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Abstract. In this paper we examine the spread of an infectious disease
on several random graph models with multiple type edges. The intro-
duction of the types of the edges allows us to use more adequate models,
because the probabilities of the propagations may depend on the variety
of the connections in the graph. At first, we generalize the SIR-process
for graphs with multi-type edges. Then, we further generalize the process
by introducing latency (i.e. infected individuals do not show symptoms for
a random period of time) and quarantine (i.e. infected individuals who
show symptoms are temporarily separated from the population). Finally,
the empirical results of some stochastic simulations related to the different
processes and underlying structures are presented.

1. Introduction

Stochastic processes on (random) graphs have been widely used to model
infectious diseases on large networks (see e.g. [8, 12, 16]). A social network can
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be modelled by a graph, where vertices represent the individuals in the pop-
ulation, and two vertices are connected if there is a relationship between the
two corresponding entities. In order to understand the spread of an infectious
disease on the graph, we assign different states to the vertices (e.g. suscepti-
ble, infectious, recovered, carrier, exposed and so on). Then, a discrete or a
continuous time stochastic process is defined on the phase space of the states
of vertices, where the evolution of the process depends on the structure of the
underlying graph.

In many applications, the structure of the graph can be extended by vari-
ous features, i.e. we can assign some kind of characteristics to the vertices or
to the edges. In a social network, infectious diseases are spread through hu-
man contact. Since the relationships between the individuals can be different
in nature, the probability of spreading is also different among different people.
In this study, we examine various types of epidemics on random graphs with
multiple type edges. More precisely, we assign a type to the edges of the graph,
which is chosen from a finite set of possibilities by certain random dynamics.
Then, the infectious disease spreads among the vertices of the graph, so that
the probability of infection is different on different types of edges. By using
stochastic simulations, we examine the behaviour of the spread of epidemics,
when there is also a connection between the types of the edges and the param-
eters of the process.

In some applications, we can control the spread of the disease, up to a certain
level, by separating infected individuals in order to slow down the contagion.
We can also assign a state to the edges of the graph, i.e. active or inactive.
We assume that the virus cannot spread on inactive edges. At this point,
it is clear that if all the edges of the graph are inactive, then the epidemic
cannot spread further and all the infected individuals will recover in time, but
in practice our goal is to slow down the spread of the infection by eliminating
as few connections as possible. Again, by stochastic simulations, we examine
the effect of separation (or quarantine), which can be considered as a graph
with two types of edges, dynamically changing over time.

We will show that the spread of the epidemic depends on the structure of
the underlying graph model, and the introduction of the types of the edges
(with the different propagation probabilities) or the quarantine can lead to
different results.

The underlying graph models that we have used in this study are the multi-
type versions of the preferential attachment graph, the model of independent
edges ([5, 6]), and a generalized version of a random graph model with dupli-
cation and deletion ([4]).

Related works. There are several articles on models describing the spread
of epidemics that include quarantine. One possible direction of the modelling
of the spread of infectious diseases is the use of so-called compartmental models.
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In this approach, we use differential equations to define the dynamics of the
change in the number (or in the proportion) of individuals of a given state. In
[13], [17], [15] the state of quarantine is also introduced in order to enhance the
SIS-, SIR- and SEIR-processes.

There are some multi-type preferential attachment graph models that have
been investigated, see [3, 5, 6, 18]. These models can be used as the underlying
structure of spread of epidemic processes. In [2], they investigate the effects of
individual decisions on social distancing and isolation in graphs with multi-type
vertices. In [1], they include groups of age and risk in the SIR-model and find
the optimal strategies for quarantine.

Outline. In Section 2, we define the multi-type random graph models that
we use in the following sections. The spread of epidemic process is defined
in Section 3. In Section 4, the results of various stochastic simulations are
examined. Finally, in Section 5, we mention some possibilities to enhance the
models that we have investigated in order to obtain more realistic models.

2. Models

In this section, we define the graphs that are used as the underlying struc-
tures in the modelling of the spread of epidemics. These are the (multi-type)
preferential attachment graph, the model of independent edges ([6]) and a gen-
eralized version of the duplication and deletion model ([4]). In terms of their
definitions, these graphs are either static or dynamic. This means that the
structure of the graph of a given size is either defined by a specified rule, or a
sequence of graphs is defined where the set of vertices or edges are modified by
a given dynamics.

