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ON THE EQUATION

f(n2 + Dm2 + k) = f(n)2 + Df(m)2 + k
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Abstract. We give all solutions of the equation

f(n2 +Dm2 + k) = f(n)2 +Df(m)2 + k,

where D, k ∈ N are given and f is an arbitrary complex valued function
defined on N.

1. Introduction

Let Q(x, y) ∈ Z[x, y] be a polynomial with two variable and let A,B be
subsets of N. We are interested in finding solutions f : N → C to an equation
of the form

(1.1) f
(
Q(a, b)

)
= Q

(
f(a), f(b)

)
for every a ∈ A, b ∈ B.

If Q(x, y) = x + y, A = B = N, then it can be shown that there is a single
family of solutions, namely f(n) = cn, where c = f(1) ∈ C is an arbitrary
number.

In 1992, C. Spiro [9] consider the equation (1.1) in the cases when Q(x, y) =
= x+y and A = B = P. She proved that if a real-valued multiplicative function
f satisfies

f(p+ q) = f(p) + f(q) (∀p, q ∈ P) and f(p0) �= 0 for some p0 ∈ P,

then f(n) is the identity function.
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Let M (M∗) be the set of all multiplicative (completely multiplicative)
functions, respectively. In 1997 J.-M. De Koninck, I. Kátai and B. M. Phong [6]
proved that if a function f ∈ M satisfies the condition

f
(
p+m2

)
= f(p) + f

(
m2

)
for every p ∈ P,m ∈ N,

then f(n) = n for all n ∈ N.
In 2014 B. Bojan considered the case when Q(x, y) = x2 + y2, A = B = N.

He determined all solutions of those f : N → C for which

f
(
n2 +m2

)
= f2(n) + f2(m) for every n,m ∈ N.

It is proved in [1] that the solution f(n) of the above equation is one of the
followings:

◦ f(n) = 0 for every n ∈ N,

◦ f(n) =
ε1,0(n)

2
for every n ∈ N,

◦ f(n) = ε1,0(n)n for every n ∈ N,

where εD,k : N → {−1, 1} is an arithmetical function such that

εD,k

(
n2 +Dm2 + k

)
= 1 for every n,m ∈ N.

I. Kátai and B. M. Phong posed the following conjecture for the cases when
Q(x, y) = x2 +Dy2 and A = B = N:

Conjecture 1. (I. Kátai and B. M. Phong [2]) Assume that the number D ∈ N
and the arithmetical function f : N → C satisfy the equation

f
(
n2 +Dm2

)
= f2(n) +Df2(m) for every n,m ∈ N.

Then one of the following assertions holds:

◦ f(n) = 0 for every n ∈ N,

◦ f(n) =
εD,0(n)

D + 1
for every n ∈ N,

◦ f(n) = εD,0(n)n for every n ∈ N.

In 2015 we proved in [3] that Conjecture 1 is true for D = 2 and D = 3.
N. T. Nghia [7] proved that Conjecture 1 is true for D ∈ {4, 5}. In 2017 we
given a complete solution for this question.

Theorem A. (B. M. M. Khanh [4]) Conjecture 1 is true.
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Recently, in [5] we have been studied and given all solutions of the equation

f
(
n2 +m2 + k

)
= f2(n) + f2(m) +K for every n,m ∈ N,

where k ∈ N0 and K ∈ C. We infer from the results of [5] that if Q(x, y) =
= x2 + y2 + k, k ∈ N and A = B = N, then the following theorem holds:

Theorem B. (B. M. M. Khanh [5]) Assume that a non-negative integer k and
an arithmetical function f : N → C satisfy the equation

f
(
n2 +m2 + k

)
= f2(n) + f2(m) + k for every n,m ∈ N.

Then one of the following assertions holds:

◦ f(n) =
ε1,k(n)

4

(
1−

√
−8k + 1

)
,

◦ f(n) =
ε1,k(n)

4

(
1 +

√
−8k + 1

)
,

◦ f(n) = ε1,k(n)n.

In this paper we improve Theorem A and Theorem B as follows:

Theorem 1. Assume that the numbers k ∈ N0, D ∈ N and the arithmetical
function f : N → C satisfy the equation

f
(
n2 +Dm2 + k

)
= f2(n) +Df2(m) + k for every n,m ∈ N.

Then one of the following assertions holds:

a) f(n) = εD,k(n)
1−

√
1− 4Dk − 4k

2(D + 1)
for every n ∈ N,

b) f(n) = εD,k(n)
1 +

√
1− 4Dk − 4k

2(D + 1)
for every n ∈ N,

c) f(n) = εD,k(n)n for every n ∈ N.

We infer from Theorem 1 the following result.

Corollary 1. Assume that the numbers k ∈ N0, D ∈ N and a multiplicative
function f : N → C satisfy the equation

f
(
n2 +Dm2 + k

)
= f2(n) +Df2(m) + k for every n,m ∈ N.

Then f(n) = εD,k(n)n for every n ∈ N, where εD,k ∈ M, εD,k(n) ∈ {1,−1}
and εD,k(n

2 +Dm2 + k) = 1 for every n,m ∈ N.
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In the order to prove Theorem 1, we will need to the following result.

Theorem 2. Assume that the numbers Γ2, Γ3, Γ4, Γ5, Γ ∈ C, D ∈ N, k ∈ N0

and the arithmetical functions F : N → C satisfy

(1.2) F (n) = Γ2χ2(n) + Γ3χ3(n) + Γ4χ4(n− 1) + Γ5χ5(n) + Γ

and

(1.3) F
(
n2 +Dm2 + k

)
=

(
F (n) +DF (m) + k

)2

for every n, m ∈ N. Then

Γ2 = Γ3 = Γ4 = Γ5 = 0

and one of the following assertions holds:

A) F (n) = Γ =

(
1 +

√
1− 4Dk − 4k

2(D + 1)

)2

for every n ∈ N,

B) F (n) = Γ =

(
1−

√
1− 4Dk − 4k

2(D + 1)

)2

for every n ∈ N,

where χ2(n) (mod 2), χ3(n) (mod 3) are the principal Dirichlet characters and
χ4(n) (mod 4), χ5(n) (mod 5) are the real, non-principal Dirichlet characters,
i.e. χ2(0) = 0, χ2(1) = 1, χ3(0) = 0, χ3(1) = χ3(2) = 1, χ4(0) = χ4(2) = 0,
χ4(1) = 1, χ4(3) = −1, χ5(2) = χ5(3) = −1, χ5(1) = χ5(4) = 1.

