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Abstract. In this work, we determined the general terms of almost bal-
cobalancing numbers, almost Lucas-balcobalancing numbers and almost
balcobalancers of first and second type in terms of balancing and Lucas-
balancing numbers.

1. Introduction

A positive integer n is called a balancing number ([2]) if the Diophantine
equation

(1.1) 142+ +(n-1)=n+1)+n+2)+---+(n+7)

holds for some positive integer r which is called balancer corresponding to n.
If n is a balancing number with balancer r, then from (1.1)

_ 2n—1+v8n? +1
— 5 .

(1.2) r

Though the definition of balancing numbers suggests that no balancing number
should be less than 2. But from (1.2), 8(0)2+1 = 1 and 8(1)241 = 32 are perfect
squares. So Behera and Panda accepted 0 and 1 to be balancing numbers.
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Later Panda and Ray ([12]) defined that a positive integer n is called a
cobalancing number if the Diophantine equation

(1.3) 1424 +n=n+1)+n+2)+ -+ (n+r)

holds for some positive integer r which is called cobalancer corresponding to n.
If n is a cobalancing number with cobalancer r, then from (1.3)

—2n—14++V82+8n+1
r= .
2

(1.4)

From (1.4), 8(0)2 + 8(0) + 1 = 1 is a perfect square. So they accepted 0 to
be a cobalancing number, just like Behera and Panda accepted 0 and 1 to be
balancing numbers.

Let B,, denote the nt" balancing number and let b,, denote the nt cobalanc-
ing number. Then from (1.2), B,, is a balancing number if and only if 8 B2 + 1
is a perfect square and from (1.4), b, is a cobalancing number if and only if
8b2 + 8b,, + 1 is a perfect square. Thus

Cpn=+/8B2+1 and ¢, = /802 +8b, +1

are integers which are called Lucas-balancing number and Lucas-cobalancing
number, respectively (see also [10, 11, 15, 16]).

Balancing numbers and their generalizations have been investigated by se-
veral authors from many aspects. In [7], Liptai proved that there is no Fibo-
nacci balancing number except 1 and in [8] he proved that there is no Lucas-
balancing number. In [18], Szalay considered the same problem and obtained
some nice results by a different method. In [5], Kovédcs, Liptai, Olajos extended
the concept of balancing numbers to the (a,b)-balancing numbers defined as
follows: Let a > 0 and b > 0 be coprime integers. If

(a+b)+--+(a(n—1)+b)=(a(n+1)+b)+-- -+ (aln+71)+D)

for some positive integers n and r, then an + b is an (a, b)-balancing number.
The sequence of (a, b)-balancing numbers is denoted by BYY form > 1. In [6],
Liptai, Luca, Pintér and Szalay generalized the notion of balancing numbers
to numbers defined as follows: Let y, k,I € Z* with y > 4. A positive integer
x with o <y — 2 is called a (k,)-power numerical center for y if

Pt @D =@+ D)+ + -1

They studied the number of solutions of the equation above and proved several
effective and ineffective finiteness results for (k, l)-power numerical centers. For
positive integers k, z, let I (x) = z(z +1)...(x + k — 1). Then it was proved
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in [5] that the equation B, = I (z) for fixed integer k > 2 has only infinitely
many solutions and for k € {2,3,4} all solutions were determined. In [25]
Tengely, considered the case k = 5 and proved that this Diophantine equation
has no solution for m > 0 and = € Z. In [14], Panda, Komatsu and Davala
considered the reciprocal sums of sequences involving balancing and Lucas-
balancing numbers and in [17], Ray considered the sums of balancing and Lucas-
balancing numbers by matrix methods. In [3], Dash, Ota, Dash considered the
t-balancing numbers for an integer ¢ > 1. They called that n is a t-balancing
number if the Diophantine equation

1424+ 4n—1l=@+1+t)+n+2+t)+-+@n+7+1)

holds for some positive integer r which is called ¢-balancer. Similarly a positive
integer n is called a t-cobalancing number if the Diophantine equation

