
Annales Univ. Sci. Budapest., Sect. Comp. 52 (2021) 349–368

THE AUTONOMOUS AGENT AND MULTI-AGENT

PARADIGM IN SOFTWARE ENGINEERING

László Z. Varga (Budapest, Hungary)

Communicated by András Benczúr

(Received April 30, 2021; accepted August 1, 2021)

Abstract. Research on distributed artificial intelligence became a large
field of research which is nowadays called autonomous agent and multi-
agent system research. The autonomous agent and multi-agent paradigm
helps a lot to understand, model and develop software systems for applica-
tions where the whole system, or the different parts of the system cannot
be under the direct control of a single “authority”. This paper overviews
the main characteristics of autonomous agents and multi-agent systems, as
well as their relation to the basic theoretical aspects of software engineer-
ing. The paper discusses the problems of complex multi-agent problem
solving, and in particular the online routing game model.

1. Introduction

The mainstream research on the methods of creating computer systems was
hallmarked by names like Edsger W. Dijkstra, Niklaus Wirth, Donald Knuth
and Sir Antony Hoare in the 1980s. Their research focused on the formal and
theoretical foundations of the professional discipline of software engineering.
The main tools to handle software complexity included the abstract data types
[12] for the modularisation of programs, the algebraic semantics [7] for the

Key words and phrases: Autonomous agent, multi-agent system, specification, problem solv-
ing, online routing game.
2010 Mathematics Subject Classification: 68T42.
Supported by project Application Domain Specific Highly Reliable IT Solutions project which
has been implemented with the support provided from the National Research, Develop-
ment and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.

https://doi.org/10.71352/ac.52.349

https://doi.org/10.71352/ac.52.349


350 L. Z. Varga

specification and the meaning of software, the Hoare logic [14] for verifying
program correctness, and the formal language communicating sequential pro-
cesses (CSP) [15] for specifying the interactions of concurrent processes. Sir
Antony Hoare was knighted by Elizabeth II in 2000 for his contributions to
computer science.

The Faculty of Science of the Eötvös Loránd University, and in particular
the Division of the Informatics Departments within the faculty, was not only
following these trends, but the key professors Imre Kátai, Ferenc Schipp and
László Varga, among others, were continuously monitoring the emerging lead-
ing edge research as well. One of these emerging leading edge research trends
of that time was distributed artificial intelligence [1]. Tibor Gyires from the
University of North Carolina at Charlotte was invited to one of the regular
workshops of the Division of the Informatics Departments at Visegrád to talk
about this topic. The author of this paper had the chance to assist him, and
this event determined his research interest throughout his career path.

Distributed artificial intelligence became a large field of research which is
nowadays called multi-agent systems [48, 35, 45] research. The first big multi-
agent project in Europe was the Architecture for Cooperative Heterogeneous
On-line Systems (ARCHON) project [46] which implemented the first real-
world industrial applications of multi-agent systems [16]. Later, many other
applications have been developed in different fields including the healthcare
domain [18] in combination with data provenance [22]. Nowadays commer-
cial products like the digital voice agents (Apple’s Siri, Microsoft’s Cortana,
Amazon’s Alexa, and the Google Assistant) use autonomous agent technolo-
gies. Multi-agent technologies are used to control the fleets of drones and
the fleets of autonomous vehicles [39]. Rescue operations are supported by
human-agent collectives [27, 17]. Fleet of robots deliver products to customers
at the warehouse of the world’s biggest e-commerce company [49]. Google
Ads uses multi-agent agreement technology [6]. The Autonomous Agents and
Multi-Agent Systems conferences became big world-wide events managed by
the International Foundation for Autonomous Agents and Multiagent Systems
(IFAAMAS)∗. Regius Professorships have royal patronage in the United King-
dom and Ireland, and traditionally they existed only in classic scientific fields.
The first Regius Chair of Computer Science was created in 2014 and the Regius
Professorship was bestowed to Nick Jennings, an internationally-recognised au-
thority in the areas of agent-based computing and multi-agent systems.

This paper overviews the main characteristics of autonomous agents and
multi-agent systems, as well as their relation to the basic theoretical aspects
of software engineering. Section 2 introduces the agent concept. Section 3
discusses the single agent problem solving. Section 4 introduces multi-agent

∗http://www.ifaamas.org/



Autonomous agents and multi-agent systems 351

systems. Section 5 discusses the multi-agent problem solving. Section 6 dis-
cusses the problems of complex multi-agent problem solving, and in particular
the online routing game model. Section 7 concludes the paper.

2. Autonomous agents

An agent is an active component that behaves intelligently in a complex
environment to achieve some kind of goal. From software technology point
of view agent technology promises to enable system designers to handle more
complex systems than before. As systems become more and more complex,
software development processes need higher and higher abstractions. In the
beginning functional and modular programming techniques provided enough
level of abstraction, then object oriented systems became the most commonly
used technique to model complex systems. Agent technology promises to han-
dle systems that object oriented techniques cannot adequately model, like large
distributed organizations with incomplete information and distributed respon-
sibility where individual components must dynamically adapt to unforeseen
changes.

The most important characteristics of agents are those which are defined
by Wooldridge and Jennings in [47]. An agent is a computer system situated
in some environment. The agent is reactive which means that it is capable of
sensing its environment and acting on it. The agent can autonomously act in
its environment and make decisions itself. The agent has design objectives and
can decide itself how to achieve them. While taking the decisions the agent is
not just passive, but can take initiatives towards its goals. The agent has social
abilities and can interact with the actors in its environment.

For a programmer, the agent concept seems very similar to object-oriented
programming. Objects are computational entities that encapsulate some state,
they are able to perform actions on this state through methods, and they can
communicate through message passing. The object seems to have autonomy
over its state, because its state is encapsulated and can be manipulated only
through method invocations. However, the object does not have control over
its behaviour. Any other object can invoke a public method of an object, and
if the method is invoked, then it is directly executed. This approach is normal
if we build a system in which all objects are directly controlled by a single
“authority”.