2. The proof of Theorem 2. Auxiliary lemmas

In this Section we assume that all assumptions of Theorem 2 are satisfied,
i.e.

F (n) = Γ2χ2(n) + Γ3χ3(n) + Γ4χ4(n− 1) + Γ5χ5(n) + Γ

and

(2.1) F
(
n2 +Dm2 + k

)
=

(
F (n) +DF (m) + k

)2

for every n,m ∈ N.
In the order to prove Theorem 2, first we shall prove some lemmas.

Lemma 1. We have Γ4 = 0.
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Proof. It is obvious from our assumptions that {F (�)}∞1 is periodic (mod 60),
therefore

F
(
22 +D22 + k

)
= F

(
82 +D22 + k

)
and F

(
22 +D22 + k

)
= F

(
82 +D82 + k

)
,

which with (2.1) imply that

(
F (2) +DF (2) + k

)2
=

(
F (8) +DF (2) + k

)2

and (
F (2) +DF (2) + k

)2
=

(
F (8) +DF (8) + k

)2
.

Consequently

(
F (2) +DF (2) + k

)2 − (
F (8) +DF (2) + k

)2
=

=
(
F (2)− F (8)

)(
(2D + 1)F (2) + F (8) + 2k

)
= 0

(2.2)

and
(
F (2) +DF (2) + k

)2 − (
F (8) +DF (8) + k

)2
=

= (D + 1)
(
F (2)− F (8)

)(
(D + 1)F (2) + (D + 1)F (8) + 2k

)
= 0.

(2.3)

Since

F (2) = Γ3 + Γ4 − Γ5 + Γ and F (8) = Γ3 − Γ4 − Γ5 + Γ,

we have Γ4 = 0 if F (2) = F (8). Assume now that F (2) − F (8) �= 0. Then we
infer from (2.2) and (2.3) that

(2D + 1)F (2) + F (8) + 2k = 0 and (D + 1)F (2) + (D + 1)F (8) + 2k = 0,

consequently
DF (2) = DF (8).

This contradicts to the assumption F (2) − F (8) �= 0. Thus, Γ4 = 0 follows,
which finishes the proof of Lemma 1. �

Lemma 2. We have 


Γ2Γ3 = 0,

Γ2Γ5 = 0,

Γ3Γ5 = 0.

Proof. By using Lemma 1, we have Γ4 = 0, and so the sequence

F (�) = Γ2χ2(�) + Γ3χ3(�) + Γ5χ5(�) + Γ

is the periodic (mod 30) and (2.1) is true.
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First we prove that

(2.4) F (n) + F (n+ 4)− F (n+ 10)− F (n+ 24) = 0,

(2.5) F (n+ 1) + F (n+ 4)− F (n+ 16)− F (n+ 19) = 0

and

(2.6) F (n) + F (n+ 25)− F (n+ 10)− F (n+ 15) = 0

hold for every n ∈ N.
From the definition of F (�), we have

F (n) = Γ2χ2(n) + Γ3χ3(n) + Γ5χ5(n) + Γ,

F (n+ 4) = Γ2χ2(n+ 4) + Γ3χ3(n+ 4) + Γ5χ5(n+ 4) + Γ =

= Γ2χ2(n) + Γ3χ3(n+ 1) + Γ5χ5(n+ 4) + Γ,

F (n+ 10) = Γ2χ2(n+ 10) + Γ3χ3(n+ 10) + Γ5χ5(n+ 10) + Γ =

= Γ2χ2(n) + Γ3χ3(n+ 1) + Γ5χ5(n) + Γ,

F (n+ 24) = Γ2χ2(n+ 24) + Γ3χ3(n+ 24) + Γ5χ5(n+ 24) + Γ =

= Γ2χ2(n) + Γ3χ3(n) + Γ5χ5(n+ 4) + Γ,

therefore

F (n) + F (n+ 4)− F (n+ 10)− F (n+ 24) =

=
(
2Γ2χ2(n) + Γ3χ3(n) + Γ3χ3(n+ 1) + Γ5χ5(n) + Γ5χ5(n+ 4) + 2Γ

)
−

−
(
2Γ2χ2(n) + Γ3χ3(n) + Γ3χ3(n+ 1) + Γ5χ5(n) + Γ5χ5(n+ 4) + 2Γ

)
= 0,

which proves (2.4).

In a similar way, we have

F (n+ 1) = Γ2χ2(n+ 1) + Γ3χ3(n+ 1) + Γ5χ5(n+ 1) + Γ,

F (n+ 4) = Γ2χ2(n) + Γ3χ3(n+ 1) + Γ5χ5(n+ 4) + Γ,

F (n+ 16) = Γ2χ2(n) + Γ3χ3(n+ 1) + Γ5χ5(n+ 1) + Γ,

F (n+ 19) = Γ2χ2(n+ 1) + Γ3χ3(n+ 1) + Γ5χ5(n+ 4) + Γ,

therefore

F (n+ 1) + F (n+ 4)− F (n+ 16)− F (n+ 19) =

=
(
Γ2χ2(n) + Γ2χ2(n+ 1) + 2Γ3χ3(n+ 1) + Γ5χ5(n+ 1)+

+Γ5χ5(n+ 4) + 2Γ
)
−

(
Γ2χ2(n) + Γ2χ2(n+ 1) + 2Γ3χ3(n+ 1)+

+Γ5χ5(n+ 1) + Γ5χ5(n+ 4) + 2Γ
)
= 0.

Thus, (2.5) is proved.
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Finally, we prove (2.6). We have

F (n) = Γ2χ2(n) + Γ3χ3(n) + Γ5χ5(n) + Γ,

F (n+ 25) = Γ2χ2(n+ 1) + Γ3χ3(n+ 1) + Γ5χ5(n) + Γ,

F (n+ 10) = Γ2χ2(n) + Γ3χ3(n+ 1) + Γ5χ5(n) + Γ,

F (n+ 15) = Γ2χ2(n+ 1) + Γ3χ3(n) + Γ5χ5(n) + Γ,

therefore

F (n) + F (n+ 25)− F (n+ 10)− F (n+ 15) =

=
(
Γ2χ2(n) + Γ2χ2(n+ 1) + Γ3χ3(n) + Γ3χ3(n+ 1) + 2Γ5χ5(n) + 2Γ

)
−

−
(
Γ2χ2(n) + Γ2χ2(n+ 1) + Γ3χ3(n) + 2Γ3χ3(n+ 1) + 2Γ5χ5(n) + 2Γ

)
= 0.