First, let us introduce some notations for the dynamic graph models. Let
(Gn)

∞
n=0 be a sequence of finite random graphs. The vertex set and the edge

set of Gn are denoted by Vn and En, respectively. In the sequel, the number
of different types of edges, which is denoted by N , will be fixed. For every

k ∈ [N ] = {1, 2, . . . , N} let E
(k)
n denote the set of edges of type k in Gn. We

assume that the different types form a partition of the edges (where we allow

empty sets in the partition), i.e. for every n we have En =
⋃N

k=1 E
(k)
n and for

every k, l we have E
(k)
n ∩ E

(l)
n = ∅ whenever k �= l. We assume that the initial

configuration G0 is a finite deterministic graph, moreover for every k ∈ [N ] we

have
∣∣E(k)

0

∣∣ > 0. Finally, for every n let Fn denote the σ-algebra generated by
the first n multi-type graphs. We can choose F0 to be the trivial σ-algebra,
since G0 is deterministic. Notice that F = (Fn)

∞
n=0 is a filtration.
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For the static graph models, we simply omit the notation indicating the size
of the graph from the indices of the vertex and edge sets.

2.1. Preferential attachment graph

In this section, we are going to define the multi-type preferential attachment
graph model. The single-type preferential attachment graph is defined in [10].
First, we have a look at the definition of the single-type version. Let β > 0 be a
fixed parameter. Let V = {v1, v2, . . . , vn} be the set of vertices. In order to de-
fine the set of edges we are going to create a sequence (v∗i )

2m
i=1 from the elements

of V . We start with the empty sequence. If the current length of the sequence
equals to k, then we choose the next element v∗k+1 to be equal to v ∈ V with

probability d(v)+β
k+nβ , where d(v) is the multiplicity of v in the sequence v∗1 , . . . , v

∗
k.

We define the edge set as E =
{
{v∗2i−1, v

∗
2i}, i = 1, 2, . . . ,m

}
. The single-type

preferential attachment graph with n vertices, m edges and parameter β is
denoted by PAGβ(n,m).

Remark 2.1. We are going to choose m = n, so we use the sparse preferential
attachment graph, because the simulation processes are much faster and more
reliable.

Remark 2.2. The single-type preferential attachment graph is not the same
as, however it is motivated by the (sparse) Barabási–Albert graph model in [7],
specified in [9].

In order to obtain a multi-type preferential attachment graph denoted by

N -PAGβ(n,m1,m2, . . . ,mN ),

we define N independent single-type preferential attachment graphs on the ver-
tex set V . Let us denote these independent graphs by

PAG
(1)
β (n,m1), PAG

(2)
β (n,m2), . . . , PAG

(N)
β (n,mN ).

Then, the different edges which belong to PAG
(k)
β (n,mk) form the set of edges

of type k, where k ∈ [N ]. Notice that the number of edges of the N -type pref-

erential attachment graph N -PAGβ(n,m1,m2, . . . ,mk) equals to N ·
∑N

k=1 mk.

2.2. Model of independent edges

The model of independent edges is a dynamic graph model. There are two
different versions.
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Version I. This model is a modification and a multi-type version of the
models in [11] and [14]. Let λ > 0 be a fixed parameter. In the nth step, we
have the following dynamics:

(i) a new vertex vn is born, thus Vn = V0 ∪ {v1, . . . , vn};

(ii) every existing vertex v ∈ Vn−1, independently of each other, is connected

to vn with an edge of type k with probability equal to
deg

(k)
n−1(v)

2|En−1| , where

deg
(k)
n−1(v) denotes the number of edges of type k connected to v in Gn.

The choices for the edges of different types are also independent of each
other.

Version II. Another version of the model was defined in [5]. In the original
definition, we have a sequence (λn)

∞
n=1 which meets certain conditions. In this

article, we assume that λn = λ for every n, where λ > 0 is fixed. In the nth,
step we have the following dynamics:

(i) a new vertex vn is born, thus Vn = V0 ∪ {v1, . . . , vn};

(ii) every existing vertex v ∈ Vn−1, independently of each other, is connected

to vn with ∆
(k)
n (v) edges of type k, where ∆

(k)
n (v) ∼ Poi

(
λ

deg
(k)
n−1(v)

2|En−1|

)
,

where Poi(µ) denotes the Poisson distribution with parameter µ > 0. The
number of edges of different types are also independent of each other.

