formula given in [8, Theorem 2].

The structure of the paper is as follows. In Section 2 we introduce the
four kinds of compressed Chebyshev polynomials, whose leading coefficients
are 1’s for any positive integer n. In Section 3 the basic trigonometric identi-
ties, followed by explicit formulas and recurrence relations for the compressed
Chebyshev polynomials are shown. A polynomial transformation is intro-
duced in Section 4 that proves to be useful for the irreducible factorization
of the compressed Chebyshev polynomials. As an example, we show that
xnUn

(
x+ 1

x

)
= (x2n+2 − 1)/(x2 − 1) =

∑n
k=0 x

2k, where Un(x) is the com-
pressed Chebyshev polynomial of the second kind. Section 5 deals with some
properties of the cyclotomic polynomials and cyclotomic pre-polynomials that
are important for the factorization of the compressed Chebyshev polynomials.
(We use the terminus ”cyclotomic pre-polynomial” for the polynomials that
can be mapped into cyclotomic polynomials by the transformation introduced
in Section 4.) By the help of the first five preparatory sections, in Section 6 the
factorization of the other compressed Chebyshev polynomials, each considered
as a special case of the expression Un(x)±Un−k(x), is accomplished. Finally, in
Section 7 a factorization formula for an even more general class of polynomials
is stated and proved.

A large amount of numerical results belonging to the paper can be found
in [4] as well as in the unpublished Hungarian language manuscript
drive.google.com/file/d/14l6-o4FHNKOlLsm16wwE-OfGhkfdbxU4/view

2. Compression of the Chebyshev polynomials

The two primary sequences of Chebyshev polynomials are the so called
Chebyshev polynomials of the first kind, usually noted by Tn(x) and that of
the second kind, usually noted by Un(x). By the help of these polynomials the
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sines and cosines of multiple angles can be expressed as

(1) Tn(cos θ) = cosnθ,

and

(2) sin θ Un(cos θ) = sin(n+ 1)θ,

see, e.g., [6, 12, 15].

Two more kinds of Chebyshev polynomials are introduced in Mason and
Handscomb [6], named as the third and fourth kind of Chebyshev polynomials
and noted by Vn(x) and Wn(x).

For higher degrees n, the coefficients of the Chebyshev polynomials soon
become very large in absolute value, as their leading coefficients are powers
of 2, namely 2n−1 in Tn(x) and 2n in the three other variants. By the help
of a suitable scaling, the leading coefficients become 1’s for any positive inte-
ger n, and all other coefficients become significantly smaller in comparison to
the corresponding coefficients of the original Chebyshev polynomials. For this
purpose, we introduce the compressed Chebyshev polynomials T ∗

n(x), U
∗
n(x),

V ∗
n (x), W

∗
n(x) by the scaling formulas

(3)

T ∗
n(x) = 2Tn

(x
2

)
, U∗

n(x) = Un

(x
2

)
,

V ∗
n (x) = Vn

(x
2

)
, W ∗

n(x) = Wn

(x
2

)
.

We have to notice that the first and the second kinds of these compressed
Chebyshev polynomials were already introduced and studied, with using other
names and other notation, by Witu�la and S�lota [11] and Koshy [5].

Beside the compression of the coefficients, another great advantage of us-
ing these compressed Chebyshev polynomials is that the factorization of these
variants is much more comfortable and can be expressed by more concise and
more aesthetic formulas as we shall see in Section 6. From these formulas it
will be seen that the factorization of T ∗

n(x) and the factorization of the poly-
nomial x2n + 1 are fully synchronous with each other, where the factors of
the former are cyclotomic pre-polynomials, while the factors of the latter are
the corresponding cyclotomic polynomials. Similar assertions are valid for the
other three compressed Chebyshev polynomials U∗

n(x), V
∗
n (x), and W ∗

n(x), re-

spectively, if they are matched to the polynomials
∑n

k=0 x
2k,

∑2n
k=0(−1)kxk,

and
∑2n

k=0 x
k, respectively.