This finishes the proof (2.6).

In the next step, we prove that

(2.7) F (k) + F (k + 4)− F (k + 10)− F (k + 24) = −2Γ3Γ5,

(2.8) F (k + 1) + F (k + 4)− F (k + 16)− F (k + 19) = 4Γ2Γ5

and

(2.9) F (k) + F (k + 25)− F (k + 10)− F (k + 15) = 2Γ2Γ3.

It follows from the definition of F (�) = Γ2χ2(�) + Γ3χ3(�) + Γ5χ5(�) + Γ
that

F (1) = Γ2χ2(1) + Γ3χ3(1) + Γ5χ5(1) + Γ = Γ2 + Γ3 + Γ5 + Γ,

F (2) = Γ2χ2(2) + Γ3χ3(2) + Γ5χ5(2) + Γ = Γ3 − Γ5 + Γ,

F (4) = Γ2χ2(4) + Γ3χ3(4) + Γ5χ5(4) + Γ = Γ3 + Γ5 + Γ,

F (7) = Γ2χ2(7) + Γ3χ3(7) + Γ5χ5(7) + Γ = Γ2 + Γ3 − Γ5 + Γ,

F (10) = Γ2χ2(10) + Γ3χ3(10) + Γ5χ5(10) + Γ = Γ3 + Γ,

F (12) = Γ2χ2(12) + Γ3χ3(12) + Γ5χ5(12) + Γ = −Γ5 + Γ,

F (15) = Γ2χ2(15) + Γ3χ3(15) + Γ5χ5(15) + Γ = Γ2 + Γ,

F (25) = Γ2χ2(25) + Γ3χ3(25) + Γ5χ5(25) + Γ = Γ2 + Γ3 + Γ,

F (30) = Γ2χ2(30) + Γ3χ3(30) + Γ5χ5(30) + Γ = Γ.

Since

12 ≡ 1, 22 ≡ 4, 102 ≡ 10, 42 ≡ 16, 72 ≡ 19, 122 ≡ 24, 302 ≡ 0 (mod 30),
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and F (�) is periodic (mod 30), we infer from (2.1) that

F (k) =
(
F (30) +DF (30) + k

)2
=

(
(D + 1)Γ + k

)2
,

F (k + 1) =
(
F (1) +DF (30) + k

)2
=

(
Γ2 + Γ3 + Γ5 + (D + 1)Γ + k

)2
,

F (k + 4) =
(
F (2) +DF (30) + k

)2
=

(
Γ3 − Γ5 + (D + 1)Γ + k

)2
,

F (k + 10) =
(
F (10) +DF (30) + k

)2
=

(
Γ3 + (D + 1)Γ + k

)2
,

F (k + 15) =
(
F (15) +DF (30) + k

)2
=

(
Γ2 + (D + 1)Γ + k

)2
,

F (k + 16) =
(
F (4) +DF (30) + k

)2
=

(
Γ3 + Γ5 + (D + 1)Γ + k

)2
,

F (k + 19) =
(
F (7) +DF (30) + k

)2
=

(
Γ2 + Γ3 − Γ5 + (D + 1)Γ + k

)2
,

F (k + 24) =
(
F (12) +DF (30) + k

)2
=

(
−Γ5 + (D + 1)Γ + k

)2
,

F (k + 25) =
(
F (25) +DF (30) + k

)2
=

(
Γ2 + Γ3 + (D + 1)Γ + k

)2
.

By using theses, we obtain that

F (k) + F (k + 4)− F (k + 10)− F (k + 24) =

=
(
(D + 1)Γ + k

)2
+
(
Γ3 − Γ5 + (D + 1)Γ + k

)2−
−
(
Γ3 + (D + 1)Γ + k

)2 − (
−Γ5 + (D + 1)Γ + k

)2
=

= −2Γ3Γ5,

F (k + 1) + F (k + 4)− F (k + 16)− F (k + 19) =

=
(
Γ2 + Γ3 + Γ5 + (D + 1)Γ + k

)2
+

(
Γ3 − Γ5 + (D + 1)Γ + k

)2−
−
(
Γ3 + Γ5 + (D + 1)Γ + k

)2 − (
Γ2 + Γ3 − Γ5 + (D + 1)Γ + k

)2
=

= 4Γ2Γ5

and

F (k) + F (k + 25)− F (k + 10)− F (k + 15) =

=
(
(D + 1)Γ + k

)2
+
(
Γ2 + Γ3 + (D + 1)Γ + k

)2−
−
(
Γ3 + (D + 1)Γ + k

)2 − (
Γ2 + (D + 1)Γ + k

)2
=

= 2Γ2Γ3.

By applying (2.4), (2.5) and (2.6) for the case when n = k, we obtain from
(2.7), (2.8) and (2.9) that

Γ2Γ5 = 0, Γ3Γ5 = 0 and Γ2Γ3 = 0.

Lemma 2 is proved. �
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Lemma 3. We have Γ2 = 0.

Proof. We will prove that Γ2 = 0. Assume by contradiction that Γ2 �= 0.
Then we infer from Lemma 1 and Lemma 2 that Γ3 = Γ4 = Γ5 = 0. Conse-
quently

(2.10) F (�) = Γ2χ2(�) + Γ

is a periodic sequence (mod 2) and (2.1) holds.

First we prove that

(2.11) D ≡ 1 (mod 2).

Assume by contradiction that D ≡ 0 (mod 2). Then

n2 +Dm2 + k ≡ n2 + k (mod 2),

therefore we obtain from (2.1) that

F
(
n2 + k

)
= F

(
n2 +Dm2 + k

)
=

(
F (n) +DF (m) + k

)2

holds for every n,m ∈ N. This with m = 1 and m = 2 shows that

F
(
n2 + k

)
=

(
F (n) +DF (1) + k

)2
=

(
F (n) +DF (2) + k

)2
,

consequently

0 = D
(
F (1)− F (2)

)(
2F (n) +DF (1) +DF (2) + 2k

)
.