There are applications where the whole system, or the different parts of the
system cannot be under the direct control of a single “authority”. For example
a rover on the planet Mars cannot be controlled directly, because the travel time
of the control signal is too long. In this case, the control centre “delegates” the
task to the rover, and the rover autonomously tries to achieve the delegated



352 L. Z. Varga

goal in the actual circumstances which are not known exactly in advance. If
the rover receives another request, then the request is not directly executed,
but the rover decides whether and how it makes sense to execute the request.
There are other applications where we could directly control our agent, but we
delegate the task execution to an agent, because we do not want to be involved
in every details of the task, and we trust that the agent can handle the changes
in the environment. These are the single autonomous agent applications.

The concept of autonomy seems to be a strange concept for software engi-
neers at the first sight. A software engineer would expect that the invocation
of a program code would entail the direct execution of the program code, as it
was the intention of the programmer. From the traditional software engineering
point of view, if the program code is not directly executed, then it is a sign of
unreliability. Of course, the parts of the code of the autonomous software agent
are reliably executed, as it is expected by a software engineer. At this level the
software agent is not autonomous, because it does exactly what is programmed
into it. The autonomy concept is on the agent level. When a task is delegated
to a software agent, then the task is executed by autonomous agent mecha-
nisms which will be discussed in Section 3. At this level the software agent is
autonomous, because it independently executes the delegated task and takes
into account the current circumstances. The autonomy refers to the behaviour
of the software agent.

There are applications where there is no single authority, and the different
parts of the system represent the interests of different organisations or individu-
als. In these systems no common goal can be assumed. If an action is requested
from an agent (its method is invoked) from another agent, then the requested
agent may or may not execute the action. Many of the applications mentioned
in the introduction section fall in this category. The autonomy concept in such
multi-agent systems is discussed in Section 4.

3. Autonomous problem solving

Computer programs are written to solve given problems. According to the
classical approach, the problem is specified in a formal language. If model-
based specification is used, then the specification is a relation between two sets
of states. The software program is regarded as a finite or infinite sequence
of state transformations. The finite sequence of state transformations take
the program from the possible initial set of states to the possible final set of
states. This way the partial and total correctness of programs with respect to
a specification can be defined. Hoare logic [14] can be used to reason rigorously
about the correctness of computer programs. The autonomous agent paradigm
does not fit into this approach. The autonomous agent is embedded in its



Autonomous agents and multi-agent systems 353

environment, and the autonomous agent is expected to perform “well” if there
are unforeseen changes in the environment. The rest of this section presents
the approach in [48] to formally define autonomous problem solving.

The environment of an autonomous agent may be in any of a finite set E of
discrete, instantaneous states (3.1). A continuous environment can be modelled
by a discrete environment to any degree of accuracy. The agents have a set of
possible actions which transform the state of the environment (3.2).

(3.1) E = {ei | i ∈ [0..n]}

(3.2) Ac = {αi | i ∈ [0..m]}

A run r of an agent in an environment is a sequence of interleaved envi-
ronment states and actions (3.3). The environment starts in state e0, and the
agent chooses an action to perform on that state. The environment goes to one
of a number of possible states, state e1. The agent again chooses an action to
perform, and the environment responds with a possible state, and so on. Let
R be the set of all such possible finite sequences over E and Ac; RAc be the
subset of R that end with an action; and RE be the subset of R that end with
an environment state.

(3.3) r : e0
α0−→ e1

α1−→ e2
α2−→ e3 · · · αu−1−→ eu . . .

The behaviour of the environment is represented by a state transformer
function [8] which maps a run ending with the action of an agent to a set
of possible environment states (3.4)†. The next state of an environment is
determined by the action performed by the agent and the history of the current
run. There is non-determinism in the state transition of the environment. All
runs must terminate finally, either because the agent does not do any action, or
because there are no possible successor states, i.e. τ(r) = ∅. An environment
Env is a triple Env = 〈E, e0, τ〉, where E is a set of environment states, e0 ∈ E
is an initial state, and τ is a state transformer function.

(3.4) τ : RAc → ℘(E)

Agents are modelled [32] as functions which map runs ending with an en-
vironment state to actions (3.5). An agent selects its next action based on the
history of the run. Agents are deterministic. Let AG be the set of all agents.

(3.5) Ag : RE → Ac

†The ℘ symbol is the usual notation for the subset of the environment states that contains
the possible outcome states of the run.



354 L. Z. Varga

A system is a pair containing an agent and an environment: 〈Ag,Env〉.
The set of terminated runs of agent Ag in environment Env is R(Ag,Env).

Two agents Ag1 and Ag2 are behaviourally equivalent in environment Env
if and only if R(Ag1, Env) = R(Ag2, Env). Two agents Ag1 and Ag2 are
behaviourally equivalent if and only if they are behaviourally equivalent in all
environments.

A relation between two sets of states is not very convenient to specify the
problem to be solved by an agent, because agents are autonomous, and they are
embedded in their environment. Often, the outcome of the actions of the agent
cannot be described with a binary value (acceptable if it is in the result set
and not acceptable if it is not in the result set), because the agent is expected
to produce the “best” result in the given circumstances. This can be specified
with a preference ordering of the possible outcomes.

One way of specifying the problem to be solved by an agent is a utility
function (3.6) which assigns a real value to every environment state. The
higher the utility, the better. The task of the agent is to bring about states
that maximize utility. This simple specification method assigns utilities to
current state only, and it does not take into account how the agent achieved
the state and what the side effects were. To avoid this problem, the task of the
agent can be specified with a function which assigns a utility to runs themselves
(3.7).