As in the remaining part of the paper we do not need the original Chebyshev
polynomials, but only the compressed ones, we will omit the asterisk from their
notation that we used only in this introductory section.
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3. Independent definitions of the compressed Chebyshev polynomi-
als

Similarly to the original Chebyshev polynomials, there are different ways to
define the compressed Chebyshev polynomials. Trigonometric definitions for
the compressed Chebyshev polynomials are as follows.

(4) 2 cosnθ = Tn(2 cos θ),

(5) 2 sin(n+ 1)θ = (2 sin θ)Un(2 cos θ),

(6) 2 cos

(
n+

1

2

)
θ =

(
2 cos

1

2
θ

)
Vn(2 cos θ),

(7) 2 sin

(
n+

1

2

)
θ =

(
2 sin

1

2
θ

)
Wn(2 cos θ).

As it is known, there are also useful hyperbolic identities with both the original
and the compressed Chebyshev polynomials, see, e.g., [3, 4].

An independent definition for Un(x) by an explicit formula and another one
by a recurrence relation can be derived easily from the similar formulas known
for the original Chebyshev polynomials. Thus, for the compressed Chebyshev
polynomial of the second kind we have the explicit formula

(8) Un(x) =

�n/2�∑
k=0

(−1)k
(
n− k

k

)
xn−2k,

and the recurrence relation

(9) U0(x) = 1,

(10) U1(x) = x,

(11) Un+1(x) = xUn(x)− Un−1(x).

By arranging (11) to the form

(12) Un−1(x) = xUn(x)− Un+1(x),
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we can extend the definition of Un(x) into the opposite direction, i.e. for neg-
ative integer values of n, giving

(13) U−1(x) = 0

and

(14) U−n(x) = −Un−2(x) if n ≥ 2,

thus, e.g., U−2(x) = −1 and U−3(x) = −x. The reason of this extension is
that later on we consider several additive compositions of Un(x) with differ-
ent orders, e.g. Un(x) − Un−1(x) − Un−2(x) + Un−3(x) that may require the
knowledge of Un(x) for a few negative integer values of n.

It is easy to prove regarding the three other kinds of compressed Chebyshev
polynomials, that

(15) Tn(x) = Un(x)− Un−2(x)

(16) Vn(x) = Un(x)− Un−1(x)

(17) Wn(x) = Un(x) + Un−1(x)

Now, from (8) and (15)–(17) we obtain the explicit formulas for Un(x),
Vn(x) and Wn(x). Namely

(18) Tn(x) =

�n/2�∑
k=0

(−1)k
(
n− k

k

)
xn−2k−

�(n−2)/2�∑
k=0

(−1)k
(
n− 2− k

k

)
xn−2−2k,

(19) Vn(x) =

�n/2�∑
k=0

(−1)k
(
n− k

k

)
xn−2k−

�(n−1)/2�∑
k=0

(−1)k
(
n− 1− k

k

)
xn−1−2k,

(20)

Wn(x) =

�n/2�∑
k=0

(−1)k
(
n− k

k

)
xn−2k +

�(n−1)/2�∑
k=0

(−1)k
(
n− 1− k

k

)
xn−1−2k,

where (18) is valid for n ≥ 1, (19) and (20) are valid for n ≥ 0. The initial
values of these polynomials, and their recurrence relations are given by the help
of (11) and (15)–(17) and are as follows.

(21) T0(x) = U0(x)− U−2(x) = 1− (−1) = 2,
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(22) T1(x) = U1(x)− U−1(x) = x− 0 = x,

(23) Tn+1(x) = xTn(x)− Tn−1(x),

(24) V0(x) = U0(x)− U−1(x) = 1− 0 = 1,

(25) V1(x) = U1(x)− U0(x) = x− 1,

(26) Vn+1(x) = xVn(x)− Vn−1(x),

(27) W0(x) = U0(x) + U−1(x) = 1 + 0 = 1,

(28) W1(x) = U1(x) + U0(x) = x+ 1,

(29) Wn+1(x) = xWn(x)−Wn−1(x).