The existence and some properties of the asymptotic degree distribution
have been proven in [5]. The degree distribution of a graph is defined as the
proportion of the vertices with a given degree. For graphs with multi-type
edges, the (generalized) degree distribution is the proportion of vertices which
are adjacent to a specific number of edges of each type. The (generalized)
asymptotic degree distribution is the almost sure limit of these proportions for
all possible configurations. For the model of independent edges, the degree
distribution is a family of random variables. If the number of vertices tends to
infinity, these proportions stabilize, but they are functions of the asymptotic
proportion of the edges of different types in the graph, which is a random
variable, i.e. the asymptotic degree distribution is a family of mixed random
variables. In the spread of epidemic processes, the probabilities of propagation
depends on the types of the edges, thus the spreading also depends on the
structure of the graph, even if the number of vertices is large.

2.3. Duplication model

For every vertex v ∈ V we denote by Nn(v) the set of neighbours of v in
Gn−1.
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In the nth step

(i) a new vertex vn is born, thus Vn = V0 ∪ {v1, . . . , vn}.

(ii) We choose a vertex v from Vn−1 uniformly at random and we connect vn
to every vertex in Nn−1(v). The type of the new edges will be exactly
the same as the type of the edges connected to v. (Duplication.)

(iii) We choose a vertex w from Vn−1 uniformly at random and we delete all
the edges which are incident to w in Gn−1. Notice that the vertices v
and w are not necessarily different. (Deletion.)

3. Epidemic spread

In this chapter, we introduce the processes that may be suitable for mod-
elling the spread of infectious diseases. These processes can be categorized
according to the possible states of vertices of the underlying graph.

For every spread of infection processes, we have an underlying graph to
model the structure of the individuals of the population. Let us have a finite
random graph on n vertices with multi-type edges denoted by G. The set
of vertices and the set of edges of type k are denoted by V and E(k), where
k ∈ [N ], respectively.

We will use the following notations:

Πk =

{
π = (π1, π2, . . . , πk) ∈ Pk(V ) :

k⋃
i=1

πi = V and πi ∩ πj = ∅ for every i �= j

}

Σk =

{
σ = (σ1, σ2, . . . , σk) ∈ (N0)

k :

k∑
i=1

σi = n

}
,

where Pk(V ) is the set of k-dimensional vectors of subsets of V and (N0)
k
is

the set of k-dimensional vectors of non-negative integers.

3.1. SIR-process

There are three different states for the vertices: susceptible, infectious and
recovered. Susceptible vertices represent individuals who are healthy, but can
be infected. Infectious vertices play the role of entities who are infected and
infectious, i.e. they can spread the infection to susceptible vertices. Finally,
recovered vertices represent the individuals who are not infectious any longer,
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and immune, i.e. cannot be infected again. The following flow diagram shows
the transitions between the different states.

Susceptible Infectious Recovered

Let us fix J ∈ N+, i.e. the total number of steps. For every j ∈ [J ], in
the jth step the set of vertices of state susceptible, infectious and recovered
are denoted by Sj , Ij and Rj , respectively. We will also use the notations
Sj = |Sj |, Ij = |Ij | and Rj = |Rj |. Since the structure of the underlying graph
does not change during the spread of the epidemics, for every j ∈ [J ]∪{0}, we
have Sj ∪ Ij ∪Rj = V , thus Sj + Ij +Rj = n.

We define the following (discrete-time) stochastic processes:

X : {0} ∪ [J ] → Π3, X = (Xj)
J
j=0 = (Sj , Ij ,Rj)

J
j=0

Y : {0} ∪ [J ] → Σ3, Y = (Yj)
J
j=0 = (Sj , Ij , Rj)

J
j=0 .

Remark 3.1. Notice that we have Yj ∼ σ(Xj) for every j ∈ [J ], i.e. Yj is
measurable to Xj , thus the value of Yj can be calculated from Xj .

As in the previous section, the σ-algebra generated by the underlying ran-

dom multi-type graph G is denoted by Fn. Let us define Gj = σ
(
Fn, (Xi)

j
i=0

)
,

i.e. the σ-algebra generated by G and the first j steps of the process X.

We assume that the initial sets of the vertices of different states S0, I0 and
R0 are given. For every j ∈ [J ], in the jth step we have the following dynamics:

(i) every susceptible vertex v ∈ Sj−1 becomes infectious with probability

P
(
v ∈ Ij

∣∣Gj−1

)
= 1−

N∏
k=1

(1− pk)
i
(k)
j−1(v),

where i
(k)
j−1(v) is the number of edges of type k which connect v to an

infectious vertex in step j − 1. Notice that the types of edges remain
unchanged, but the states of the vertices may be different over the steps.