(3.6) u : E → R

(3.7) u : R → R

If the specification of the problem to be solved by an agent is a preference
ordering, then the behaviour of an agent cannot be described by a binary value
(i.e. we cannot tell if the autonomous agent correctly solves the problem or
not). Instead, there are agents which solve the problem “better” than other
agents, and there are optimal agents. P (r|Ag,Env) denotes the probability
that run r occurs when agent Ag is placed in environment Env. The sum of
the probabilities of all possible runs is 1 (3.8). The optimal agent Agopt in an
environment Env is the one that maximizes expected utility (3.9).

(3.8)
∑

r∈R(Ag,Env)

P (r|Ag,Env) = 1

(3.9) Agopt = arg max
Ag∈AG

∑
r∈R(Ag,Env)

u(r)P (r|Ag,Env)



Autonomous agents and multi-agent systems 355

Equation (3.9) defines the properties of the optimal agent, but the agent is
defined with a function (3.5) which may not be implemented on a real com-
puter. Russell and Subramanian [32] introduced the notion of bounded optimal
agents to address this issue. Let AGm denote the subset of AG that can be im-
plemented on a machine m (3.10). The optimal agent Agopt in an environment
Env among those agents that can be implemented on a machine m is the one
that maximizes expected utility (3.11).

(3.10) AGm = {Ag | Ag ∈ AG and Ag can be implemented on m}

(3.11) Agopt = arg max
Ag∈AGm

∑
r∈R(Ag,Env)

u(r)P (r|Ag,Env)

There are autonomous agent applications, where it is more convenient to
talk about tasks in terms of “goals to be achieved” rather than utilities. In these
cases the specification of the problem to be solved by the agent is a predicate
task specification. In a predicate task specification the utility function is a
predicate over runs, i.e. the range of the utility function u : R → R is the
set {0, 1}. A run r ∈ R satisfies the specification u if u(r) = 1, and fails to
satisfy the specification otherwise. Ψ denotes a predicate specification, and
Ψ(r) indicates that run r ∈ R satisfies Ψ.

A task environment is a pair 〈Env,Ψ〉, where Env is an environment, and
Ψ : R → {0, 1} is a predicate over runs. T E is the set of all task environments.
RΨ(Ag,Env) denotes the set of all runs of an agent Ag in an environment Env
that satisfy Ψ in the task environment 〈Env,Ψ〉 (3.12).

(3.12) RΨ(Ag,Env) = {r | r ∈ R(Ag,Env) and Ψ(r)}

An agent Ag succeeds in the task environment 〈Env,Ψ〉 if equation (3.13)
is satisfied, i.e. Ag succeeds in 〈Env,Ψ〉 if every run of Ag in Env satisfies
specification Ψ. In this case the agent is strictly successful.

(3.13) RΨ(Ag,Env) = R(Ag,Env)

An alternative definition of success is that the agent succeeds if at least
one run of the agent satisfies Ψ (3.14). In this case the agent is potentially
successful.

(3.14) ∃r ∈ R(Ag,Env) such that Ψ(r)

Another definition of success that takes into account the non-deterministic
nature of the state transformer function τ is the probability P (Ψ|Ag,Env) that



356 L. Z. Varga

Ψ is satisfied by Ag in Env (3.15) The success of an agent is the probability
that the specification Ψ is satisfied by the agent. In this case the agent is
successful with a probability.

(3.15) P (Ψ|Ag,Env) =
∑

r∈RΨ(Ag,Env)

P (r|Ag,Env)

The two most common types of predicate task specifications are achieve-
ment task specifications and maintenance task specifications. Achievement
tasks ‘achieve state of affairs ϕ’ and maintenance tasks ‘maintain state of af-
fairs ψ’.

In an achievement task, the agent is required to bring the environment into
one state of a set of goal states G. A task specified by a predicate Ψ is an
achievement task if Ψ(r) is true just in case one or more of G occur in r. An
agent is successful if every run of the agent in the environment results in one of
the states G. Formally, the task environment 〈Env,Ψ〉 specifies an achievement
task if and only if there is some set G ⊆ E such that for all r ∈ R(Ag,Env),
the predicate Ψ(r) is true if and only if there exists some e ∈ G such that e ∈ r.

A task environment with specification Ψ is a maintenance task environment
if we can identify some subset B of environment states, such that Ψ(r) is false
if any member of B occurs in r, and true otherwise. Formally, 〈Env,Ψ〉 is a
maintenance task environment if there is some B ⊆ E such that Ψ(r) if and
only if for all e ∈ B, we have e /∈ r for all r ∈ R(Ag,Env).

More complex tasks might be specified by combinations of achievement and
maintenance tasks, like e.g. “achieve any one of states G while avoiding all
states B”.

4. Multi-agent systems

If there are more than one agent in the same environment and they act
on the real world, then sometimes the real world might impose restrictions on
their activities, for example because two agents want to use the same resource
at the same time. In this case, the agents have to coordinate their plans. Even
if there is no conflict in the real world, the agents might want to distribute the
task allocations among themselves, and they must interact with each other.
The interactions are even more complex when there is conflict in the real world
between the activities of two groups of agents. In this case the groups of agents
have to coordinate among themselves how to interact with the other group.

When several agents act on the environment, then their actions may depend
on the actions of the other agents. If one agent makes a choice, then the other
agent is already restricted and has to make a choice depending on the choice of



Autonomous agents and multi-agent systems 357

the other agent. In an ideal situation, the different agents have preference (3.6)
for the same state and all other states are less preferable for all of the agents.
A somewhat less ideal, but still very good situation is when agents can still find
a state which is most preferable for all the agents, but there are other states
which give the same utility value for all the agents. In this case agents can
select one of these preferable states, but they must agree which one, because if
an agent deviates from this state towards another most preferable state, then
none of the agents achieve the most preferred state. It is also possible that
there are more than one states with which agents are all satisfied and do not
want to deviate from it if the others do not deviate, however one of these
preferable states may be better that the other one. The multi-agent system
is in a Nash equilibrium, if no agent has the incentive to unilaterally deviate
from the preferable state. The concept of agent preferences (represented with
utility functions) is in line with game theory, which is an accepted foundation
for multi-agent systems [29].