4. A polynomial transformation and an example for its application

Let us consider the transformation of an arbitrary polynomial Pn(x) of
degree n into the polynomial Pn(x) = xnPn

(
x+ 1

x

)
of degree 2n. For the

product or for the sum of two polynomials Pn(x) and Qm(x), where n ≥ m,
clearly

(30) Pn(x) ·Qm(x) = Pn(x) ·Qm(x)

and

(31) Pn(x)±Qm(x) = Pn(x)± xn−mQm(x).

Consequently, if the polynomial Pn(x) is divisible by the polynomial Qm(x),
then

(32) Pn(x)/Qm(x) = Pn(x)/Qm(x).

The special cases aQm(x) = aQm(x) and Pn(x)± b = Pn(x)± bxn of (30) and
(31) are also worth of a particular emphasis.

As an example, let us consider the compressed Chebyshev polynomial of
the second kind. Obviously, the roots of our modified polynomial Un(x) are
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equal to the known roots (see [6, 12]) of the original Chebyshev polynomial of
the second kind, multiplied by 2. Thus the roots of Un(x) are just

(33) 2 cos
kπ

n+ 1
(k = 1, . . . , n),

and consequently

(34) Un(x) =

n∏
k=1

(
x− 2 cos

kπ

n+ 1

)
.

From this, we obtain

Un(x) =
n∏

k=1

(
x− 2 cos

kπ

n+ 1

)
=

n∏
k=1

(
x− 2 cos

kπ

n+ 1

)
=

(35) =
n∏

k=1

[
x

(
x+

1

x
− 2 cos

kπ

n+ 1

)]
=

n∏
k=1

(
x2 − 2x cos

kπ

n+ 1
+ 1

)
=

=

n∏
k=1

[(
x− e

kπi
n+1

)(
x− e−

kπi
n+1

)]
=

n∏
k=1

(
x− e

kπi
n+1

) n∏
k=1

(
x− e−

kπi
n+1

)

The last expression resembles the factored form of the polynomial x2n+2 − 1
according to its roots, which are the (2n+ 2)th roots of unity, and so we have

(36) x2n+2 − 1 =

n+1∏
k=0

(
x− e

kπi
n+1

) n∏
k=1

(
x− e−

kπi
n+1

)
.

The latter expression, given at (36) contains also the factors that correspond to
the roots of unity +1 and −1 and that are not contained in the final expression,
given at (35). By this, it has been established that

(37) (x− 1)(x+ 1)Un(x) = x2n+2 − 1,

i.e.

(38) Un(x) =
x2n+2 − 1

x2 − 1
.

5. Cyclotomic polynomials and cyclotomic pre-polynomials

According to the definition given in [13], the nth cyclotomic polynomial,
that is usually denoted by Φn(x), for any positive integer n, is the unique
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irreducible polynomial with integer coefficients that is a divisor of xn − 1 and
is not a divisor of xk − 1 for any k < n. Its roots are all nth primitive roots
of unity e

2kπi
n , where k runs over the positive integers not greater than n and

coprime to n. In other words, the nth cyclotomic polynomial is of degree ϕ(n)
(the Euler’s totient function, see Wikipedia [14]), and is equal to

(39) Φn(x) =
∏

1≤k≤n
gcd(k,n)=1

(x− e
2kπi
n ).

The cyclotomic polynomials have several interesting properties, e.g, they have
only integer coefficients; they are irreducible over the field of the rational num-
bers.

According to a well known existence theorem, for arbitrary n greater than
2, there exists a polynomial Ψn(x) of degree ϕ(n)/2, for which Ψn(x) = Φn(x)
and

(40) Ψn(x) =
∏

0<k<n/2
gcd(k,n)=1

(
x− 2 cos

2kπ

n

)
.