142+--+n=mn+1+t)+(n+2+t)+ -+ (n+r+t)

holds for some positive integer r which is called t-cobalancer. In [24], Tekcan
and Aydin determined the general terms of ¢-balancing and Lucas t-balancing
numbers, and in [21], Tekcan and Erdem determined the general terms of ¢-
cobalancing and Lucas t-cobalancing numbers in terms of balancing and Lucas-
balancing numbers. In [13], G.K. Panda and A.K. Panda defined that a positive
integer n is called an almost balancing number if the Diophantine equation

(1.5) [(n+1)+n+2)+ - +Mn+r)-[1+24+---+(n-1)] =1

holds for some positive integer r, which is called the almost balancer. By (1.5),
they have two cases: If [(n+1)+ (n+2)+...4+(n+r)|—[1+2+..+(n—1)] =1,
then n is called an almost balancing number of first type and r is called an
almost balancer of first type and in this case

—2n—14++v8n2+9
7‘:
2 b

(1.6)

andif [n+1)+(n+2)+...+(n+r)]—-[1+2+..4+(n—1)] = -1, then n
is called an almost balancing number of second type and r is called an almost
balancer of second type and in this case

_ 2n—1+V8n?2 -7

(1.7) r 5

(From (1.7), they noted that 8(1)? — 7 = 1% and 8(2)? — 7 = 52 are perfect
squares. So they accepted 1 and 2 to be almost balancing numbers of second
type). Let B} denote the almost balancing number of first type and let B;:*
denote the almost balancing number of second type. Then from (1.6), B} is

an almost balancing number of first type if and only if 8(B)? + 9 is a perfect
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square and from (1.7), B:* is an almost balancing number of second type if
and only if 8(B}*)? — 7 is a perfect square. So

Cr=+/8B:)?2+9 and CF=./8(B:*)2—-7T

are integers which are called almost Lucas-balancing number of first type and
of second type, respectively. In [19], Tekcan derived some results on almost
balancing numbers, triangular numbers and square triangular numbers and
n [20], he considered the sums and spectral norms of all almost balancing
numbers.

2. Almost balcobalancing numbers

In [22], Tekcan and Yildiz defined balcobalancing numbers, balcobalancers
and Lucas-balcobalanciing numbers and determined the general terms of them.
They sum both sides of (1.1) and (1.3), and they get the Diophantine equation

(21) 1424+ (n—1)+1+2+- - -+(n—1)+n = 2[(n+1)+(n+2)+- - -+(n+r)]

and called a positive integer n is called a balcobalancing number if the Dio-
phantine equation in (2.1) verified for some positive integer r which is called
balcobalancer. From (2.1), they get

—2n—14+vV8n2+4n+1
r= .
2

Let B’ denote the balcobalancing number. Then from (2.2), B% is a balcoba-
lancing number if and only if 8(B%¢)2 + 4Bt + 1 is a perfect square. Thus

(2.2)

Che = \/S(B;;c)2 +4Bbe 1

is an integer which are called Lucas-balcobancing number (see also [23]).

As in (1.5), from (2.1), we say that a positive integer n is called an almost
balcobalancing number if the Diophantine equation

1424 ---+(n-1)+14+2+---+(n—1)+n

2[n+1)+n+2)+--+(n+7)] =1

(2.3)
holds for some positive integer r which is called almost balcobalancer.

From (2.3), we have two cases: If 1 +2+ ...+ (n—1)+1+2+ ...+ (n —
1) +n]-2[(n+1)+(n+2)+..4+ (n+r)] =1, then n is called an almost

balcobalancing number of first type, r is called an almost balcobalancer of first
type and in this case

—2n—14++V8n2+4+4n -3
r= .

