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ON THE EQUATION
f(n* + Dm? + k) = f(n)* + Df(m)* + k
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Abstract. We give all solutions of the equation
f(@® + Dm? + k) = f(n)* + Df(m)* + k,

where D,k € N are given and f is an arbitrary complex valued function
defined on N.

1. Introduction

Let Q(z,y) € Z[z,y] be a polynomial with two variable and let A, B be
subsets of N. We are interested in finding solutions f : N — C to an equation
of the form

(1.1) f(Q(a,b)) =Q(f(a), f(b)) for every a€ Abe B.

If Q(z,y) = z+y, A= B =N, then it can be shown that there is a single
family of solutions, namely f(n) = cn, where ¢ = f(1) € C is an arbitrary
number.

In 1992, C. Spiro [9] consider the equation (1.1) in the cases when Q(x,y) =
= x+y and A = B = P. She proved that if a real-valued multiplicative function
f satisfies

flo+q)=fp) +flg (Vp,geP) and f(po)#0 forsome py€ P,

then f(n) is the identity function.
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Let M (M*) be the set of all multiplicative (completely multiplicative)
functions, respectively. In 1997 J.-M. De Koninck, I. Katai and B. M. Phong [6]
proved that if a function f € M satisfies the condition

flp+m?) = f(p) + f(m?) forevery peP,meN,

then f(n) =n for all n € N.

In 2014 B. Bojan considered the case when Q(x,y) = 2? + 4%, A= B =N.
He determined all solutions of those f : N — C for which

f(n®+m?) = f*(n) + f>(m) for every n,m €N.

It is proved in [1] that the solution f(n) of the above equation is one of the
followings:

o f(n)=0 forevery neN,
o finy =280

2
o f(n)=e1,0(n)n forevery neN,

for every n €N,

where ep i, : N — {—1,1} is an arithmetical function such that

€D,k (n2 + Dm? + k) =1 forevery n,méeN.

I. Katai and B. M. Phong posed the following conjecture for the cases when
Q(z,y) =2> + Dy? and A = B =N:

Conjecture 1. (I. Katai and B. M. Phong [2]) Assume that the number D € N
and the arithmetical function f: N — C satisfy the equation

f(n* 4+ Dm?) = f*(n)+ Df*(m) for every n,m € N.
Then one of the following assertions holds:
o  f(n)=0 forevery neN,
o fm)= 20"

D+1
o f(n)=epo(n)n forevery neN.

for every n €N,

In 2015 we proved in [3] that Conjecture 1 is true for D = 2 and D = 3.
N. T. Nghia [7] proved that Conjecture 1 is true for D € {4,5}. In 2017 we
given a complete solution for this question.

Theorem A. (B. M. M. Khanh [4]) Conjecture 1 is true.
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Recently, in [5] we have been studied and given all solutions of the equation
f(n2 +m?+ k) = f%(n) + f*(m) + K for every n,m €N,

where k € Ny and K € C. We infer from the results of [5] that if Q(z,y) =
=224+ 9y’ +k, kc€Nand A= B =N, then the following theorem holds:

Theorem B. (B. M. M. Khanh [5]) Assume that a non-negative integer k and
an arithmetical function f: N — C satisfy the equation

f(n2 +m? + k) = f2(n) + f2(m) +k  for every n,m € N.

Then one of the following assertions holds:

™

1,k(n)

(1-vV—8k+1),
o f(n)= 1,k(n) (1+ m)’

S

In this paper we improve Theorem A and Theorem B as follows:

Theorem 1. Assume that the numbers k € Ng, D € N and the arithmetical
function f: N — C satisfy the equation

f(n2 +Dm? + k;) = f2(n) + Df*(m) +k for every n,m € N.

Then one of the following assertions holds:

a) f(n)=epr(n) - 21(; j_Dll; — Ak for every n €N,
b)  f(n)=epxr(n) Lt 21(; iDII; — 4k for every n €N,

¢) f(n)=epr(n)n forevery neN.

We infer from Theorem 1 the following result.

Corollary 1. Assume that the numbers k € Nog, D € N and a multiplicative
function f: N — C satisfy the equation

f(n2 + Dm? + k‘) = f2(n) + Df*(m) +k for every n,m € N.

Then f(n) = ep(n)n for every n € N, where ep, € M, epr(n) € {1,—1}
and ep x(n* + Dm? + k) = 1 for every n,m € N.
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In the order to prove Theorem 1, we will need to the following result.

Theorem 2. Assume that the numbers 'y, T's, I'y, I's, T € C, D € N, k € Ny
and the arithmetical functions F : N — C satisfy

(1.2) F(n) =Taoxa(n) +Tsxs(n) + Tyxa(n — 1) + Tsxs(n) + T
and
(1.3) F(n?+ Dm® + k) = (F(n) + DF(m) + k)*

for every n, m € N. Then
lo=T3=T4=15=0

and one of the following assertions holds:

1++1—4Dk — 4k
2(D+1)

2
A) F(n):F:( > for every mn €N,

2
1—+1—-4Dk — 4k
:F:
B) F(n) ( DT 1) ) for every n €N,

where x2(n) (mod 2), x3(n) (mod 3) are the principal Dirichlet characters and
Xx4(n) (mod 4), x5(n) (mod 5) are the real, non-principal Dirichlet characters,

i.e. x2(0) =0, x2(1) = 1, x3(0) = 0, x3(1) = x3(2) = 1, x4(0) = xa(2) = 0,
xa(1) =1, xa(3) = =1, x5(2) = x5(3) = =1, x5(1) = x5(4) = L.