Since F (1)− F (2) = (Γ2 + Γ)− Γ = Γ2 �= 0, we have

F (n) = −DF (1) +DF (2) + 2k

2
for every n ∈ N,

and so
F (1) = F (2), Γ2 = 0.

This contradicts to the fact Γ2 �= 0. Thus, (2.11) is proved.

Assume now that Γ2 �= 0 and D ≡ 1 (mod 2). Thus, we have

(2.12) F
(
n2 +m2 + k

)
= F

(
n2 +Dm2 + k

)
=

(
F (n) +DF (m) + k

)2

for every n,m ∈ N. This shows that

F (k) = F
(
22 + 22 + k

)
=

(
F (2) +DF (2) + k

)2
=

(
(D + 1)Γ + k

)2
,

F (k) = F
(
12 + 12 + k

)
=

(
F (1) +DF (1) + k

)2
=

(
(D + 1)(Γ2 + Γ) + k

)2
,
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consequently

0 =
(
(D + 1)(Γ2 + Γ) + k

)2 − (
(D + 1)Γ + k

)2
=

= (D + 1)Γ2

(
(D + 1)Γ2 + 2(D + 1)Γ + 2k

)

and so

(D + 1)Γ + k = −D + 1

2
Γ2 and F (k) =

(D + 1

2

)2

Γ2
2.

By applying (2.12) with n = 1 and m = 2, we obtain

F (k + 1) = F
(
12 + 22 + k

)
=

(
F (1) +DF (2) + k

)2
=

=
(
Γ2 + (D + 1)Γ + k

)2
=

(
Γ2 −

D + 1

2
Γ2

)2

=
(D − 1

2

)2

Γ2
2.

If k is even number, then F (k) = F (2), F (k + 1) = F (1), and so





(D + 1

2

)2

Γ2
2 − Γ = 0,

(D − 1

2

)2

Γ2
2 − (Γ2 + Γ) = 0.

Solving this system, using Γ2 �= 0, we have

Γ2 = − 1

D
, Γ =

(D + 1

2D

)2

and

k = −(D + 1)Γ− D + 1

2
Γ2 = −(D + 1)

(D + 1

2D

)2

− D + 1

2

(
− 1

D

)
=

= −1 +D2 +D +D3

4D2
< 0,

which contradicts to the fact k ∈ N.
Now we consider the case 2 � |k. Then F (k) = F (1), F (k + 1) = F (2), and

so 


(D + 1

2

)2

Γ2
2 − (Γ2 + Γ) = 0,

(D − 1

2

)2

Γ2
2 − Γ = 0.

Solving this system, using Γ2 �= 0, we have

Γ2 =
1

D
, Γ =

(D − 1

2D

)2
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and

k = −1 +D2 +D +D3

4D2
< 0.

This is impossible, because k ∈ N. Thus we have proved that Γ2 = 0.

Lemma 3 is proved. �

Lemma 4. We have Γ3 = 0.

Proof. Assume by contradiction that Γ3 �= 0. Then from Lemmas 1–3 we
have Γ2 = Γ4 = Γ5 = 0, consequently

(2.13)

{
F (�) = Γ3χ3(�) + Γ,

F (n2 +Dm2 + k) = (F (n) +DF (m) + k)2

for every n,m ∈ N and

F (1) = Γ3 + Γ, F (2) = Γ3 + Γ, F (3) = Γ.

We infer from (2.13) that

(2.14)





F (k) =
(
F (3) +DF (3) + k

)2
=

(
(D + 1)Γ + k

)2
,

F (k + 1) =
(
F (1) +DF (3) + k

)2
=

(
(D + 1)Γ + Γ3 + k

)2
,

F (k +D) =
(
F (3) +DF (1) + k)

)2
=

(
(D + 1)Γ +DΓ3 + k

)2
,

F (k +D + 1) =
(
F (1) +DF (1) + k

)2
=

(
(D + 1)(Γ3 + Γ) + k

)2
.

The case (A): D ≡ 0 (mod 3).

Since a sequence {F (n)}∞n=1 is periodic (mod 3), we infer from (2.14) that

F (k)− F (k +D) =
(
(D + 1)Γ + k

)2 − (
(D + 1)Γ +DΓ3 + k2

)
=

= −DΓ3

(
2(D + 1)Γ +DΓ3 + 2k

)
= 0

and

F (k + 1)− F (k +D + 1) = ((D + 1)Γ + Γ3 + k2 − ((D + 1)(Γ3 + Γ) + k)2 =

= −DΓ3

(
2(D + 1)Γ + (D + 2)Γ3 + 2k

)
= 0.

The last relations with Γ3 �= 0 imply
{
2(D + 1)Γ +DΓ3 + 2k = 0,

2(D + 1)Γ + (D + 2)Γ3 + 2k = 0,

consequently
2Γ3 = 0,

which is impossible.
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The case (B): D ≡ 1 (mod 3).

In this case, we distinguish three cases according to k (mod 3).

The case (B1): D ≡ 1 (mod 3), k ≡ 1 (mod 3).

Then F (k)− F (1) = 0, F (k+ 1)− F (2) = 0 and F (1 + k+D)− F (3) = 0,
and so we have

(B1)




F (k)− F (1) =
(
(D + 1)Γ + k

)2 − Γ3 − Γ = 0,

F (k + 1)− F (2) =
(
(D + 1)Γ + Γ3 + k

)2 − Γ3 − Γ = 0,

F (k +D + 1)− F (3) =
(
(D + 1)(Γ3 + Γ) + k

)2 − Γ = 0.

Solving this system, we obtain that

Γ =
( 2D + 1

2D(D + 1)

)2

, Γ3 = − 1

D(D + 1)
and k = −4D2 + 2D + 1

4D2(D + 1)
.

These are impossible, because D ∈ N and k ∈ N. Thus, the case (B1) does not
occur.

The case (B2): D ≡ 1 (mod 3), k ≡ 2 (mod 3).

In the case (B2), we infer from (2.14) that

F (k +D + 1)− F (k) = F (1)− F (2) = 0,

and so

0 = F (k +D + 1)− F (k) =
(
(D + 1)(Γ3 + Γ) + k

)2 − (
(D + 1)Γ + k

)2
=

= (D + 1)Γ3

(
2(D + 1)Γ + (D + 1)Γ3 + 2k

)
.