Similarly to the cyclotomic polynomials, also the cyclotomic pre-polynomi-
als Ψn(x) have only integer coefficients and are irreducible over the field of the
rational numbers, see [2, Theorem 4.1].

Some interesting special cases of the cyclotomic pre-polynomials are as fol-
lows.

a) If p is an odd prime, then Ψp(x) = W(p−1)/2(x).

b) Under the same condition, Ψ2p(x) = V(p−1)/2(x).

c) If n = 2q where q ≥ 2, then Ψn(x) = Tn/4(x).

d) If n = 3r where r ≥ 1, then Ψn(x) = Tn/3(x) + 1.

e) If n = 2q3r where q, r ≥ 1, then Ψn(x) = Tn/6(x)− 1.

For the proof, see Kéri [4]. A complete list of the cyclotomic pre-polynomials
Ψn(x) for 3 ≤ n ≤ 120 can also be found at the same places.
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6. Irreducible factorization of the compressed Chebyshev polyno-
mials

As it is well known, each nth root of unity is a primitive dth root of unity
for a unique d dividing n, and consequently

(41) xn − 1 =
∏
d|n

Φd(x).

From this it obviously follows that

(42) xn + 1 =
x2n − 1

xn − 1
=

∏
d|2n Φd(x)∏
d|n Φd(x)

=
∏
d|2n
d�n

Φd(x).

These identities show that the number of factors in the irreducible factorization
of xn − 1 is τ(n), the number of positive divisors of n, while the number of
factors in the irreducible factorization of xn +1 is τ(2n)− τ(n), which is equal
to the number of odd positive divisors of n. Both of these integer sequences are
contained in the On-line Encyclopedia of Integer Sequences (OEIS), [10], the
first one with identifier A000005, while the second one with identifier A001227.

For the irreducible factorization of Un(x), according to (38) and (41), we
obtain for any positive integer n that

(43) Un(x) =

∏
d|2n+2 Φd(x)∏

d|2 Φd(x)
=

∏
d≥3

d|2n+2

Φd(x) =
∏
d≥3

d|2n+2

Ψd(x),

which implies that, also for any positive integer n, the irreducible factorization
of the compressed Chebyshev polynomial of the second kind can be expressed
by the formula

(44) Un(x) =
∏
d≥3

d|2n+2

Ψd(x).

According to (44), the number of irreducible factors in Un(x) is τ(2n+ 2)− 2,
which is A086327 in OEIS, [10].

As regards the three other compressed Chebyshev polynomials, by applying
the rule given at (31) to the right hand side expressions of identities (15)–(17),
we obtain that for any positive integer n

(45)

xnTn

(
x+

1

x

)
= Un(x)− x2 · Un−2(x) =

=
x2n+2 − 1

x2 − 1
− x2 · x

2n−2 − 1

x2 − 1
= x2n + 1,
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(46)

xnVn

�
x+

1

x

�
= Un(x)− xUn−1(x) =

=
x2n+2 − 1

x2 − 1
− x · x

2n − 1

x2 − 1
=

x2n+1 + 1

x+ 1
,

(47)

xnWn

�
x+

1

x

�
= Un(x) + xUn−1(x) =

=
x2n+2 − 1

x2 − 1
+ x · x

2n − 1

x2 − 1
=

x2n+1 − 1

x− 1
.

(Although (31) is not applicable for the case of Tn(x) when n = 1, still the
chain given in (45) is correct in this trivial case, too.)

As a generalization to the above three polynomial variants, consider Un(x)±
±Un−k(x). By using the same techniques as before, we obtain, that for n ≥ k,

(48)

Un(x) + Un−k(x) = Un(x) + xk · Un−k(x) =

=
x2n+2 − 1

x2 − 1
+ xk · x

2n−2k+2 − 1

x2 − 1
=

(xk + 1)(x2n−k+2 − 1)

Φ1(x)Φ2(x)
=

=
1

Φ1(x)Φ2(x)

⎡
⎢⎢⎣
�
d|2k
d�k

Φd(x)

⎤
⎥⎥⎦

⎡
⎣ �
d|2n−k+2

Φd(x)

⎤
⎦ .