The efficiency of the agent system can be measured as a combination of the
utility functions of all of the agents. A simple efficiency measure is the sum of
the utilities of all the agents and according to this measure an agent system is
in sum optimal state if the sum of the utilities is maximal. An agent system
is in a Hicks optimal state, if the utility is maximized for all of the agents in
the agent system. An agent system is in Pareto optimal state, if it satisfies
more or less all of the agents and in all other states at least one agent’s utility
function gives smaller value if at least another agent’s utility function gives
higher value. The Hicks optimal state cannot always be achieved. The sum
optimal and Pareto optimal state may not be equilibrium state, if at least one
agent might achieve better utility by deviating from the optimal state.

If the agents are maximising their utilities individually, then it may not
lead to an optimal situation. This is known as the “price of anarchy” [30]. The
price of anarchy is the ratio between the sum of the utilities of an equilibrium
situation and the sum of the utilities of the optimal situation. An example of
this is the prisoner’s dilemma [28] in which the equilibrium is not optimal.

In order to get to the desired state, the agents have to coordinate their ac-
tions by exchanging messages. The messages are exchanged similarly to usual
network communication protocols which are governed by protocol rules so that
the participating partners can get to some useful result and are not locked in
for example a deadlock. Agent interaction protocols build on communication
protocols and strive to ensure for example community level results [33]. It is
expected that an agent interaction protocol guarantees that agents eventually
get to some agreement and this agreement leads to either sum, Hicks or Pareto
optimal state. Participating in agent interaction protocols must be Nash equi-
librium behaviour for the participating agents, i.e. all of the agents must be
interested in keeping to the protocol rules which must be simple enough so



358 L. Z. Varga

that agents can easily determine the optimal strategy. Multi agent systems are
usually distributed, and usually there is no centralized node, and this must be
the case for agent interaction protocols as well.

5. Multi-agent problem solving

Multi-agent systems offer a promising software engineering approach for
developing applications in complex domains. In these domains the “globally
optimal solution” cannot be provided by a single software entity. There may
be different reasons for this. If the problem is computationally hard, then
the optimal solution cannot be computed in time. For example the complete
and optimal algorithm for multi-agent path finding (MAPF) [34] can provide
solution for about eight robots in a real-world warehouse, but big package
delivery warehouses of today work with hundreds of robots [49]. Sometimes
the users would not accept a single central solution. For example if a single
central entity could compute and assign the “globally” optimal routes for the
vehicles in a city, then passengers would feel like in an utopia town, because
they would prefer to optimise their own routes instead of the global optimum.
In these complex domains we can specify the subtasks of the global problem
to be solved, we can assign the subtasks to the agents, and we expect that the
community of the agents provide the global solution.

The set of the utility functions of the agents of a multi-agent system can be
regarded as the specification of the subtasks of the global task to be completed
by the multi-agent system. The individual agents provide their solutions as
described in Section 3. The solution provided by the multi-agent system is the
aggregation of the solutions provided by the individual agents. It is difficult to
tell what the solution provided by the multi-agent system will be.

Game theory describes the behaviour of multi-agent systems well in most
of the cases. The game theory model involves a solution concept [13] which
forecasts the solution (or the possible solutions) of the problem if the agents are
rational. The most common solution concept is the equilibrium concept. The
system is in equilibrium, if none of the agents can change to another behaviour
to achieve better results from its own point of view, assuming that the other
agents do not change their behaviour. According to the game theory model, the
solution provided by a multi-agent system will be an equilibrium, if it exists.
We would like that the multi-agent system achieves the optimal solution. The
individually optimising agents get to the equilibrium which is worse than the
optimum in most of the cases. This is expressed by the price of anarchy concept
as seen in Section 4.

The above reasoning of the game theory solution concept predicts that the
rational behaviour of the selfishly optimising agents leads to the equilibrium.



Autonomous agents and multi-agent systems 359

However classic game theory models assume an idealistic situation: all the
agents know what the equilibrium is, all the agents know what other agents
are doing, and all the agents know what their role is in the equilibrium. In
addition, classic game theory does not investigate how this idealistic situation
emerges. In accordance with the basic theory of multi-agent systems [48], the
agent behaviour goes in cycles: the agents perceive their environment (possibly
communicating with other agents), decide what action to perform, and then
perform the action. This means that the model of multi-agent systems has to
investigate the dynamic behaviour of the system over time. We cannot be sure
that multi-agent systems get to the equilibrium through the feedback cycles,
and they stay in the equilibrium. Moreover, the assumption that an agent can
only reason about its own behaviour, and the other agents do not change their
behaviour, is too strong an assumption.

Let us take the example of the Stackelberg game of [36] shown in Figure 1.

Left Right

Up 1 , 0 3 , 2

Down 2 , 1 4 , 0

Figure 1. An example game.

The utility of the row player is the first figure, and the utility of the column
player is the second figure in each cell. According to classic game theory reason-
ing, the row player must always select Down, because whatever the selection
of the column player, the row player is better off with Down than with Up.
There is no clear strategy for the column player, but its utility will be at least
0 whatever action it selects. If it selects Left, then the best outcome might be
1. If it selects Right, then the best outcome might be 2. So the column player
is likely to select Right. This classic rational game theory reasoning results in
action pair (Down,Right) of the agents with 4 + 0 = 4 global utility.