Since Γ3 �= 0, we have

(D + 1)Γ + k = −D + 1

2
Γ3,

which with (2.14) show that

(B2)




F (2) = F (k) =
(
(D + 1)Γ + k

)2
=

(D + 1

2

)2

Γ2
3

F (3) = F (k + 1) =
(
(D + 1)Γ + Γ3 + k

)2
=

(D − 1

2

)2

Γ2
3

F (1) = F (k +D + 1) =
(
(D + 1)(Γ3 + Γ) + k

)2
=

(D + 1

2

)2

Γ2
3.

Since F (1) = F (2) = Γ3 + Γ and F (3) = Γ, we infer from (B2) that

Γ3 =
1

D
, Γ =

(D − 1

2D

)2

and k = −D3 +D2 +D + 1

4D2
,

which are impossible, because k ∈ N. Thus, the case (B2) does not occur.
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The case (B3): D ≡ 1 (mod 3), k ≡ 0 (mod 3).

In same way as above, in the case (B3) we have

(B3)




F (k)− F (3) =
(
(D + 1)Γ + k

)2 − Γ = 0,

F (k + 1)− F (1) =
(
(D + 1)Γ + Γ3 + k

)2 − Γ3 − Γ = 0,

F (k +D + 1)− F (2) =
(
(D + 1)(Γ3 + Γ) + k

)2 − Γ3 − Γ = 0.

Solving (B3), we obtain that

Γ3 = − 1

D + 1
, Γ = − (D + 2)2

4(D + 1)2
and k = −D(D + 2)

4(D + 1)
.

These are impossible, because k ∈ N. Thus (B3) and (B) do not occur.

The cases (C): D ≡ 2 (mod 3).

The proof of (C) is similar as above, we infer from the following relation

0 =F (k +D + 1)− F (k) =
(
(D + 1)(Γ3 + Γ) + k

)2 − (
(D + 1)Γ + k

)2
=

=(D + 1)Γ3

(
2(D + 1)Γ + (D + 1)Γ3 + 2k

)
.

Since Γ3 �= 0, we have

(D + 1)Γ + k = −D + 1

2
Γ3

and so

(C)





F (k) =
(
(D + 1)Γ + k

)2
=

(D + 1

2

)2

Γ2
3,

F (k + 1) =
(
(D + 1)Γ + Γ3 + k

)2
=

(D − 1

2

)2

Γ2
3,

F (k + 2) = F (k +D) =
(
(D + 1)Γ +DΓ3 + k

)2
=

(D − 1

2

)2

Γ2
3.

Since F (1) = F (2) = Γ3+Γ and F (3) = Γ, we infer from (C) that F (k) = F (3),
F (k + 1) = F (k + 2) = F (1), consequently



Γ =

(D + 1

2

)2

Γ2
3,

Γ3 + Γ =
(D − 1

2

)2

Γ2
3.

Hence

Γ3 = − 1

D
, Γ =

(D + 1

2

)2

Γ2
3 =

(D + 1

2D

)2
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and

k = −D + 1

2
Γ3 − (D + 1)Γ =

D + 1

2D
− (D + 1)

(D + 1

2D

)2

=

= −D3 +D2 +D + 1

4D2
.

The last relation contradicts to the fact k ∈ N.
Thus, (C) and so Lemma 4 are proved. �

Lemma 5. We have Γ5 = 0.

Proof. Assume by contradiction that Γ5 �= 0. Then from Lemmas 1–4 we
have Γ2 = Γ3 = Γ4 = 0, consequently

(2.15)

{
F (�) = Γ5χ5(�) + Γ,

F (n2 +Dm2 + k) = (F (n) +DF (m) + k)2

for every n,m ∈ N. The elements of this sequence are:

F (1) = Γ5 + Γ, F (2) = −Γ5 + Γ, F (3) = −Γ5 + Γ, F (4) = Γ5 + Γ, F (5) = Γ.

We infer from (2.15) that

(2.16)




F (k) =
(
F (5) +DF (5) + k

)2
=

(
(D + 1)Γ + k

)2
,

F (k + 1) =
(
F (1) +DF (5) + k

)2
=

(
(D + 1)Γ + Γ5 + k

)2
,

F (k + 4) =
(
F (2) +DF (5) + k

)2
=

(
(D + 1)Γ− Γ5 + k

)2
.

In the proof of Lemma 5 we will distinguish five cases according to k (mod 5).

◦ If k ≡ 1 (mod 5), then F (k) = F (1), F (k + 1) = F (2), F (k+4) = F (5),
and so 



(
(D + 1)Γ + k

)2
= Γ5 + Γ,(

(D + 1)Γ + Γ5 + k
)2

= −Γ5 + Γ,(
(D + 1)Γ− Γ5 + k

)2
= Γ.

Solving this system, using Γ5 �= 0, we have

Γ =
25

16
, Γ5 = −3

2
and k = −29

16
− 25

16
D,

which contradicts to k ∈ N.

◦ If k ≡ 2 (mod 5), then F (k) = F (2), F (k + 1) = F (3), F (k + 4) =
= F (6) = F (1), and so




(
(D + 1)Γ + k

)2
= −Γ5 + Γ,(

(D + 1)Γ + Γ5 + k
)2

= −Γ5 + Γ,(
(D + 1)Γ− Γ5 + k

)2
= Γ5 + Γ.
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Solving this system, using Γ5 �= 0, we have

Γ =
5

4
, Γ5 = 1 and k = −7

4
− 5

4
D,

which contradicts to k ∈ N.

◦ If k ≡ 3 (mod 5), then F (k) = F (3), F (k + 1) = F (4), F (k + 4) =
= F (7) = F (2), and so




(
(D + 1)Γ + k

)2
= −Γ5 + Γ,(

(D + 1)Γ + Γ5 + k
)2

= Γ5 + Γ,(
(D + 1)Γ− Γ5 + k

)2
= −Γ5 + Γ.

Solving this system, using Γ5 �= 0, we have

Γ =
5

4
, Γ5 = 1 and k = −3

4
− 5

4
D,

which contradicts to k ∈ N.

◦ If k ≡ 4 (mod 5), then F (k) = F (4), F (k + 1) = F (5), F (k + 4) =
= F (8) = F (3), and so




(
(D + 1)Γ + k

)2
= Γ5 + Γ,(

(D + 1)Γ + Γ5 + k
)2

= Γ,(
(D + 1)Γ− Γ5 + k

)2
= −Γ5 + Γ.