Here

(49)
�
d|2k
d�k

Φd(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Φ2(x)
�

d≥3
d|2k
d�k

Φd(x) if k is odd,

�
d≥3
d|2k
d�k

Φd(x) if k is even,

and

(50)
�

d|2n−k+2

Φd(x) =

⎧⎪⎨
⎪⎩

Φ1(x)
�

d≥3
d|2n−k+2

Φd(x) if k is odd,

Φ1(x)Φ2(x)
�

d≥3
d|2n−k+2

Φd(x) if k is even.

Thus, independently from the parity of k, finally we arrive at

(51) Un(x) + Un−k(x) =

⎡
⎢⎢⎢⎣
�
d≥3
d|2k
d�k

Φd(x)

⎤
⎥⎥⎥⎦

⎡
⎢⎣

�
d≥3

d|2n−k+2

Φd(x)

⎤
⎥⎦ ,
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and consequently

(52) Un(x) + Un−k(x) =

⎡
⎢⎢⎢⎣
�
d≥3
d|2k
d �|k

Ψd(x)

⎤
⎥⎥⎥⎦

⎡
⎢⎣

�
d≥3

d|2n−k+2

Ψd(x)

⎤
⎥⎦ .

For the factorization of Un(x)− Un−k(x), by omitting the details, we obtain a
similar formula, namely

(53) Un(x)− Un−k(x) =

⎡
⎢⎣
�
d≥3
d|k

Ψd(x)

⎤
⎥⎦

⎡
⎢⎢⎢⎣

�
d≥3

d|4n−2k+4
d �|2n−k+2

Ψd(x)

⎤
⎥⎥⎥⎦ .

Now, by substituting k = 2 into (53), we obtain the irreducible factorization
of Tn(x), namely

(54) Tn(x) =
�
d|4n
d �|2n

Ψd(x),

and then by substituting k = 1 into (53) and (52), we obtain the irreducible
factorization of Vn(x) and Wn(x), namely

(55) Vn(x) =
�
d≥3

d|4n+2
d �|2n+1

Ψd(x) and Wn(x) =
�
d≥3

d|2n+1

Ψd(x).

According to (54) and (55), the number of irreducible factors in Tn(x) is τ(4n)−
τ(2n) = τ(2n) − τ(n), which is A001227 in OEIS, [10], while the number of
irreducible factors in both of Vn(x) andWn(x) is τ(2n+1)−1, which is A095374
in OEIS, [10].

Beside the three compressed Chebyshev polynomials, the general formula
developed above for the factorization of Un(x) ± Un−k(x) is useful for other
specific cases. We can substitute k = n into (52) and (53) to obtain the
irreducible factorization of Un(x) + 1 and Un(x)− 1, namely

(56) Un(x) + 1 =

⎡
⎢⎢⎢⎣
�
d≥3
d|2n
d �|n

Ψd(x)

⎤
⎥⎥⎥⎦

⎡
⎢⎣

�
d≥3

d|n+2

Ψd(x)

⎤
⎥⎦
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and

(57) Un(x)− 1 =

⎡
⎢⎣
�
d≥3
d|n

Ψd(x)

⎤
⎥⎦

⎡
⎢⎢⎢⎣

�
d≥3

d|2n+4
d �|n+2

Ψd(x)

⎤
⎥⎥⎥⎦ .

According to (56) and (57), the number of irreducible factors in Un(x) + 1 is
τ(2n)− τ(n) + τ(n+2)− 2, which is A086375 in OEIS, [10], while the number
of irreducible factors in Un(x)− 1 is τ(n) + τ(2n+ 4)− τ(n+ 2)− 2, which is
A086389 in OEIS, [10].