If the game in Figure 1 is played repeatedly, then the column player might
notice that the row player keeps playing Down, and the column player might be
better off with Left which is a better action for him, and unfortunately worse
for the row player. If, in response to the action of the column player, the row
player starts repeatedly playing Up, then the column player might notice that
Right would be a better action. The two players will end up with a repeated
(Up,Right) play, and they would not be willing to deviate from this, because
after a while they would end up here again. This rational reasoning of the
repeated game results in (Up,Right) with 3 + 2 = 5 global utility, which is
actually happens to be the global optimum.



360 L. Z. Varga

The above example shows that rational behaviour in dynamic games might
result in other solution than the outcome from the equilibrium solution concept
of the one shot game.

6. Complex multi-agent system

We study the problem solving of complex multi-agent systems in the traffic
routing application where autonomous vehicles want to find their way in a
city. This domain is interesting for the main message of this paper, because
it demonstrates that the existence of the static game theory equilibrium may
not guarantee a stable solution in a real-world setting. We model the dynamic
real-world setting with the online routing game model discussed later in this
section. From computer science point of view, the road traffic is a large-scale
and open multi-agent system that tries to solve the routing problem. The
routing problem is a network with traffic flows going from a source node to
a destination node. The vehicles of the traffic flows continuously enter the
network at the sources, they choose their routes to their destination, and quit
the network at the destination. The traffic is routed in a congestion sensitive
manner. If more vehicles enter a road, then their travel time will be longer on
that road. The participants of the traffic want to minimise their travel time.

Complex multi-agent systems may not stay in a static equilibrium, however
in many cases they converge to the static equilibrium. The ε-approximate
equilibrium captures the notion of convergence to a static equilibrium [9]. The
system converges to the ε-approximate equilibrium, if the more times the game
is repeated, then the more agents experience travel times not more than 1 + ε
times the travel time in the static equilibrium. Many dynamical systems do
not necessarily converge to a fixed point like the equilibrium. In this case, the
dynamic solution concept may be based on a set of system states, called sink
states [10] or attraction states which are similar to the attractors of dynamic
systems [21]. Sooner or later the system enters one of the sink states, and then
it never leaves the set of sink states. This is also called attracting equilibrium,
if the sink set attracts the system. This kind of dynamic solution concept is
in the focus of current research [24, 25, 23]. Although an equilibrium is the
outcome of rational behaviour, agents may sometimes come to another solution.
As [19] write: “limiting ourselves to equilibria as a reference point could lead
us to qualitatively incorrect conclusions about system behaviour”.

The online routing game model [37, 38] investigates the traffic routing ap-
plication of autonomous vehicles, and in particular how the traffic flows of au-
tonomous vehicles evolve over time. The model contains elements of the routing
game model [31], the queuing model [5] and the concept of online mechanisms
[26].



Autonomous agents and multi-agent systems 361

The online routing game model is the sextuple < t, T,G, c, r, k >, where
t = {1, 2, ...} is a sequence of time steps, T time steps give one time unit (e.g.
one minute), G is a directed multi-graph representing the road network, c is
the cost function of G with ce for each edge e of G, r is a vector of flows, and
k = (k1, k2, ...) is a sequence of decision vectors kt = (kt1, k

t
2, ...) made in time

step t.

Edges have FIFO property, and there is a minimum following distance gape
on the edges which corresponds to the maximum capacity in the queuing model.
The cost function maps the flow fe(τ) (that enters the edge e at time τ) to
the travel time on the edge. The cost ce for the agent entering the edge e at
time step t is never less than the remaining cost of any other agent already
on edge e at time step t increased with the time gap gape, which is specific
to edge e. This ensures the FIFO policy. The value of the flow fe(τ) is the
number of agents that entered the edge e between τ−T (inclusive) and τ (non-
inclusive). If two agents enter an edge exactly at the same time τ , then one
of them (randomly selected) suffers a delay gape, which is part of its cost on
edge e, and its remaining cost is determined at the delayed time, so its cost
on edge e will be gape + ce(fe(τ + gape)). If several agents enter an edge at
the same time, then they are randomly ordered with a delay gape. The cost
functions are nonnegative, continuous, and nondecreasing. The cost functions
have a constant part which does not depend on the inflow to the edge, and a
variable part which varies with the inflow to the edge. The variable part is not
known to any agent of the model. The agents learn the variable cost only when
an agent exits an edge, and broadcasts its cost to the other agents.

The decision made by the agent of the flow ri in time period t is kti . The
decision kti is how the agent is routed on a single path of the paths leading from
si to ti. The actual cost of a path p = (e1, e2, e3, ...) for a flow starting at time
τ is

cp(τ) = ce1(fe1(τ)) + ce2(fe2(τ + ce1(fe1(τ)))) + ce3(fe3(τ + ce1(fe1(τ))+

+ce2(fe2(τ + ce1(fe1(τ)))))) + ...,

because the actual cost of an edge is determined at the time when the flow
enters the edge.

Intention-aware Online Routing Games [38] are a special type of routing
games, where the agents can perceive their environment as described above,
and in addition they also receive aggregated information about the intentions
of other agents in the system. In order to facilitate the agents to make predic-
tions, and to include the future state of the traffic in their decisions, intention-
aware prediction methods were proposed. In the intention-aware prediction
methods, the agents communicate their intentions to a service. The role of
the service is to support stigmergic communication among the agents, and it



362 L. Z. Varga

is often implemented with bio-inspired techniques. The service aggregates the
data about the agent collective, and it sends a feedback to the agents [4]. The
intention-aware [44] and the intention propagation [3] approaches are based on
this scheme. The coordination mechanism provided by these schemes can scale
with the complexity of real-world application domains.

It is proved [37] that if the agents of the online routing game selfishly try
to minimise their cost computed from the currently observable cost (real-time
data), then equilibrium is not guaranteed, although a static equilibrium exists.
”Single flow intensification” may also happen: agents subsequently entering
the online routing game select alternative faster routes, and they catch up with
the agents already on route, and this way they cause congestion. As a result,
sometimes some online routing games may produce strange behaviour, and
the agents may be worse off by exploiting real-time information than without
exploiting real-time information.