Solving this system, using Γ5 �= 0, we have

Γ =
25

16
, Γ5 = −3

2
and k = −21

16
− 25

16
D,

which contradicts to k ∈ N.

◦ If k ≡ 5 (mod 5), then F (k) = F (5), F (k + 1) = F (6) = F (1), F (k+4) =
= F (9) = F (4), and so




(
(D + 1)Γ + k

)2
= Γ,(

(D + 1)Γ + Γ5 + k
)2

= Γ5 + Γ,(
(D + 1)Γ− Γ5 + k

)2
= Γ5 + Γ.

Solving this system, using Γ5 �= 0, we have

Γ = 0, Γ5 = 1 and k = 0,

which contradicts to k ∈ N.
Lemma 5 is proved. �
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3. The proof of Theorem 2

It follows from Lemmas 1–5 that

Γ2 = Γ3 = Γ4 = Γ5 = 0 and F (�) = Γ for every � ∈ N.

Thus, the relation (1.3) gives

Γ =
(
Γ +DΓ + k

)2
,

which implies

Γ =
1− 2Dk − 2k ±

√
1− 4Dk − 4k

2(D + 1)2
=

(
1±

√
1− 4Dk − 4k

2(D + 1)

)2

.

Thus, we proved that

F (�) = Γ =

(
1±

√
1− 4Dk − 4k

2(D + 1)

)2

for every � ∈ N.

Theorem 2 is proved. �

4. The proof of Theorem 1. Lemmas

In this section we assume that the function T,G,H : N → C and the
numbers k ∈ N0, D ∈ N, U, V ∈ C, U �= 0 satisfy the relation

(4.1) T (n2 +Dm2 + k) = G(n) + UH(m) + V for every n,m ∈ N.

Lemma 6. Assume that the function T, G, H : N → C and the numbers
k ∈ N0, D ∈ N, U, V ∈ C, U �= 0 satisfy (4.1). Then

H
(
�+ 12m

)
= H(�+ 9m) +H(�+ 8m) +H(�+ 7m)−
−H(�+ 5m)−H(�+ 4m)−H(�+ 3m) +H(�)

(4.2)

holds for every �,m ∈ N and

(4.3)




H(7) = 2H(5)−H(1),

H(8) = 2H(5) +H(4)− 2H(1),

H(9) = H(6) + 2H(5)−H(2)−H(1),

H(10) = H(6) + 3H(5)−H(3)− 2H(1),

H(11) = H(6) + 4H(5)−H(3)−H(2)− 2H(1),

H(12) = H(6) + 4H(5) +H(4)−H(2)− 4H(1).
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Proof. We note from (4.1) that

(4.4) T
(
x2 +Dy2 + k

)
= G(|x|) + UH(|y|) + V for every x, y ∈ Z \ {0}.

First we prove the following assertion:

(4.5) H(n+ 2m)−H(|n− 2m|) = H(2n+m)−H(|2n−m|)

for every n,m ∈ N, n �= 2m,m/2.

Assume that the numbers n,m ∈ N satisfy the conditions n �= 2m,n �= m/2.
If Dn− 2m �= 0, then we infer from (4.1) and the next relations

(Dn+ 2m)2 +D(n− 2m)2 + k = (Dn− 2m)2 +D(n+ 2m)2 + k

and

(Dn+ 2m)2 +D(2n−m)2 + k = (Dn− 2m)2 +D(2n+m)2 + k

that

G(Dn+ 2m) + UH(|n− 2m|) + V = G(|Dn− 2m|) + UH(n+ 2m) + V

and

G(Dn+ 2m) + UH(|2n−m|) + V = G(|Dn− 2m|) + UH(2n+m) + V.

These imply that

G(Dn+ 2m)−G(|Dn− 2m|) = UH(n+ 2m)− UH(|n− 2m|) =
= UH(2n+m)− UH(|2n−m|),

which prove (4.5) in the case Dn− 2m �= 0.

If Dn− 2m = 0, then 2Dn−m = 4m−m = 3m �= 0. In this case, we infer
from (4.1) and the next relations

(2Dn+m)2 +D(n− 2m)2 + k = (2Dn−m)2 +D(n+ 2m)2 + k

and

(2Dn+m)2 +D(2n−m)2 + k = (2Dn−m)2 +D(2n+m)2 + k

that

G(2Dn+m) + UH(|n− 2m|) + V = G(|2Dn−m|) + UH(n+ 2m) + V

and

G(2Dn+m) + UH(|2n−m|) + V = G(|2Dn−m|) + UH(2n+m) + V.
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Similar as above, we deduce from these relations

G(2Dn+m)−G(|2Dn−m|) = UH(n+ 2m)− UH(|n− 2m|) =
= UH(2n+m)− UH(|2n−m|),

which prove (4.5) in the case Dn− 2m = 0, and so (4.5) is proved.

Applications of (4.5) in the cases

(n,m) ∈ {(1, 3); (2, 3); (1, 4); (1, 5); (3, 4); (2, 5)}

prove that (4.3) holds for H(7), H(8), H(9), H(11), H(10) and H(12). Thus,
(4.3) is proved.

Now we prove (4.2). By applying (4.5) with n = �+ 2t, we have

H(�+ 4t)−H(�) = H(2�+ 5t)−H(2�+ 3t) for every �, t ∈ N.

This with t = 3m shows that

H(�+ 12m)−H(�) = H(2�+ 15m)−H(2�+ 9m).

Since H(2x+ 5y)−H(2x+ 3y) = H(x+ 4y)−H(x) holds for every x, y ∈ N,
the last relation implies that

H(�+ 12m)−H(�) = H(2�+ 15m)−H(2�+ 9m) =

=
[
H
(
2(�+ 5m) + 5m

)
−H

(
2(�+ 5m) + 3m

)]
+

+
[
H
(
2(�+ 4m) + 5m

)
−H

(
2(�+ 4m) + 3m

)]
+

+
[
H
(
2(�+ 3m) + 5m

)
−H

(
2(�+ 3m) + 3m

)]
=

=
[
H
(
�+ 9m

)
−H

(
�+ 5m

)]
+

+
[
H
(
�+ 8m)

)
−H

(
�+ 4m

)]
+

+
[
H
(
�+ 7m)

)
−H

(
�+ 3m

)]
,

which prove (4.2).