(2.4) 5
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For example 3,39,109 are almost balcobalancing numbers of first type with
almost balcobalancers of first type 1, 16,45. (From (2.4), we note that 8(1)% +
+4(1) — 3 = 32 is a perfect square, but in this case » = 0. Nevertheless we
accept that 1 is an almost balcobalancing number of first type, just like Behera
and Panda accepted 0 and 1 to be balancing numbers). If [1 + 2+ ... + (n —
“D+1+2+...+(n—1+n]-2[(n+1)+(n+2)+..+(n+r)] =—1, thenn
is called an almost balcobalancing number of second type, r is called an almost
balcobalancer of second type and in this case

—2n—14++V824+4n+5
r= .
2

For example 5,179,6089 are almost balcobalancing numbers of second type
with almost balcobalancers of second type 2, 74, 2522.

(2.5)

Let BY** denote the almost balcobalancing number of first type and let B2**
denote the almost balcobalancing number of second type. Then by (2.4), B2* is
an almost balcobalancing number of first type if and only if 8( B2*)2 +4Bb* —3
is a perfect square. So

(2.6) Che = \[8(BLer)? + 4By — 3

is an integer which is called almost Lucas-balcobalancing number of first type.
Similarly from (2.5), B%** is an almost balcobalancing number of second type
if and only if 8(B2**)2 + 4Bb** + 5 is a perfect square. So

(2.7) Cher* = \/8(B£LC**)2 + 4Bbexx 4.5

is an integer which is called almost Lucas-balcobalancing number of second
type (We denote the almost balcobalancer of first type by R’“* and denote
almost balcobalancer of second type by R2¢**).

In this paper, we try to determine the general terms of almost balcobalanc-
ing numbers, almost Lucas-balcobalancing numbers and almost balcobalancers
of first and second type in terms of balancing and Lucas-balancing numbers.

2.1. Almost balcobalancing numbers of first type

From (2.4), we notice that B%* is an almost balcobalancing number of first
type if and only if 8(B%*)? + 4Bb* — 3 is a perfect square. So we set

8(320*)2 +4BZC* _3= y2

for some positive integer y. If we multiply both sides of the last equation by 2,
then we get
16(B2*)? 4 8Bbe* — 6 = 2y/°
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and hence
(4B +1)% — 7= 2%

Taking z = 4Bb* + 1, we get the Pell equation (see [1, 9])
(2.8) -2 =T
Let Qb¢* denotes the set of all (positive) integer solutions of (2.8), that is,
Qber = {(z,y) : 2% = 2y* = T}.

In order to determine the set of all integer solutions of (2.8), we need some
notations. Let A be a non-square discriminant. Then the A-order O is defined
to be the ring Oa = {x4ypa : x,y € Z}, where pa = ,/% if A =0 (mod 4) or
% if A =1(mod 4). So O is a subring of Q(VA) ={z +yvVA : 2,y € Q}.
The unit group O} is defined to be the group of units of the ring O,.

Let F(z,y) = ax® 4+ bzy + cy? be an indefinite integral quadratic form ([4])

of discriminant A = b® — 4ac. Then we can rewrite

b+\/>)( bxﬁ)

(za+vy ra+y

F(l‘,y) =

So the module Mr of F'is

b+
Mp ={za+y

[\V]

Therefore we get (u + vpa)( ‘/Z) =r'a+vy b+§/Z where
_b
[z Yl u_ 2" ivé ] if A =0(mod 4)
29 W y)= v utgo
u+ 17% av . .
[‘T y} —cv w+ %er’l) if A= l(mod 4)

Let m be any integer and let 2 denote the set of all integer solutions of F(z,y) =
= ax? 4+ bxy + cy?> = m. Then there is a bijection

U:Q—{yeMp:N(y)=am}.

The action of O ; = {a € OF : N(a) = 1} on Q is most interesting when A is
a positive non-square since OR ; is infinite. Therefore the orbit of each solution
will be infinite and so Q is either empty or infinite. Since O} ; can be explicitly
determined, the set 2 is satisfactorily described by the representation of such a
list, called a set of representatives of the orbits. Let ea be the smallest unit of
O, that is grater than 1 and let 7a = ea if N(ea) = 1 or €3 if N(ea) = —1.
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Then every OR ; orbit of integral solutions of F’ (z,y) = m contains a solution
(z,y) € Z x Z such that 0 <y < U, where

oL P a-L) im0
|amea | (14 1) if am < 0.