7. Further generalization of the factorization formula to the sum of
more Un(x) of different orders

As a wide class of polynomials that can be factorized by the help of cyclo-
tomic polynomials, consider the polynomials having the form

(58) Qn(x) = Un(x) +
�
R⊆Sj
R �=∅

��
i∈R

εi

�
Un−∑

i∈R ki
(x),

where Sj = {1, 2, . . . , j} for an arbitrary nonnegative integer j, ki are different
positive integers, and εi = +1 or εi = −1 for i ∈ Sj .

It can be seen that the right hand side of (58) is a sum of 2j terms, and it
reduces to Un(x) if j = 0, to Un(x)± Un−k(x) if j = 1, etc.

By the help of (31), for n ≥ �j
i=1 ki we obtain

(59) Qn(x) = Un(x) +
�
R⊆Sj
R �=∅

��
i∈R

εi

�
x
∑

i∈R kiUn−∑
i∈R ki

(x).

From this, by applying (38) to each term of (59), we arrive at

(60)

(x2 − 1)Qn(x) = x2n+2 − 1 +
�
R⊆Sj
R �=∅

��
i∈R

εi

�
x2n+2−∑

i∈R ki−

−
�
R⊆Sj
R �=∅

��
i∈R

εi

�
x
∑

i∈R ki

which results in

(61) (x2 − 1)Qn(x) =

�
x2n+2−∑j

i=1 ki −
j�

i=1

εi

�
j�

i=1

�
xki + εi

�
.
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To prove the equivalence of the right hand sides of (60) and (61) it is enough
to check and compare the coefficients in their terms.

By noting ε0 = −�j
i=1 εi and k0 = 2n + 2 −�j

i=1 ki, (61) can be written
as

(62)

Qn(x) =

�j
i=0

�
xki + εi

�
x2 − 1

=

=
1

x2 − 1

⎛
⎜⎝

�
i∈Sj∪{0}

εi<0

�
d|ki

Φd(x)

⎞
⎟⎠

⎛
⎜⎝

�
i∈Sj∪{0}

εi>0

�
d|2ki
d �|ki

Φd(x)

⎞
⎟⎠ .

Now, if we denote by γ1 the number of negative εi’s in the set Sj ∪{0}, and by
γ2 the sum of the number of those negative εi’s in the set Sj ∪ {0} for which
ki is even and the number of those positive εi’s in the set Sj ∪ {0} for which
ki is odd, then we obtain

(63)

Qn(x) = [Φ1(x)]
γ1−1[Φ2(x)]

γ2−1×

×

⎛
⎜⎝

�
i∈Sj∪{0}

εi<0

�
d≥3
d|ki

Φd(x)

⎞
⎟⎠

⎛
⎜⎜⎜⎝

�
i∈Sj∪{0}

εi>0

�
d≥3
d|2ki
d �|ki

Φd(x)

⎞
⎟⎟⎟⎠ ,

which leads to the formula that expresses the irreducible factorization of Qn(x)
under general circumstances, namely

(64)

Qn(x) = (x− 2)(γ1−1)/2(x+ 2)(γ2−1)/2×

×

⎛
⎜⎝

�
i∈Sj∪{0}

εi<0

�
d≥3
d|ki

Ψd(x)

⎞
⎟⎠

⎛
⎜⎜⎜⎝

�
i∈Sj∪{0}

εi>0

�
d≥3
d|2ki
d �|ki

Ψd(x)

⎞
⎟⎟⎟⎠ .

(As obviously
�j

i=0 εi = −1 and
�j

i=0 ki is even, consequently both γ1 and γ2
are odd.)

