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Abstract. In this work, we determined the general terms of almost bal-
cobalancing numbers, almost Lucas-balcobalancing numbers and almost
balcobalancers of first and second type in terms of balancing and Lucas-
balancing numbers.

1. Introduction

A positive integer n is called a balancing number ([2]) if the Diophantine
equation

(1.1) 1 + 2 + · · ·+ (n− 1) = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

holds for some positive integer r which is called balancer corresponding to n.
If n is a balancing number with balancer r, then from (1.1)

(1.2) r =
−2n− 1 +

√
8n2 + 1

2
.

Though the definition of balancing numbers suggests that no balancing number
should be less than 2. But from (1.2), 8(0)2+1 = 1 and 8(1)2+1 = 32 are perfect
squares. So Behera and Panda accepted 0 and 1 to be balancing numbers.
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Later Panda and Ray ([12]) defined that a positive integer n is called a
cobalancing number if the Diophantine equation

(1.3) 1 + 2 + · · ·+ n = (n+ 1) + (n+ 2) + · · ·+ (n+ r)

holds for some positive integer r which is called cobalancer corresponding to n.
If n is a cobalancing number with cobalancer r, then from (1.3)

(1.4) r =
−2n− 1 +

√
8n2 + 8n+ 1

2
.

From (1.4), 8(0)2 + 8(0) + 1 = 1 is a perfect square. So they accepted 0 to
be a cobalancing number, just like Behera and Panda accepted 0 and 1 to be
balancing numbers.

Let Bn denote the nth balancing number and let bn denote the nth cobalanc-
ing number. Then from (1.2), Bn is a balancing number if and only if 8B2

n +1
is a perfect square and from (1.4), bn is a cobalancing number if and only if
8b2n + 8bn + 1 is a perfect square. Thus

Cn =
√
8B2

n + 1 and cn =
√
8b2n + 8bn + 1

are integers which are called Lucas-balancing number and Lucas-cobalancing
number, respectively (see also [10, 11, 15, 16]).

Balancing numbers and their generalizations have been investigated by se-
veral authors from many aspects. In [7], Liptai proved that there is no Fibo-
nacci balancing number except 1 and in [8] he proved that there is no Lucas-
balancing number. In [18], Szalay considered the same problem and obtained
some nice results by a different method. In [5], Kovács, Liptai, Olajos extended
the concept of balancing numbers to the (a, b)-balancing numbers defined as
follows: Let a > 0 and b ≥ 0 be coprime integers. If

(a+ b) + · · ·+ (a(n− 1) + b) = (a(n+ 1) + b) + · · ·+ (a(n+ r) + b)

for some positive integers n and r, then an + b is an (a, b)-balancing number.

The sequence of (a, b)-balancing numbers is denoted by B
(a,b)
m for m ≥ 1. In [6],

Liptai, Luca, Pintér and Szalay generalized the notion of balancing numbers
to numbers defined as follows: Let y, k, l ∈ Z+ with y ≥ 4. A positive integer
x with x ≤ y − 2 is called a (k, l)-power numerical center for y if

1k + · · ·+ (x− 1)k = (x+ 1)l + · · ·+ (y − 1)l.

They studied the number of solutions of the equation above and proved several
effective and ineffective finiteness results for (k, l)-power numerical centers. For
positive integers k, x, let Πk(x) = x(x+ 1) . . . (x+ k − 1). Then it was proved
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in [5] that the equation Bm = Πk(x) for fixed integer k ≥ 2 has only infinitely
many solutions and for k ∈ {2, 3, 4} all solutions were determined. In [25]
Tengely, considered the case k = 5 and proved that this Diophantine equation
has no solution for m ≥ 0 and x ∈ Z. In [14], Panda, Komatsu and Davala
considered the reciprocal sums of sequences involving balancing and Lucas-
balancing numbers and in [17], Ray considered the sums of balancing and Lucas-
balancing numbers by matrix methods. In [3], Dash, Ota, Dash considered the
t-balancing numbers for an integer t ≥ 1. They called that n is a t-balancing
number if the Diophantine equation