Lemma 6 is proved. �

In the next lemma we shall follow a method in part similar to the one used
in the proof of Lemma 2 of the paper [8].
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Lemma 7. Assume that the function T, G, H : N → C and the numbers
D ∈ N, U, V ∈ C, U �= 0 satisfy (4.1). Let

A :=
1

120

(
H(6) + 4H(5)−H(3)−H(2)− 3H(1)

)
,

Γ2 :=
−1

8

(
H(6)− 4H(5) + 4H(4)−H(3) + 3H(2)− 3H(1)

)
,

Γ3 :=
−1

3

(
H(6)− 2H(5) + 2H(3)−H(2)

)
,

Γ4 :=
1

4

(
H(6)− 2H(4)−H(3) +H(2) +H(1)

)
,

Γ5 :=
1

5

(
H(6)−H(5)−H(3)−H(2) + 2H(1)

)
,

Γ :=
1

4

(
H(6)− 4H(5) + 2H(4) + 3H(3) +H(2) +H(1)

)
,

F (�) :=Γ2χ2(�) + Γ3χ3(�) + Γ4χ4(�− 1) + Γ5χ5(�) + Γ,

where χ2(�) (mod 2), χ3(�) (mod 3) are the principal Dirichlet characters and
χ4(�) (mod 4), χ5(�) (mod 5) are the real, non-principal Dirichlet characters,
i.e.

χ2(0) = 0, χ2(1) = 1,

χ3(0) = 0, χ3(1) = χ3(2) = 1,

χ4(0) = χ4(2) = 0, χ4(1) = 1, χ4(3) = −1,

χ5(0) = 0, χ5(2) = χ5(3) = −1, χ5(1) = χ5(4) = 1.

Then we have

(4.6) H(�) = A�2 + F (�) for every � ∈ N.

Proof. With the help of compute, we proved that (4.6) holds for 1 ≤ k ≤ 12.
Indeed, by using (4.3), we show with Maple that

H(�)−A�2 − F (�) = 0 for every � = 1, . . . , 12,

where F (�) = Γ2χ2(�) + Γ3χ3(�) + Γ4χ4(�− 1) + Γ5χ5(�) + Γ for every � ∈ N.
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Assume that H(k) = Ak2 +F (k) holds for � ≤ k ≤ �+11, where � ≥ 1. By
applying (4.2) with m = 1, we have

H(�+ 12) = H(�+ 9) +H(�+ 8) +H(�+ 7)−H(�+ 5)−
−H(�+ 4)−H(�+ 3) +H(�) =

= A
[
(�+ 9)2 + (�+ 8)2 + (�+ 7)2 − (�+ 5)2−

− (�+ 4)2 − (�+ 3)2 + �2
]
+

+
[
F (�+ 9) + F (�+ 8) + F (�+ 7)− F (�+ 5)−

− F (�+ 4)− F (�+ 3) + F (�)
]
=

= A(�+ 12)2 + F (�+ 12),

which proves that (4.6) holds for � + 12 and so it is true for all �. In the last
relation we have used

F (�+ 9) + F (�+ 8) + F (�+ 7)− F (�+ 5)− F (�+ 4)− F (�+ 3) + F (�) =

= Γ2

[ �+9∑
k=�+6

χ2(k)−
�+6∑

k=�+3

χ2(k) + χ2(�)
]
+

+ Γ3

[ �+9∑
k=�+7

χ3(k)−
�+5∑

k=�+3

χ3(k) + χ3(�)
]
+

+ Γ4

[ �+9∑
k=�+6

χ4(k − 1)−
�+6∑

k=�+3

χ4(k − 1) + χ4(�− 1)
]
+

+ Γ5

[ �+10∑
k=�+6

χ5(k)−
�+6∑

k=�+2

χ5(k)− χ5(�+ 10) + χ5(�+ 2) + χ5(�)
]
+ Γ =

= Γ2χ2(�) + Γ3χ3(�) + Γ4χ4(�− 1) + Γ5χ5(�+ 2) + Γ =

= Γ2χ2(�+ 12) + Γ3χ3(�+ 12) + Γ4χ4(�+ 11) + Γ5χ5(�+ 12) + Γ =

= F (�+ 12).

Lemma 7 is proved. �

5. Proof of Theorem 1

Assume that the numbers k ∈ N0, D ∈ N and the arithmetical function
f : N → C satisfy the equation

f
(
n2 +Dm2 + k

)
= f2(n) +Df2(m) + k for every n,m ∈ N.

Let F(n) := f2(n) for every n ∈ N and U = D, V = k. Thus, we have

f
(
n2 +Dm2 + k

)
= F(n) +DF(m) + k for every n,m ∈ N.
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and

(5.1) F
(
n2 +Dm2 + k

)
=

(
F(n) +DF(m) + k

)2

for every n,m ∈ N. We shall use the notations of Lemmas 6–7 for the cases
G = F and H = F . Hence

A :=
1

120

(
F(6) + 4F(5)−F(3)−F(2)− 3F(1)

)
,

Γ2 :=
−1

8

(
F(6)− 4F(5) + 4F(4)−F(3) + 3F(2)− 3F(1)

)
,

Γ3 :=
−1

3

(
F(6)− 2F(5) + 2F(3)−F(2)

)
,

Γ4 :=
1

4

(
F(6)− 2F(4)−F(3) + F(2) + F(1)

)
,

Γ5 :=
1

5

(
F(6)−F(5)−F(3)−F(2) + 2F(1)

)
,

Γ :=
1

4

(
F(6)− 4F(5) + 2F(4) + 3F(3) + F(2) + F(1)

)
,

F (�) :=Γ2χ2(�) + Γ3χ3(�) + Γ4χ4(�− 1) + Γ5χ5(�) + Γ,

From (4.6) we have

(5.2) F(�) = f2(�) = A�2 + F (�) for every � ∈ N.

Lemma 8. We have
A ∈ {0, 1}.

Proof. We infer from (5.1) and (5.2) that

A(n2 +Dm2 + k)2 + F (n2 +Dm2 + k) =

=
(
A(n2 +Dm2) + F (n) +DF (m) + k

)2(5.3)

for every n,m ∈ N. Since

|F (�)| ≤ |Γ2|+ |Γ3|+ |Γ4|+ |Γ5|+ |Γ| for every � ∈ N,

for each fix n ∈ N, we infer from (5.3) that

A = lim
m→∞

A(n2 +Dm2 + k)2 + F (n2 +Dm2 + k)

(Dm2)2
=

= lim
m→∞

(A(n2 +Dm2) + F (n) +DF (m) + k

Dm2

)2

= A2.