Although intention-aware prediction improves system behaviour, it is proved
[38] that the above problems of online routing games are possible even if
intention-aware prediction is applied. However, it is proved [40] that in a
small but complex enough network of the Braess paradox [2], where there is
only one source–destination pair, the agents might just slightly be worse off in
the worst case with real-time data and prediction. It is also proved [42] that
in the Braess network of [40], the system converges to the static equilibrium
within a relatively small threshold. The conjecture in [41] says that the system
converges to the static equilibrium in bigger networks as well, if simultaneous
decision making is prevented. This conjecture neither has been proved nor
refuted analytically.

Investigations of more complex networks indicate that the prediction meth-
od applied by the prediction service has a great impact on the behaviour of
the system. The formal description of the algorithms of two intention-aware
prediction methods were presented in [43]: the detailed prediction method and
the simple prediction method.

The detailed prediction method takes into account all the intentions already
submitted to the service, then it computes what will happen in the future if
the agents execute the plans assigned by these intentions, and then it computes
for each route in the network the predicted travel time by taking into account
the predicted future travel times for each road of the route. The prediction
algorithm used in [44] is close to this detailed prediction method, but the main
difference is that the prediction algorithm of [44] uses probabilistic values, while
the detailed prediction method is deterministic.

The simple prediction method also takes into account all the intentions al-
ready submitted to the service, and then it computes what will happen in the
future if the agents execute the plans assigned by these intentions. However,
when the simple prediction method computes for each route in the network the



Autonomous agents and multi-agent systems 363

predicted travel time, then it takes into account only that travel time prediction
for each road which was computed at the last intention submission. This way,
the simple prediction method needs a little bit less computation. The simple
prediction method is a kind of approximation and it does not try to be an exact
prediction of the future. As time goes by, if no new prediction is generated for
a road, then the simple prediction method ”evaporates” the last prediction for
that road, like the bio-inspired technique of [3].

It turned out in [43] that the detailed prediction method did not lead to
a better behaviour in the experiments than the simple prediction method. It
seems that the more detailed knowledge of the future from the current situation
and intentions may not be better for the whole system.

Unfortunately, the results of the online routing game model are mainly
negative: exploiting real-time information, in some networks, may sometimes
result in unwanted system behaviour. This is observed in real traffic situations
as well, so the online routing game model points out a real problem that needs
to be solved.

The intention-aware online routing model has been used in empirical sim-
ulation investigations, and the analytic proofs are still needed. The model is
rather new and the attention of theoretical researchers has to be attracted.
Nevertheless, the empirical investigations pointed out that if the autonomous
vehicles do not use prediction, or if they use an improper prediction method,
then it may create worse traffic than the static equilibrium would indicate.

7. Conclusion

The autonomous agent and multi-agent paradigm is perceived as one of
the best ways to understand, design and develop software systems that solve
complex problems. The classical theory of programming defines how we specify
a problem to be solved, and how we can determine if a software program solved
the specified problem or not. On this basis, the correctness of software programs
can be determined.

In this paper we have discussed how the problem to be solved by au-
tonomous agents and multi-agent systems can be specified at the abstract level.
The task of a single agent can be specified with a utility function which assigns
a real value to every environment state. Multi-agent systems are expected to
be applied in complex domains where we can specify the subtasks of the global
problem to be solved, and we can assign the subtasks to agents. The set of
the utility functions of the agents of a multi-agent system can be regarded
as the specification of the subtasks of the global task to be completed by the
multi-agent system.



364 L. Z. Varga

We have discussed how we can determine if autonomous agents and multi-
agents systems solve the specified problem. The autonomous agent is embedded
in its environment, and the autonomous agent is expected to perform “well”
if there are unforeseen changes in the environment. The solution provided
by the multi-agent system is the aggregation of the solutions provided by the
individual agents. According to the game theory model, the solution provided
by a multi-agent system will be an equilibrium, if it exists. Complex multi-agent
systems may not stay in a static equilibrium, and many dynamical systems do
not necessarily converge to a fixed point like the equilibrium. In this case,
the dynamic solution concept may be based on a set of system states, and the
multi-agent system may fluctuate around an equilibrium.

We have studied the online routing game model to show that the classical
solution concepts of static games may not be applied in dynamic real-world
settings, and complex solution concepts are needed. Selfish optimisations of
autonomous agents may produce unwanted global behaviour, and the system
may not produce the expected solution. In order to improve the quality of
the solution provided by multi-agent systems, the system needs to be extended
with additional constructs. The online routing game model shows that agree-
ment technologies, like intention-awareness, are needed to facilitate the problem
solving of multi-agent systems. Novel multi-agent system engineering methods,
which include the environment engineering as well, need to be developed [20]
to improve the behaviour of multi-agent systems.

Proving the correctness of autonomous agents and multi-agent systems is
still an open and ongoing research topic. For example, the rational verification
approach of [11] checks the temporal logic properties that will hold in a system
when agents of a multi-agent system behave rationally. However, agents may
not have enough information to make rational decisions, and as we have seen, in
some complex domains the rational behaviour may not induce a clear solution
concept.

References

[1] Bond, A.H. and L. Gasser, (Eds.) Readings in Distributed Artificial
Intelligence, Morgan Kaufmann Publishers, Inc., San Mateo, California,
1988.

[2] Braess, D., Über ein Paradoxon der Verkehrsplanung, Unternehmensfor-
schung, 12 (1968), 258–268.



Autonomous agents and multi-agent systems 365

[3] Claes, R., T. Holvoet and D. Weyns, A decentralized approach for an-
ticipatory vehicle routing using delegate multi-agent systems, IEEE Trans-
actions on Intelligent Transportation Systems, 12 (2011), 364–373.