1 + 2 + · · ·+ n− 1 = (n+ 1 + t) + (n+ 2 + t) + · · ·+ (n+ r + t)

holds for some positive integer r which is called t-balancer. Similarly a positive
integer n is called a t-cobalancing number if the Diophantine equation

1 + 2 + · · ·+ n = (n+ 1 + t) + (n+ 2 + t) + · · ·+ (n+ r + t)

holds for some positive integer r which is called t-cobalancer. In [24], Tekcan
and Aydın determined the general terms of t-balancing and Lucas t-balancing
numbers, and in [21], Tekcan and Erdem determined the general terms of t-
cobalancing and Lucas t-cobalancing numbers in terms of balancing and Lucas-
balancing numbers. In [13], G.K. Panda and A.K. Panda defined that a positive
integer n is called an almost balancing number if the Diophantine equation

(1.5) |[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]− [1 + 2 + · · ·+ (n− 1)]| = 1

holds for some positive integer r, which is called the almost balancer. By (1.5),
they have two cases: If [(n+1)+(n+2)+ ...+(n+r)]− [1+2+ ...+(n−1)] = 1,
then n is called an almost balancing number of first type and r is called an
almost balancer of first type and in this case

(1.6) r =
−2n− 1 +

√
8n2 + 9

2
,

and if [(n + 1) + (n + 2) + ... + (n + r)] − [1 + 2 + ... + (n − 1)] = −1, then n
is called an almost balancing number of second type and r is called an almost
balancer of second type and in this case

(1.7) r =
−2n− 1 +

√
8n2 − 7

2
.

(From (1.7), they noted that 8(1)2 − 7 = 12 and 8(2)2 − 7 = 52 are perfect
squares. So they accepted 1 and 2 to be almost balancing numbers of second
type). Let B∗

n denote the almost balancing number of first type and let B∗∗
n

denote the almost balancing number of second type. Then from (1.6), B∗
n is

an almost balancing number of first type if and only if 8(B∗
n)

2 + 9 is a perfect
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square and from (1.7), B∗∗
n is an almost balancing number of second type if

and only if 8(B∗∗
n )2 − 7 is a perfect square. So

C∗
n =

√
8(B∗

n)
2 + 9 and C∗∗

n =
√
8(B∗∗

n )2 − 7

are integers which are called almost Lucas-balancing number of first type and
of second type, respectively. In [19], Tekcan derived some results on almost
balancing numbers, triangular numbers and square triangular numbers and
in [20], he considered the sums and spectral norms of all almost balancing
numbers.

2. Almost balcobalancing numbers

In [22], Tekcan and Yıldız defined balcobalancing numbers, balcobalancers
and Lucas-balcobalanciıng numbers and determined the general terms of them.
They sum both sides of (1.1) and (1.3), and they get the Diophantine equation

(2.1) 1+2+· · ·+(n−1)+1+2+· · ·+(n−1)+n = 2[(n+1)+(n+2)+· · ·+(n+r)]

and called a positive integer n is called a balcobalancing number if the Dio-
phantine equation in (2.1) verified for some positive integer r which is called
balcobalancer. From (2.1), they get

(2.2) r =
−2n− 1 +

√
8n2 + 4n+ 1

2
.

Let Bbc
n denote the balcobalancing number. Then from (2.2), Bbc

n is a balcoba-
lancing number if and only if 8(Bbc

n )2 + 4Bbc
n + 1 is a perfect square. Thus

Cbc
n =

√
8(Bbc

n )2 + 4Bbc
n + 1

is an integer which are called Lucas-balcobancing number (see also [23]).

As in (1.5), from (2.1), we say that a positive integer n is called an almost
balcobalancing number if the Diophantine equation

(2.3)

∣∣∣∣
1 + 2 + · · ·+ (n− 1) + 1 + 2 + · · ·+ (n− 1) + n

−2[(n+ 1) + (n+ 2) + · · ·+ (n+ r)]

∣∣∣∣ = 1

holds for some positive integer r which is called almost balcobalancer.