For the relatively simple special case, when j = 2, some more details on
the factorizations of Qn(x) can be given easily. Taking into account all the 16
possible variations according to the sign of ε1 and ε2, as well as the parity of
k1 and k2, we find that γ1 = 3 if and only if ε1 < 0 and ε2 < 0, independently
on the parity of k1 and k2. In any other cases γ1 = 1. For the value of γ2, a
more complicated condition has to be formulated, namely γ2 = 3 if and only
if ε1 > 0, ε2 > 0, k1 is odd and k2 is odd, or ε1 > 0, ε0 > 0, k1 is odd and
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k0 is odd (then ε2 < 0, and k2 is even), or ε2 > 0, ε0 > 0, k2 is odd and k0
is odd (then ε1 < 0, and k1 is even), or ε1 < 0, ε2 < 0, k1 is even and k2 is
even. (Here ε0 = −ε1ε2 and k0 = 2n+2− k1 − k2.) In any other cases γ2 = 1.
According to the above thoughts, we can state that

(65) Un(x)+ ε1Un−k1(x)+ ε2Un−k2(x)+ ε1ε2Un−k1−k2(x) = Eγ ·E0 ·E1 ·E2,

where
(66)

Eγ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x− 2)(x+ 2) if ε1 < 0, ε2 < 0, k1 is even and k2 is even,

(x− 2) if ε1 < 0, ε2 < 0 and at least one of k1 and k2 is odd,

(x+ 2) if ε1 > 0, ε2 > 0, k1 is odd and k2 is odd,

or ε1 > 0, ε2 < 0, k1 is odd and k2 is even,

or ε1 < 0, ε2 > 0, k1 is even and k2 is odd,

1 in any other case,

(67) E0 =

⎧⎪⎪⎨
⎪⎪⎩

�
d≥3

d|2n+2−k1−k2

Ψd(x) if ε1ε2 > 0,

�
d≥3

d|4n+4−2k1−2k2
d �|2n+2−k1−k2

Ψd(x) if ε1ε2 < 0,

and for i = 1, 2

(68) Ei =

⎧⎪⎪⎨
⎪⎪⎩

�
d≥3
d|ki

Ψd(x) if εi < 0,

�
d≥3
d|2ki
d �|ki

Ψd(x) if εi > 0.

Finally as a few examples let us apply (65)–(68) for k1 = 1, k2 = 2 (and then
k0 = 2n− 1), where only ε1 and ε2 varies. For this case,

(69) Eγ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(x− 2) if ε1 < 0 and ε2 < 0,

(x+ 2) if ε1 > 0 and ε2 < 0,

1 if ε2 > 0,
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(70) E0 =

⎧
⎪⎪⎨
⎪⎪⎩

�
d≥3

d|2n−1
Ψd(x) if ε1ε2 > 0,

�
d≥3

d|4n−2
d �|2n−1

Ψd(x) if ε1ε2 < 0,

(71) E1 = 1 for all variations of ε1 and ε2,

(72) E2 =

⎧
⎨
⎩

1 if ε2 < 0,

Ψ4(x) = x if ε2 > 0.

Therefore we obtain, that for n ≥ 3

(73)

Un(x) + Un−1(x) + Un−2(x) + Un−3(x) =

= x ·
�
d≥3

d|2n−1

Ψd(x) / = x ·Wn−1(x)/,

(74)

Un(x) + Un−1(x)− Un−2(x)− Un−3(x) =

= (x+ 2) ·
�
d≥3

d|4n−2
d �|2n−1

Ψd(x) / = (x+ 2) · Vn−1(x)/,

(75)

Un(x)− Un−1(x) + Un−2(x)− Un−3(x) =

= x ·
�
d≥3

d|4n−2
d �|2n−1

Ψd(x) / = x · Vn−1(x)/,

and

(76)

Un(x)− Un−1(x)− Un−2(x) + Un−3(x) =

= (x− 2) ·
�
d≥3

d|2n−1

Ψd(x) / = (x− 2) ·Wn−1(x)/.

It may be noticed, however, that (73)–(76) are valid also for n = 1 and n = 2
if we take U−1(x) = 0 and U−2(x) = −1 according to (13) and (14).
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