[4] Claes, R. and T. Holvoet, Traffic coordination using aggregation-based
traffic predictions, IEEE Intelligent Systems, 29 (2014), 96–100.

[5] Cominetti, R., J. Correa and N. Olver, Long term behavior of dy-
namic equilibria in fluid queuing networks, in: Eisenbrand, F., and Koen-
emann, J., (Eds.) Proc. of Integer Programming and Combinatorial Op-
timization (IPCO 2017) (Waterloo, ON, Canada, 2017), Springer Inter-
national Publishing, Lecture Notes in Computer Science, volume 10328,
2017, 161–172.

[6] Edelman, B., M. Ostrovsky and M. Schwarz, Internet advertising
and the generalized second-price auction: Selling billions of dollars worth
of keywords, American Economic Review, 97(1) (2007), 242–259.

[7] Ehrig, H. and B. Mahr, Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics, Springer-Verlag, Berlin, 1985.

[8] Fagin, R., J.Y. Halpern, Y. Moses and M. Vardi, Reasoning About
Knowledge, MIT Press, Cambridge, MA, 1995.

[9] Fischer, S., and B. Vöcking, On the evolution of selfish routing, in:
Albers S., Radzik T., (Eds.) Proc. of the 12th European Symposium on Al-
gorithms (ESA ’04) (Bergen, Norway, 2004), Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, volume 3221, 2004, 323–334.

[10] Goemans, M., V. Mirrokni, and A. Vetta, Sink equilibria and con-
vergence, in: Tardos, É., (Ed.) Proc. of the 46th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 05) (Pittsburgh, PA, SA,
2005), IEEE Computer Society, 0-7695-2468-0/05, 2005, 142–151.

[11] Gutierrez, J., M. Najib, G. Perelli and M. Wooldridge, Automated
temporal equilibrium analysis: Verification and synthesis of multi-player
games, Artificial Intelligence, 287 (2020), 103353.

[12] Guttag, J., E. Horowitz and D. Musser, Abstract data types
and software validation, Communications of the ACM, 21(12) (1978),
1048–1064.

[13] Halpern, J.Y. and Y. Moses, A procedural characterization of solution
concepts in games, Journal of Artificial Intelligence Research, 49 (2014),
143–170.

[14] Hoare, C.A.R., An axiomatic basis for computer programming, Com-
munications of the ACM, 12(10) (1969), 576–580.

[15] Hoare, C.A.R., Communicating sequential processes, Communications
of the ACM, 21(8) (1978), 666–677.

[16] Jennings, N.R., E.H. Mamdani, J.M. Corera, I. Laresgoiti,
F. Perriolat, P. Skarek and L.Z. Varga, Using Archon to develop
real-world DAI applications, IEEE Expert, 11(6) (1996), 64–70.



366 L. Z. Varga

[17] Jennings, N.R., L. Moreau, D. Nicholson, S.D. Ramchurn,
S. Roberts, T. Rodden and A. Rogers, Human-agent collectives,
Communications of the ACM, 57(12) (2014), 80–88.

[18] Kifor, T., L.Z. Varga, J. Vázquez-Salceda, S. Álvarez, S. Will-
mott and S. Miles, Provenance in agent-mediated healthcare systems,
IEEE Intelligent Systems, 21(6) (2006), 38–46.

[19] Kleinberg, R.D., K. Ligett, G. Piliouras and É. Tardos, Beyond
the Nash equilibrium barrier, in: Proc. of Innovations in Computer Sci-
ence – ICS 2010 (Tsinghua University, Beijing, China, 2011), Tsinghua
University Press, 2011, 125–140.

[20] Mascardi, V., D. Weyns, A. Ricci, C.B. Earle, A. Casals,
M. Challenger, A. Chopra, A. Ciortea, L.A. Dennis, Á.F. Dı́az,
A. El Fallah-Seghrouchni, A. Ferrando, A., L. Fredlund, E. Giun-
chiglia, Z. Guessoum, Z., A. Günay, K. Hindriks, C.A. Iglesias,
B. Logan, T. Kampik, G. Kardas, V.J. Koeman, J.B. Larsen,
S. Mayer, T. Méndez, T., J.C. Nieves, V. Seidita, B.T. Teze,
L.Z. Varga and M. Winikoff, Engineering multi-agent systems: State
of affairs and the road ahead, ACM SIGSOFT Software Engineering Notes,
44(1) (2019), 18–28.

[21] Milnor, J., On the concept of attractor, Commun. Math. Phys., 99
(1985), 177–195.

[22] Moreau, L., P. Groth, S. Miles, J. Vázquez-Salceda, J. Ibbotson,
S. Jiang, S.J. Munroe, O.F. Rana, A. Schreiber, V. Tan and
L.Z. Varga, The provenance of electronic data, Communications of the
ACM, 51(4) (2008), 52–58.

[23] Omidshafiei, S., C. Papadimitriou, G. Piliouras, K. Tuyls,
M. Rowland, J.-B. Lespiau, W.M. Czarnecki, M. Lanctot, J. Per-
olat and R. Munos, α-rank: Multi-agent evaluation by evolution, Sci-
entific Reports, 9, Springer Science and Business Media LLC, (2019).

[24] Papadimitriou, C. and G. Piliouras, From Nash equilibria to chain re-
current sets, in: Sudan, M., (Ed.) Proceedings of the 2016 ACM Conference
on Innovations in Theoretical Computer Science - ITCS 16 (Cambridge,
Massachusetts, USA, 2016), Association for Computing Machinery, New
York, NY, United States, 2016, 227–235.

[25] Papadimitriou, C. and G. Piliouras, Game dynamics as the meaning
of a game, ACM SIGecom Exchanges, 16(2), Association for Computing
Machinery (ACM), (2018), 53–63.