From (2.3), we have two cases: If [1 + 2 + ...+ (n− 1) + 1 + 2 + ...+ (n−
−1) + n] − 2[(n + 1) + (n + 2) + ... + (n + r)] = 1, then n is called an almost
balcobalancing number of first type, r is called an almost balcobalancer of first
type and in this case

(2.4) r =
−2n− 1 +

√
8n2 + 4n− 3

2
.
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For example 3, 39, 109 are almost balcobalancing numbers of first type with
almost balcobalancers of first type 1, 16, 45. (From (2.4), we note that 8(1)2 +
+4(1) − 3 = 32 is a perfect square, but in this case r = 0. Nevertheless we
accept that 1 is an almost balcobalancing number of first type, just like Behera
and Panda accepted 0 and 1 to be balancing numbers). If [1 + 2 + ... + (n −
−1)+1+2+ ...+(n− 1)+n]− 2[(n+1)+ (n+2)+ ...+(n+ r)] = −1, then n
is called an almost balcobalancing number of second type, r is called an almost
balcobalancer of second type and in this case

(2.5) r =
−2n− 1 +

√
8n2 + 4n+ 5

2
.

For example 5, 179, 6089 are almost balcobalancing numbers of second type
with almost balcobalancers of second type 2, 74, 2522.

Let Bbc∗
n denote the almost balcobalancing number of first type and letBbc∗∗

n

denote the almost balcobalancing number of second type. Then by (2.4), Bbc∗
n is

an almost balcobalancing number of first type if and only if 8(Bbc∗
n )2+4Bbc∗

n −3
is a perfect square. So

(2.6) Cbc∗
n =

√
8(Bbc∗

n )2 + 4Bbc∗
n − 3

is an integer which is called almost Lucas-balcobalancing number of first type.
Similarly from (2.5), Bbc∗∗

n is an almost balcobalancing number of second type
if and only if 8(Bbc∗∗

n )2 + 4Bbc∗∗
n + 5 is a perfect square. So

(2.7) Cbc∗∗
n =

√
8(Bbc∗∗

n )2 + 4Bbc∗∗
n + 5

is an integer which is called almost Lucas-balcobalancing number of second
type (We denote the almost balcobalancer of first type by Rbc∗

n and denote
almost balcobalancer of second type by Rbc∗∗

n ).

In this paper, we try to determine the general terms of almost balcobalanc-
ing numbers, almost Lucas-balcobalancing numbers and almost balcobalancers
of first and second type in terms of balancing and Lucas-balancing numbers.

2.1. Almost balcobalancing numbers of first type

From (2.4), we notice that Bbc∗
n is an almost balcobalancing number of first

type if and only if 8(Bbc∗
n )2 + 4Bbc∗

n − 3 is a perfect square. So we set

8(Bbc∗
n )2 + 4Bbc∗

n − 3 = y2

for some positive integer y. If we multiply both sides of the last equation by 2,
then we get

16(Bbc∗
n )2 + 8Bbc∗

n − 6 = 2y2
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and hence
(4Bbc∗

n + 1)2 − 7 = 2y2.

Taking x = 4Bbc∗
n + 1, we get the Pell equation (see [1, 9])

(2.8) x2 − 2y2 = 7.

Let Ωbc∗ denotes the set of all (positive) integer solutions of (2.8), that is,

Ωbc∗ = {(x, y) : x2 − 2y2 = 7}.
In order to determine the set of all integer solutions of (2.8), we need some
notations. Let Δ be a non-square discriminant. Then the Δ-order OΔ is defined

to be the ring OΔ = {x+yρΔ : x, y ∈ Z}, where ρΔ =
�

Δ
4 if Δ ≡ 0 (mod 4) or

1+
√
Δ

2 if Δ ≡ 1(mod 4). So OΔ is a subring of Q(
√
Δ) ={x+ y

√
Δ : x, y ∈ Q}.