(ii) Every infectious vertex v ∈ Ij−1 becomes recovered with probability
P
(
v ∈ Rj

∣∣Gj−1

)
= q.

An illustration of the dynamics of the SIR-process can be seen in the be
seen in the figures below.
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Top left: Vertex v may infect w1

and w2 with different probabilities,
because they are connected to v
with different types of edges. Here,
vertex w3 cannot be infected, be-
cause it has already been infected.
Top right: Let us assume that ver-
tex w2 has been infected by v.
Bottom: After a while infectious
vertices become recovered and they
can no longer become infectious
again. Here, vertices v an w3 be-
came recovered.

In the SIR-process, the parameters are the probabilities of the spread of
infection on the different types of edges (p1, p2, . . . , pN ), the probability of
recovery (q) (which is the same for all vertices), the finite time horizon (T ) and
the underlying graph.

3.2. Dynamical SI1I2R-process

Many infectious diseases are known in which the infected patient does not
initially produce symptoms but is nevertheless contagious. Epidemics caused
by such diseases are particularly difficult to control. It is advisable to separate
any infectious patient from other people as soon as possible, but in this case
the fact of the infection is initially unknown. In this section, we present a
modification of the previously discussed model that can be used to model the
spread of infectious diseases that have a latency period.
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This is a modified version of the SIR-process. There are four different
states for the vertices: susceptible, infectious without symptoms (I1), infectious
with symptoms (I2) and recovered.

The following flow diagram shows the transitions between the different
states.

Susceptible

Infectious without symptoms

Infectious with symptoms

Recovered

In this model we assume that the edges of the underlying graph model are
either open or closed. Closed edges indicate the separation of the corresponding
points, i.e. the disease cannot spread through closed edges.

Let us fix J ∈ N+, i.e. the total number of steps. For every j ∈ [J ], in the
jth step the set of vertices of state susceptible, infectious without symptoms,

infectious with symptoms and recovered are denoted by Sj , I(1)
j , I(2)

j and Rj ,
respectively. We will also use the following notations for the cardinality of the
sets of vertices of different states:

Sj = |Sj |, I(1)j = |I(1)
j |, I(2)j = |I(2)

j |andRj = |Rj |.

Since the structure of the underlying graph does not change during the spread

of the epidemics, for every j ∈ [J ] ∪ {0}, we have Sj ∪ I(1)
j ∪ I(2)

j ∪ Rj = V ,

thus Sj + I
(1)
j + I

(2)
j +Rj = n.

We define the following (discrete-time) stochastic processes:

X : {0} ∪ [J ] → Π4, X = (Xj)
J
j=0 =

(
Sj , I(1)

j , I(2)
j ,Rj

)J

j=0

Y : {0} ∪ [J ] → Σ4, Y = (Yj)
J
j=0 =

(
Sj , I

(1)
j , I

(2)
j Rj

)J

j=0
.
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As in the previous section, we have Gj = σ
(
Fn, (Xi)

j
i=0

)
, i.e. the σ-algebra

generated by G and the first j steps of the process X.

We assume that the initial sets of the vertices of different states S0, I(1)
0 ,

I(2)
0 and R0 are given. For every j ∈ [J ], in the jth step we have the following

dynamics:

(i) every susceptible vertex v ∈ Sj−1 becomes infectious without symptoms
with probability

P
(
v ∈ I(1)

j

∣∣∣Gj−1

)
= 1−

N∏
k=1

(1− pk)
i
(k)
j−1(v),

where i
(k)
j−1(v) is the number of open edges of type k which connect v

with an infectious with symptoms vertex in the step j − 1. Notice that
the types of edges remain unchanged, but the states of the vertices may
be different over the steps.

(ii) Every infectious without symptoms vertex v ∈ I(1)
j−1 becomes infectious

with symptoms with probability

P
(
v ∈ I(2)

j

∣∣∣Gj−1

)
= r.

Then, every edge becomes closed which are incident to the vertex v.

(iii) Every infectious with symptoms vertex v ∈ I(2)
j−1 becomes recovered with

probability

P
(
v ∈ Rj

∣∣∣Gj−1

)
= q.

Then, every edge becomes open which are incident to v, except those
which are incident to an infectious with symptoms vertices.