So for finding a set of representatives of the OR ; orbits of integral solutions
of F(z,y) = m, we must find for each yo in the range 0 < yo < U, whether
Ay? + 4am is a perfect square or not since

(2.10) azd + broyo + cys = m < Ay + dam = (2axg + byo)>.

If Ay2 + 4am is a perfect square, then from (2.10)

—byo = /Ays + 4am
Tro = % .

So there is a set of representatives Rep = {[xo ¥o]}. For the matrix M derived
from (2.9), the set of all integer solutions of F'(z,y) = m is

{£(@,y) : [z yl =[zo yo]M". n € Z}.

If Ay2 + 4am is not a perfect square, then there is no integer solution.
Now we can give the following theorem.
Theorem 2.1. The set of all integer solutions of (2.8) is
ch* = {($2n—1;y2n—1)7 (x2n7y2n) n Z ]-}7
where
Top-1=4Bp-1+3Ch-1, yon—1 =6Bp_1 + Cp_1,
Ton = _4Bn + 3Cna Yon = GBn - Cn

Proof. For the Pell equation in (2.8), the indefinite form is F' = (1,0, —2) of
discriminant A = 8. So 7A = 3 + 2v/2. Therefore the set of representatives is

Rep ={[£3 1]} and M = { i g } by (2.9). Here we notice that

1. [3  1]JM"! generates all integer solutions (w2, _1,¥y2n_1) for n > 1
2. [3 —1]M™ generates all integer solutions (22, y2,) for n > 1.
It can be easily seen that the n'® power of M is

M":[ Cy, ZBn}

4B, C,
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forn > 1. So
[Ton—1  Yon—1]=1[3 1M" ' =[4B,_1 +3Cy_1 6B,_1+ Cy_1]

Thus the set of all integer solutions is Q°¢* = {(4B,,_1 +3C,,_1,6B,_1+Cp_1),
(—=4B,, + 3C,,6B, — Cy,) :n > 1}. |
From Theorem 2.1, we can give the following result.

Theorem 2.2. The general terms of almost balcobalancing numbers, almost
Lucas-balcobalancing numbers and almost balcobalancers of first type are

—4Bop_1 + 30,1 — 1

Bgfj—l = 4 )
Bher — 4Bop1 4+ 3C%,—1 —1
4 b

C5e* | = 6Bgy_1 — Ozp1,
C%* = 6By, 1 + Cap_1,
16Bo,—1 — 5Co,—1 — 1
Rg%*fl = 2 L 2 ! )
4
8B2,—1 — Cap—1 — 1
4

Rbp* _

forn > 1.

Proof. We proved in Theorem 2.1 that the set of all integer solutions of (2.8)
is Q0* = {(4B,,_1 +3C,_1,6B,_1+Cy_1),(—4B, +3C,,6B, —C,) : n > 1}.
Since x = 4B%* + 1, we get

—4Bg, 1 +3Ce,—1 — 1

Bbc* _
2n—1 4
for n > 1. Thus from (2.6), we obtain
Cher ) = \/8(Bly )2 + 4Bk | —3 =

—4Boy 1+ 3Cy,—1 — 1 —4Boy—1+3Cy,—1 — 1

:\/8( 2n—1 2n=1 — Lys 4y 2n—1 -1y g
4 4

2 90%71—1 7

=1/8B5,_1 — 12B9,_1Ca,—1 + — ==
2 2

2 9 ep2 7

=4/8B5,_ 1 —12B3, 1Co,—1 + (SB% 1) — 5=

= \/36B%n—1 - 12B2n7102n71 + 8B§n—1 + 1=

= \/363%,”_1 — 12B2n7102n*1 + Cv22n—1
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= V/(6Ban 1 — Can1)? =
=682, 1 — Cop_1.

Finally from (2.4), we deduce that

—2B5er | — 14 Cher |

Rgi*—l = 2 =
B _2(743271,—1‘230271—171) 1 + 632’”71 _ Canl B
- 5 =
_ 16B2y—1 —5C2,-1 — 1
— 1 .