The unit group Ou
Δ is defined to be the group of units of the ring OΔ.

Let F (x, y) = ax2 + bxy+ cy2 be an indefinite integral quadratic form ([4])
of discriminant Δ = b2 − 4ac. Then we can rewrite

F (x, y) =
(xa+ y b+

√
Δ

2 )(xa+ y b−√
Δ

2 )

a
.

So the module MF of F is

MF = {xa+ y
b+

√
Δ

2
: x, y ∈ Z} ⊂ Q(

√
Δ).

Therefore we get (u+ vρΔ)(xa+ y b+
√
Δ

2 ) = x�a+ y� b+
√
Δ

2 , where

(2.9) [x� y�] =

⎧
⎪⎪⎨
⎪⎪⎩

[x y]

�
u− b

2v av
−cv u+ b

2v

�
if Δ ≡ 0 (mod 4)

[x y]

�
u+ 1−b

2 v av
−cv u+ 1+b

2 v

�
if Δ ≡ 1(mod 4).

Letm be any integer and let Ω denote the set of all integer solutions of F (x, y) =
= ax2 + bxy + cy2 = m. Then there is a bijection

Ψ : Ω → {γ ∈ MF : N(γ) = am}.
The action of Ou

Δ,1 = {α ∈ Ou
Δ : N(α) = 1} on Ω is most interesting when Δ is

a positive non-square since Ou
Δ,1 is infinite. Therefore the orbit of each solution

will be infinite and so Ω is either empty or infinite. Since Ou
Δ,1 can be explicitly

determined, the set Ω is satisfactorily described by the representation of such a
list, called a set of representatives of the orbits. Let εΔ be the smallest unit of
OΔ that is grater than 1 and let τΔ = εΔ if N(εΔ) = 1 or ε2Δ if N(εΔ) = −1.
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Then every Ou
Δ,1 orbit of integral solutions of F (x, y) = m contains a solution

(x, y) ∈ Z× Z such that 0 ≤ y ≤ U , where

U =

{ ∣∣amτΔ
Δ

∣∣ 1
2 (1− 1

τΔ
) if am > 0∣∣amτΔ

Δ

∣∣ 1
2 (1 + 1

τΔ
) if am < 0.

So for finding a set of representatives of the Ou
Δ,1 orbits of integral solutions

of F (x, y) = m, we must find for each y0 in the range 0 ≤ y0 ≤ U , whether
Δy20 + 4am is a perfect square or not since

(2.10) ax2
0 + bx0y0 + cy20 = m ⇔ Δy20 + 4am = (2ax0 + by0)

2.

If Δy20 + 4am is a perfect square, then from (2.10)

x0 =
−by0 ±

√
Δy20 + 4am

2a
.

So there is a set of representatives Rep = {[x0 y0]}. For the matrix M derived
from (2.9), the set of all integer solutions of F (x, y) = m is

{±(x, y) : [x y] = [x0 y0]M
n, n ∈ Z}.

If Δy20 + 4am is not a perfect square, then there is no integer solution.

Now we can give the following theorem.

Theorem 2.1. The set of all integer solutions of (2.8) is

Ωbc∗ = {(x2n−1, y2n−1), (x2n, y2n) : n ≥ 1},
where

x2n−1 = 4Bn−1 + 3Cn−1, y2n−1 = 6Bn−1 + Cn−1,

x2n = −4Bn + 3Cn, y2n = 6Bn − Cn.

Proof. For the Pell equation in (2.8), the indefinite form is F = (1, 0,−2) of
discriminant Δ = 8. So τΔ = 3 + 2

√
2. Therefore the set of representatives is

Rep = {[±3 1]} and M =

[
3 2
4 3

]
by (2.9). Here we notice that

1. [3 1]Mn−1 generates all integer solutions (x2n−1, y2n−1) for n ≥ 1

2. [3 − 1]Mn generates all integer solutions (x2n, y2n) for n ≥ 1.