As in the previous section, an illustration of the dynamics of the SI1I2R-
process can be seen in the figures below.
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Top left: Vertex v may infect w1

and w2 with different probabilities,
because they are connected to v
with different types of edges. Here,
vertex w3 has already been infected,
thus it is temporarily removed from
the rest of the graph like all other
I2-vertices.
Top right: Let us assume that ver-
tex w1 has been infected by v.
Bottom: After a while I1-vertices
become I2-vertices and they show
symptoms of the disease. Then,
they are separated from the rest
of the graph, like vertex v in this
graph. The I2-vertices become re-
covered after a random period of
time. Then, they are reconnected
to the rest of the graph, except
to their neighbours which are I2-
vertices. Here, vertex w3 became
recovered.

In the SI1I2R-process, the parameters are the probabilities of the spread
of infection on the different types of edges (p1, p2, . . . , pN ), the probability of
appearance of symptoms (r), the probability of recovery (q) (which are the
same for all vertices), the finite time horizon (T ) and the underlying graph.
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4. Sensitivity analysis of the parameters

In this section, we have a look at the results of some stochastic simulations.
We generated random graphs with two types of edges according to the models in
Section 2, then we simulated the spread of epidemic processes on these graphs.

For each graph model, we examine the SIR-process at first. As a reminder,
in this variant, the symptoms of the infectious disease become apparent imme-
diately after infection. After recovery, the individuals become immune to the
disease so that they can no longer become infected. In the following sections,
we study the change of the proportion of vertices with different states over
time, and we compare the results of different parametrizations. Then, we have
a look at the SI1I2R-process. In this variant, it takes some random number
of steps until the symptoms of the infectious disease become apparent after
infection. Similarly to the SIR-process, the individuals become immune to the
disease after recovery so that they can no longer become infected.

4.1. Preferential attachment graph

In this section, we use the multi-type preferential attachment model as the
underlying graph of the process. For a given parametrization, we generated
N = 10 random graphs on n = 1000 vertices with two types of edges. We had
m1 = 2000 edges of the first type and m2 = 1000 edges of the second one. We
examined three different parametrizations of the SIR-process:

p1 = 0.1 p2 = 0.1 q = 0.1 T = 50
p1 = 0.05 p2 = 0.1 q = 0.1 T = 50
p1 = 0.1 p2 = 0.05 q = 0.1 T = 50

For the SIR-processes, 10% of the vertices are infectious and all the other
vertices are susceptible at the beginning, and for the SI1I2R-processes, 10%
of the vertices are infectious without symptoms and the rest of the vertices
are susceptible. The trajectories of the average of the N scenarios for the
three parametrizations can be seen on the following images. The trajectories,
marked with ◦, � and�, represent the 1st, the 2nd and the 3rd parametrization,
respectively.
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SIR-process in the preferential
attachment model

The ◦-trajectory represents the ”single-type case”, because p1 = p2. We
can see the constant decrease of the proportion of susceptible vertices and
the constant increase of the recovered vertices. However, as for the infectious
vertices, we observe the rapid increase and then the slow decrease.

Since the number of the edges of the 1st and the 2nd types are different,
decreasing the probability of propagation on the edges of the 1st type has a
more severe impact than the same decrease on the edges of the 2nd type.

We use the same parametrization for the SI1I2R-process with an additional
parameter, which is r = 0.1 (the probability that symptoms of an infected
individual become detectable). As a result of the isolation of patients, who are
infectious with symptoms, the epidemic curve flattens. Even though there is
a latency period, if we isolate people when the symptoms appear, it already
improves a lot. This holds in general, regardless of the type of edges. We
can see that the introduction of quarantine makes the model less sensitive to
changes in the parameters. However, the slowing effect of the quarantine is
much severe for the 2nd and 3rd than it is in the single-type case.
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SI1I2R-process in the preferential
attachment model

4.2. Model of independent edges - version I

In this section, we use the first version of the model of independent edges
as the underlying graph of the process. Again, for a given parametrization,
we generated N = 10 random graphs on n = 1000 vertices with two types of
edges. The parametrization of the SIR-process is the same as in the previous
section.