.. . 4Bon_ -1

Similarly it can be shown that B¢ = %, CY* = 6By, _1+Cop_1
bex _ 8B2p_1—Caopn_1—1

and Ry = 2ot 2nd—, [ |

In Table 2.1, the first ten terms of almost balcobalancing numbers, almost
Lucas-balcobalancing numbers and almost balcobalancers of first type is given.

’ i ‘ B:')C* Cibc* Rf('*
1 1 3 0
2 3 9 1
3 39 111 16
4 109 309 45
) 1333 3771 552
6 3711 10497 1537
7 45291 128103 18760
8 | 126073 356589 52221
9 | 1538569 | 4351731 | 637296
10 | 4282779 | 12113529 | 1773985

Table 2.1 Almost balcobalancing numbers of first type
2.2. Almost balcobalancing numbers of second type

From (2.5), we notice that B** is an almost balcobalancing number of
second type if and only if 8( Bb**)2 + 4Bbe** 15 is a perfect square. So we set

S(BZC**)Q +4BZC** 4+5= y2
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for some positive integer y. If we multiply both sides of the last equation by 2,
then we get
16(32@**)2 + 8B£7Lc** +10 = 2y2

and hence
(4Bl +1)? + 9 = 292

Taking z = 4Bb** + 1, we get the Pell equation

(2.11) x? — 2% = 9.

Let Q°¢** denotes the set of all (positive) integer solutions of (2.11), that is,
QP = {(2,y) : 22 — 2% = 9}

Then we can give the following theorem.

Theorem 2.3. The set of all integer solutions of (2.11) is

Qber — {(@n,yn) : n>1},
where
r, =12B,, 1+ 3Cy,_1 and y, =6B,_1+3C,_1.

Proof. For the Pell equation in (2.11), the indefinite form is F' = (1,0, —2) of
discriminant A = 8. So 7a = 3+ 2v/2. In this case, the set of representatives

is Rep = {[£3 3]} and M = { i g } . Here [3  3]M"™ ! generates all
integer solutions (x,,y,) for n > 1. Thus the set of all integer solutions is

Qber* = [(12B,,_1 +3C_1,6B,_1 +3C,_1) :n > 1}. |
From Theorem 2.3, we can give the following result.

Theorem 2.4. The general terms of almost balcobalancing numbers, almost
Lucas-balcobalancing numbers and almost balcobalancers of second type are

12B2p—1 + 3C2,—1 — 1

Bbc** _

n 4 )
Cl* = 6Bay—1 + 3Can_1,
Rbc** _ 302’”—1 -1

4

forn > 1.

Proof. Note that Q*** = {(12B,,_1 +3C,_1,6B,,_1 +3C,_1) : n > 1} by
Theorem 2.3. So we get

12B5,,_1 +3C5,_1 — 1
4

bexx
By =
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for n > 1. Thus from (2.7), we obtain

Cg,c** _ \/8(B2C**)2 +4Bzc** +5=

12327171 + 3027171 -1
\/8( 1 )2+ 4(

12B2n71 + 3027171 -1
4

)+5=

902277,71 + g _
2 2

= \/ 72B2, | + 36B2,_1Con_1 +

= /3653, +36B2, 1Can 1 +9C3

n—1 —
= /(6Bay_1 +3C5,_1)% =
=6B2p—1 + 3C2,_1.

3C2n_1—1

From (2.5), we deduce that Rb“** = 1

In Table 2.2, the first ten terms of almost balcobalancing numbers, al-
most Lucas-balcobalancing numbers and almost balcobalancers of second type
is given.

’ i ‘ 13?0** (jfc** }%?c**
1 5 15 2
2 179 507 74
3 6089 17223 2522
4 206855 585075 85682
5 7026989 19875327 2910674
6 238710779 675176043 98877242
7 8109139505 22936110135 3358915562
8 275472032399 779152568547 114104251874
9 9357939962069 26468251220463 3876185648162
10 | 317894486677955 | 899141388927195 | 131676207785642

Table 2.2 Almost balcobalancing numbers of second type
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