It can be easily seen that the nth power of M is

Mn =

[
Cn 2Bn

4Bn Cn

]



78 A. Tekcan and M. Yıldız

for n ≥ 1. So

[x2n−1 y2n−1] = [3 1]Mn−1 = [4Bn−1 + 3Cn−1 6Bn−1 + Cn−1]

[x2n y2n] = [3 − 1]Mn = [−4Bn + 3Cn 6Bn − Cn].

Thus the set of all integer solutions is Ωbc∗ = {(4Bn−1+3Cn−1, 6Bn−1+Cn−1),
(−4Bn + 3Cn, 6Bn − Cn) : n ≥ 1}. �

From Theorem 2.1, we can give the following result.

Theorem 2.2. The general terms of almost balcobalancing numbers, almost
Lucas-balcobalancing numbers and almost balcobalancers of first type are

Bbc∗
2n−1 =

−4B2n−1 + 3C2n−1 − 1

4
,

Bbc∗
2n =

4B2n−1 + 3C2n−1 − 1

4
,

Cbc∗
2n−1 = 6B2n−1 − C2n−1,

Cbc∗
2n = 6B2n−1 + C2n−1,

Rbc∗
2n−1 =

16B2n−1 − 5C2n−1 − 1

4
,

Rbc∗
2n =

8B2n−1 − C2n−1 − 1

4

for n ≥ 1.

Proof. We proved in Theorem 2.1 that the set of all integer solutions of (2.8)
is Ωbc∗ = {(4Bn−1+3Cn−1, 6Bn−1+Cn−1), (−4Bn+3Cn, 6Bn−Cn) : n ≥ 1}.
Since x = 4Bbc∗

n + 1, we get

Bbc∗
2n−1 =

−4B2n−1 + 3C2n−1 − 1

4

for n ≥ 1. Thus from (2.6), we obtain

Cbc∗
2n−1 =

√
8(Bbc∗

2n−1)
2 + 4Bbc∗

2n−1 − 3 =

=

√
8(

−4B2n−1 + 3C2n−1 − 1

4
)2 + 4(

−4B2n−1 + 3C2n−1 − 1

4
)− 3 =

=

√
8B2

2n−1 − 12B2n−1C2n−1 +
9C2

2n−1

2
− 7

2
=

=

√
8B2

2n−1 − 12B2n−1C2n−1 +
9

2
(8B2

2n−1 + 1)− 7

2
=

=
√
36B2

2n−1 − 12B2n−1C2n−1 + 8B2
2n−1 + 1 =

=
√
36B2

2n−1 − 12B2n−1C2n−1 + C2
2n−1 =
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=
√
(6B2n−1 − C2n−1)2 =

= 6B2n−1 − C2n−1.

Finally from (2.4), we deduce that

Rbc∗
2n−1 =

−2Bbc∗
2n−1 − 1 + Cbc∗

2n−1

2
=

=
−2(−4B2n−1+3C2n−1−1

4 )− 1 + 6B2n−1 − C2n−1

2
=

=
16B2n−1 − 5C2n−1 − 1

4
.

Similarly it can be shown that Bbc∗
2n = 4B2n−1+3C2n−1−1

4 , Cbc∗
2n = 6B2n−1+C2n−1

and Rbc∗
2n = 8B2n−1−C2n−1−1

4 . �

In Table 2.1, the first ten terms of almost balcobalancing numbers, almost
Lucas-balcobalancing numbers and almost balcobalancers of first type is given.