[26] Parkes, D.C., Online mechanisms, in: Nisan, N., Roughgarden, T., Tar-
dos, É., and Vazirani, V. V., (Eds.) Algorithmic Game Theory, Cambridge
University Press, 2007, 411–439.



Autonomous agents and multi-agent systems 367

[27] Ramchurn, S.D., T.D. Huynh, F. Wu, Y. Ikuno, J. Flann,
L. Moreau, J.E. Fischer, W.C. Jiang, T. Rodden, E. Simpson,
S. Reece, S. Roberts and N.R. Jennings, A disaster response sys-
tem based on human-agent collectives, Journal of Artificial Intelligence
Research, 57 (2016), 661–708.

[28] Rapoport, A. and A.M. Chammah, Prisoner’s Dilemma: A Study in
Conflict and Cooperation, The University of Michigan Press, Ann Arbor,
1965.

[29] Rosenschein, J.S., Multiagent systems, and the search for appropriate
foundations, in: Ito, Jonker, Gini, and Shehory (Eds.) Proc. of the 12th
International Conference on Autonomous Agents and Multiagent Systems
(Saint Paul, Minnesota, USA, 2013), International Foundation for Au-
tonomous Agents and Multiagent Systems (IFAAMAS), ACM Digital Li-
brary, 2013, 5–6.

[30] Roughgarden, T. and É. Tardos, How bad is selfish routing?, Journal
of the ACM, 49(2) (2002), 236–259.

[31] Parkes, D.C., Routing games, in: Nisan, N., Roughgarden, T., Tar-
dos, É., and Vazirani, V. V., (Eds.) Algorithmic Game Theory, Cambridge
University Press, 2007, 461–486.

[32] Russell, S. and D. Subramanian, Provably bounded-optimal agents,
Journal of Artificial Intelligence Research, 2 (1994), 575–609.

[33] Sandholm, T.W., Distributed Rational Decision Making, in: Weiss, G.,
(Ed.) Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence, Cambridge, MA, USA, MIT Press, 1999, 201–258.

[34] Sharon, G., R. Stern, A. Felner and N.R. Sturtevant, Conflict-
based search for optimal multi-agent pathfinding, Artificial Intelligence,
2019 (2015), 40–66.

[35] Shoham, Y. and K. Leyton-Brown, Multiagent Systems – Algo-
rithmic, Game-Theoretic, and Logical Foundations, Cambridge University
Press, New York, 2009.

[36] Shoham, Y., R. Powers, and T. Grenager, If multi-agent learning is
the answer, what is the question? Artificial Intelligence, 171(7) (2007),
365–377.

[37] Varga, L.Z., Online routing games and the benefit of online data, in:
Klügl, F., Vizzari, G., and Vokř́ınek, J. (Eds.) Proc. of the 8th Interna-
tional Workshop on Agents in Traffic and Transportation (ATT 2014),
Paris, France, 2014, 2014, 88–95.

[38] Varga, L., On intention-propagation-based prediction in autonomously
self-adapting navigation, Scalable Computing: Practice and Experience,
16 (2015), 221–232.



368 L. Z. Varga

[39] Varga, L.Z., A game theory model for self-adapting traffic flows with au-
tonomous navigation, in: McCluskey, T.L., Kotsialos, A., Müller, J.P.,
Klügl, F., Rana, O., Schumann, R., (Eds.) Autonomic Road Trans-
port Support Systems, Autonomic Systems, Bâle, Basel, Switzerland,
Birkhäuser Verlag, 2016, 13–28.

[40] Varga, L.Z., Benefit of online real-time data in the Braess Paradox with
anticipatory routing, in: Kounev, S., Giese, H., and Liu, J. (Eds.) Proc. of
the 2016 IEEE International Conference on Autonomic Computing (ICAC
2016), Würzburg, Germany, 2016, IEEE Computer Society, 2016, 245–250.

[41] Varga, L.Z., How good is predictive routing in the online version of the
Braess Paradox? in: Kaminka, G. A., Fox, M., Bouquet, P., Hüllermeier,
E., Dignum, V., Dignum, F. and van Harmelen, F. (Eds.) Proc. of the 22nd
European Conference on Artificial Intelligence (ECAI 2016), The Hague,
The Netherlands, 2016, IOS Press, 2016, 1696–1697.

[42] Varga, L.Z., Equilibrium with predictive routeing in the online version
of the Braess paradox, IET Software, 11 (2017), 165–170.

[43] Varga, L.Z., Two prediction methods for intention-aware online routing
games, in: Belardinelli, F., and Argente, E. (Eds.) Multi-Agent Systems
and Agreement Technologies. EUMAS 2017, Springer International Pub-
lishing, LNCS 10767 2018, 431–445.

[44] de Weerdt, M.M., S. Stein, E.H. Gerding, V. Robu and N.R. Jen-
nings, Intention-aware routing of electric vehicles, IEEE Transactions on
Intelligent Transportation Systems, 17 (2016), 1472–1482.

[45] Weiss, G., (Ed.) Multiagent Systems, Second Edition, MIT Press, Cam-
bridge, MA, 2013.

[46] Wittig, T., (Ed.) ARCHON : an architecture for multi-agent systems,
Ellis Horwood, New York, 1992.

[47] Wooldridge, M. and N.R. Jennings, Intelligent agents: Theory and
practice, The Knowledge Engineering Review, 10(2) (1995), 115–152.

[48] Wooldridge, M., An Introduction to MultiAgent Systems – Second Edi-
tion, John Wiley & Sons, Chichester, United Kingdom, 2009.

[49] Wurman, P.R., R. D’Andrea and M. Mountz, Coordinating hun-
dreds of cooperative, autonomous vehicles in warehouses, AI Magazine,
29(1) (2008), 9.

L. Z. Varga
ORCID ID: 0000-0001-8088-4528
Faculty of Informatics
Eötvös Loránd University
Budapest
Hungary
lzvarga@inf.elte.hu