Therefore, we have A ∈ {0, 1}, and so Lemma 8 is proved. �
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Lemma 9. Assume that A = 1. Then

F(n) = n2, f(n) = ±n

and
f
(
n2 +Dm2 + k

)
= n2 +Dm2 + k

for every n,m ∈ N.

Proof. Assume that A = 1. In this case, we have F(n) = n2 + F (n). Then
we infer from (5.1) and (5.2) that

0 = F
(
n2 +Dm2 + k

)
−
(
F(n) +DF(m) + k

)2
=

=
(
n2 +Dm2 + k

)2
+ F

(
n2 +Dm2 + k

)
−

−
(
n2 + F (n) +Dm2 +DF (m) + k

)2
=

= 2D
(
n2 + k − (n2 + F (n) +DF (m) + k)

)
m2 +W (n,m) =

= −2D
(
F (n) +DF (m)

)
m2 +W (n,m)

(5.4)

holds for every n,m ∈ N, where

W (n,m) : =
(
n2 + k

)2
+ F

(
n2 +Dm2 + k

)
−

−
(
n2 + F (n) +DF (m) + k

)2
.

(5.5)

Now let n, a ∈ N be fixed, m ∈ N, m ≡ a (mod 60). Since F (k) is a
periodic function (mod 60), we have n2+Dm2+ k ≡ n2+Da2+ k (mod 60),
and so

F
(
n2 +Dm2 + k

)
= F

(
n2 +Da2 + k

)

and
n2 + F (n) +DF (m) + k = n2 + F (n) +DF (a) + k.

On the other hand

|W (n,m)| =
∣∣(n2 + k)2 + F (n2 +Da2 + k)− (n2 + F (n) +DF (a) + k)2

∣∣ < ∞

and so we obtain from (5.4) that

F (n) +DF (a) = lim
m→∞

m≡a (mod 60)

W (n,m)

2Dm2
= 0.

Thus, we proved that F (n) +DF (a) = 0 holds for each fixed n, a ∈ N, conse-
quently

(5.6) F (n) +DF (m) = 0 and W (n,m) = 0
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hold for every n,m ∈ N. Applying (5.6) for the case n = m, we have

(D + 1)F (n) = 0 for every n ∈ N.

Consequently

F (n) = 0 for every m ∈ N

and

F(m) = f2(m) = m2, f(m) = ±m

and

f(n2 +Dm2 + k) = f2(n) +Df2(m) + k = n2 +Dm2 + k

for every n,m ∈ N.
Lemma 9 is proved. �

Now we complete the proof of Theorem 1.

Assume that A = 0. Then

F (n) = f(n)2 = Γ2χ2(n) + Γ3χ3(n) + Γ4χ4(n− 1) + Γ5χ5(n) + Γ

and

F (n2 +Dm2 + k) = (F (n) +DF (m) + k)2.

We infer from Theorem 2 that

Γ2 = Γ3 = Γ4 = Γ5 = 0

and

F (n) = f2(n) =

(
1±

√
1− 4Dk − 4k

2(D + 1)

)2

, f(n) = ±1±
√
1− 4Dk − 4k

2(D + 1)
.

We have

f
(
n2 +Dm2 + k

)
= f(n)2 +Df(m)2 + k =

= (D + 1)

(
1±

√
1− 4Dk − 4k

2(D + 1)

)2

+ k =
1±

√
1− 4Dk − 4k

2(D + 1)
.

Thus, all assertions of Theorem 1 are proved.

The proof of Theorem 1 is finished. �
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6. Proof of Corollary 1

Assume that the numbers k ∈ N0, D ∈ N and a multiplicative function
f : N → C satisfy the equation

(6.1) f
(
n2 +Dm2 + k

)
= f2(n) +Df2(m) + k for every n,m ∈ N.

From Theorem 1, one of the following assertions holds:

(a) f(n) = εD,k(n)
1−

√
1− 4Dk − 4k

2(D + 1)
,

(b) f(n) = εD,k(n)
1 +

√
1− 4Dk − 4k

2(D + 1)
,

(c) f(n) = εD,k(n)n,

where εD,k(n) ∈ {1,−1} and εD,k(n
2 +Dm2 + k) = 1 for every n,m ∈ N.

Assume that (a) or (b) holds, then f(n) = εD,k(n)C, where C ∈ C. Since
f ∈ M, by applying (6.1) with n := n1 · · ·nt, where n1, . . . , nt are pairwise
relatively primes, we have

C = εD,k

(
(n1 · . . . · nt)

2 +Dm2 + k
)
C =

= f2(n1 · . . . · nt) +Df2(m) + k = f2(n1) · . . . · f2(nt)
2 +DC2 + k =

= C2t +DC2 + k.

Thus, C2t = C −DC2 − k holds for every t ∈ N, consequently

C4 = C2, and so C ∈ {0,−1, 1}.

Since f is multiplicative, f(1) = 1, therefore C �= 0.

If C = ±1, then C2t = C − DC2 − k implies 1 = ±1 − D − k, and so
k = ±1− 1−D �∈ N. This is a contradiction and so (a) and (b) do not occur.

Thus, the case (c) is true, i. e. f(n) = εD,k(n)n. It is obvious from f ∈ M
that εD,k ∈ M and εD,k(n

2 +Dm2 + k) = 1 for every n,m ∈ N.
Corollary 1 is proved. �
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[2] Kátai, I. and B. M. Phong, Some unsolved problems on arithmetical
functions, Annales Univ. Sci. Budapest., Sect. Comp., 44 (2015), 233–235.

[3] Khanh, B. M. M., On the equation f(n2 + Dm2) = f(n)2 + Df(m)2,
Annales Univ. Sci. Budapest., Sect. Comp., 44 (2015), 59–68.

[4] Khanh, B. M. M., On conjecture concerning the functional equation,
Annales Univ. Sci. Budapest., Sect. Comp., 46 (2017), 123—135.

[5] Khanh, B. M. M., A note on a result of B. Bojan, Annales Univ. Sci.
Budapest., Sect. Comp., 49 (2019), 285—297 .
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