i Bbc∗
i Cbc∗

i Rbc∗
i

1 1 3 0

2 3 9 1

3 39 111 16

4 109 309 45

5 1333 3771 552

6 3711 10497 1537

7 45291 128103 18760

8 126073 356589 52221

9 1538569 4351731 637296

10 4282779 12113529 1773985

Table 2.1 Almost balcobalancing numbers of first type

2.2. Almost balcobalancing numbers of second type

From (2.5), we notice that Bbc∗∗
n is an almost balcobalancing number of

second type if and only if 8(Bbc∗∗
n )2 +4Bbc∗∗

n +5 is a perfect square. So we set

8(Bbc∗∗
n )2 + 4Bbc∗∗

n + 5 = y2
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for some positive integer y. If we multiply both sides of the last equation by 2,
then we get

16(Bbc∗∗
n )2 + 8Bbc∗∗

n + 10 = 2y2

and hence
(4Bbc∗∗

n + 1)2 + 9 = 2y2.

Taking x = 4Bbc∗∗
n + 1, we get the Pell equation

(2.11) x2 − 2y2 = −9.

Let Ωbc∗∗ denotes the set of all (positive) integer solutions of (2.11), that is,

Ωbc∗∗ = {(x, y) : x2 − 2y2 = −9}.
Then we can give the following theorem.

Theorem 2.3. The set of all integer solutions of (2.11) is

Ωbc∗∗ = {(xn, yn) : n ≥ 1},
where

xn = 12Bn−1 + 3Cn−1 and yn = 6Bn−1 + 3Cn−1.

Proof. For the Pell equation in (2.11), the indefinite form is F = (1, 0,−2) of
discriminant Δ = 8. So τΔ = 3 + 2

√
2. In this case, the set of representatives

is Rep = {[±3 3]} and M =

[
3 2
4 3

]
. Here [3 3]Mn−1 generates all

integer solutions (xn, yn) for n ≥ 1. Thus the set of all integer solutions is
Ωbc∗∗ = {(12Bn−1 + 3Cn−1, 6Bn−1 + 3Cn−1) : n ≥ 1}. �

From Theorem 2.3, we can give the following result.

Theorem 2.4. The general terms of almost balcobalancing numbers, almost
Lucas-balcobalancing numbers and almost balcobalancers of second type are

Bbc∗∗
n =

12B2n−1 + 3C2n−1 − 1

4
,

Cbc∗∗
n = 6B2n−1 + 3C2n−1,

Rbc∗∗
n =

3C2n−1 − 1

4

for n ≥ 1.

Proof. Note that Ωbc∗∗ = {(12Bn−1 + 3Cn−1, 6Bn−1 + 3Cn−1) : n ≥ 1} by
Theorem 2.3. So we get

Bbc∗∗
n =

12B2n−1 + 3C2n−1 − 1

4
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for n ≥ 1. Thus from (2.7), we obtain

Cbc∗∗
n =

√
8(Bbc∗∗

n )2 + 4Bbc∗∗
n + 5 =

=

√
8(

12B2n−1 + 3C2n−1 − 1

4
)2 + 4(

12B2n−1 + 3C2n−1 − 1

4
) + 5 =

=

√
72B2

2n−1 + 36B2n−1C2n−1 +
9C2

2n−1

2
+

9

2
=

=
√
36B2

2n−1 + 36B2n−1C2n−1 + 9C2
2n−1 =

=
√
(6B2n−1 + 3C2n−1)2 =

= 6B2n−1 + 3C2n−1.

From (2.5), we deduce that Rbc∗∗
n = 3C2n−1−1

4 . �

In Table 2.2, the first ten terms of almost balcobalancing numbers, al-
most Lucas-balcobalancing numbers and almost balcobalancers of second type
is given.

i Bbc∗∗
i Cbc∗∗

i Rbc∗∗
i

1 5 15 2

2 179 507 74

3 6089 17223 2522

4 206855 585075 85682

5 7026989 19875327 2910674

6 238710779 675176043 98877242

7 8109139505 22936110135 3358915562

8 275472032399 779152568547 114104251874

9 9357939962069 26468251220463 3876185648162

10 317894486677955 899141388927195 131676207785642

Table 2.2 Almost balcobalancing numbers of second type
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