SIR-process in the model of
independent edges - I

The structure of both versions of the model of independent edges depend on
the finite configuration which is the initial graph of the growing sequence. In
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the simulations, the initial configuration is a graph with two vertices which are
connected with 2 edges of the 1st and 1 edge of the 2nd type. Similarly to the
preferential attachment model, the underlying graph contains more edges of the
1st type than the 2nd type, but the results are less sensitive to changes in the
probabilities of propagation. We can also see that the spread of the infection
is slower even in the single-type case compared to the preferential attachment
model. This is due to the fact that edges of the same type are more likely
grouped in the model of independent edges.

For the SI1I2R-process, we use the same parametrization as in the previous
section. In this case, the impact of having two different types for the edges is
less severe. The observable data is almost the same as it is in the single-type
case.

SI1I2R-process in the model of
independent edges - I

4.3. Model of independent edges - version II

In this section, we use the second version of the model of independent edges
as the underlying graph of the process. Again, for a given parametrization,
we generated N = 10 random graphs on n = 1000 vertices with two types
of edges. We have chosen λ = 1, i.e. the fixed parameter of the graph. The
parametrization of the SIR-process is still the same as in the previous section.
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SIR-process in the model of
independent edges - II

Although the construction of the underlying graph is different, the results
are very similar to the previous version of themodel of independent edges. In the
first version of the model, the (random) degrees of the vertices are binomially
distributed, while they follow Poisson distribution in the second version of the
model. In this case when the number of vertices is sufficiently large, these
distributions have almost the same behaviour.

Again, for the SI1I2R-process, we use the same parametrization as in the
previous section.

SI1I2R-process in the model of
independent edges - II
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4.4. Duplication model

In this section, we use the duplication model as the underlying graph of
the process. Again, for a given parametrization, we generated N = 10 random
graphs on n = 1000 vertices with two types of edges. Similarly to the model of
independent edges, the structure of the duplication model depends on the initial
finite configuration. In our simulations, the initial configuration contains two
independent Erdős–Rényi graphs on 900 vertices, and the probability that a
pair of vertices is connected by an edge equals to 0.1. Because of the choice
of parameters, both graphs contain a single giant connected component with
high probability. Then, we apply 100 duplication and deletion steps. The
edges of these graphs define the set of edges of different types in the multi-type
configuration. The resulting graph is highly clustered, i.e. it mainly consists
of independent cliques. This corresponds to a model where we segregate well-
isolated groups through restrictive measures, such as the individuals only meet
with those who are living in the same household, or the schools are partially
open but the classes are isolated. If there are many independent components
and only a negligible part of the vertices are infectious, then the results depend
on the structure of the typical components and not on the global structure of
the graph.

The parametrization of the SIR-process is still the same as in the previous
section.

SIR-process in the duplication model

Because of the clustering properties of the underlying graph model, the
results are not sensitive to the changes in probabilities of propagation. Ini-
tially, 10% of the vertices is infectious (for the SIR-process) or infectious with-
out symptoms (for the SI1I2R-process). Within the dense connected compo-
nents which contain some infectious vertices at the beginning, the epidemic
will spread, no matter how small the infection probabilities are.

Again, for the SI1I2R-process, we use the same parametrization as in the
previous section. Because of the clustering properties of the model, the effect
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of quarantine is less significant. In the connected components, the epidemic
will spread among the individuals before we can detect the symptoms and
remove the edges between some of the vertices. It also means that if we create
isolated bubbles with the help of restrictive measures (e.g. school classes are
well-separated), then no more quarantine is necessary, and it is not a problem if
there are edges with higher propagation probabilities, the epidemic will spread
too a much smaller extent.

SI1I2R-process in the duplication
model

5. Further research possibilities

We have seen that the introduction of different types of edges and the
presence of segregated groups can have a severe impact on the spread of the
epidemic.

Due to the diversity of processes describing the spread of the epidemic,
there are many opportunities for further research. One possibility is to intro-
duce a model in which a group of vertices of the graph represent the medical
employees. In some applications, the infected individuals require some kind of
medical treatment. In this case, the medical employees (doctors, nurses, etc.)
are assigned to the infected individuals. We may assume that the medical em-
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ployees can also be infected, and then, they also require medical treatment.
One can examine how much capacity is required in the healthcare for the in-
fected patients to receive appropriate treatment under different parameters of
the infection.

Another possibility is to study continuous-time models, i.e. models in which
the events describing the infections and recoveries occur on a continuous time
scale. For example, we can use exponentially distributed random times that
determine when these events occur. Continuous-time models are typically more
complex than the discrete-time versions, but they often describe epidemics in
reality in a more natural way.
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