2. The proof of Theorem 2. Auxiliary lemmas

In this Section we assume that all assumptions of Theorem 2 are satisfied,
i.e.
F(n) =Tax2(n) + Taxa(n) + Taxa(n — 1) + Isxs(n) + T

and
(2.1) F(n?®+ Dm? + k) = (F(n) + DF(m) + k)

for every n,m € N.

In the order to prove Theorem 2, first we shall prove some lemmas.

Lemma 1. We have I'y = 0.
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Proof. It is obvious from our assumptions that {F'(¢)}$° is periodic (mod 60),
therefore

F(2*+D2*+k) = F(8 4+ D2° + k) and F(2*+ D2° + k) = F (8 + D8 + k),
which with (2.1) imply that

(F(2) + DF(2) + k)* = (F(8) + DF(2) + k)

and
(F(2) + DF(2) + k)* = (F(8) + DF(8) + k).
Consequently
22) (F(2) + DF(2) + k)* — (F(8) + DF(2) + k)* =
' = (F(2)— F(8))((2D + 1)F(2) + F(8) + 2k) = 0
and
23) (F(2) + DF(2) + k)* = (F(8) + DF(8) + k)* =
=(D+1)(F(2)— F®))((D+1)F(2) + (D +1)F(8) + 2k) = 0.
Since

F(2)=T34Ty—T5+I and F@8)=T5-Ty,—T5+T,

we have I'y = 0 if F|(2) = F(8). Assume now that F'(2) — F(8) # 0. Then we
infer from (2.2) and (2.3) that

(2D +1)F(2) + F(8)+2k =0 and (D +1)F(2)+ (D + 1)F(8) + 2k = 0,

consequently
DF(2) = DF(8).

This contradicts to the assumption F(2) — F(8) # 0. Thus, I'y = 0 follows,

which finishes the proof of Lemma 1. |
Lemma 2. We have

I.I's = 0,

Pol's = 0,

I'sl's = 0.

Proof. By using Lemma 1, we have I'y = 0, and so the sequence
F(l) =Tax2(€) + Taxs(f) + Tsxs(4) + T

is the periodic (mod 30) and (2.1) is true.
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First we prove that

(2.4) F(n)+ F(n+4)—F(n+10) — F(n+24) =0,

(2.5) Fn+1)+F(n+4)—F(n+16)— F(n+19) =0
and

(2.6) F(n)+ F(n+25)— F(n+10) — F(n+15) =0

hold for every n € N.
From the definition of F'(¢), we have

F(n) =Tax2(n) + I'sxs(n) + sxs(n) + T,
F(n+4) =Tax2(n+4) +Tsxs(n+4) +Tsxs(n +4) + ' =
=Tox2(n) +Taxa(n+1) + Isxs(n +4) + T,
F(n+10) =ax2(n+10) + Tsxs(n + 10) + Isxs(n+10) + T =
=Tax2(n) + Taxs(n +1) + Isxs(n) + T
F(n+24) =Tax2(n+24) + Tsxs(n+24) + Tsxs(n+24) + T =
=Tax2(n) + Taxs(n) + Dsxs(n +4) + T,
therefore
F(n) + F(n+4) — F(n +10) — F(n + 24) —
= (2l2x2(n) + Taxs(n) + Taxa(n + 1) + Tsxs(n) + Tsxs(n +4) 4 20) —
—(202x2(n) 4+ Pax3(n) + Tsxs(n + 1) + Tsxs(n) + Tsxs(n+4) +2T') =0,
which proves (2.4).

In a similar way, we have
Fn+1)= F2X2(n +1)+Tsxs(n+1)+Tsxs(n+1)+ T,
F(n+4) =Tax2(n) + Paxs(n+ 1) + sxs(n+4) + T,
F(n+16) = F2X2(n) +Tsxs(n+ 1)+ Tsxs(n+1) + T
F(n+19) =Taxa2(n+ 1)+ Tsxs(n+ 1)+ Tsxs(n+4) + T,
therefore
Fn+1)+ F(n+4)—F(n+16) — F(n+19) =
= (Pax2(n) + Taxa(n + 1) + 2Tgx3(n + 1) + Dsxs(n + 1)+
+Tsx5(n +4) +2T') — (Paxa(n) + Taxa(n+ 1) 4+ 2Tgxs(n + 1)+
+Tsx5(n+ 1) + Tsxs(n+4) +2I') = 0.

Thus, (2.5) is proved.



O the equation f(n*+ Dm? 4+ k) = f(n)> + Df(m)* +k 223

Finally, we prove (2.6). We have

F(n) =Taxa2(n) + Tsxs(n) + Tsxs(n) + T,
F(n+25) =Tax2(n+1) +Tsxs(n+ 1)+ Tsxs(n) + T,
F(n+10) = Taxa(n) + Taxa(n +1) + Tsxs(n) + T,
F(n+15) =Tax2(n+ 1)+ Tsxs(n) + Tsxs(n) + T,

therefore
F(n) + F(n +25) — F(n +10) — F(n + 15) =
= (Pax2(n) + Taxa(n + 1) + Tsxs(n) + Taxs(n + 1) + 205 x5(n) + 2I) —
—(Dax2(n) + Taxa(n 4+ 1) 4+ Taxs(n) + 2Tsx3(n + 1) + 25 x5(n) + 2T') = 0.
This finishes the proof (2.6).

In the next step, we prove that

(2.7) F(k)+ F(k+4)— F(k+10) — F(k+24) = —2T'3T';,
(2.8) Fk+1)+ F(k+4)— F(k+16) — F(k +19) = 4505
and

(2.9) F(k)+ F(k+25)— F(k+10) — F(k + 15) = 2I'oT's.

It follows from the definition of F(¢) = T'ax2(¢) + I'sxs(¢) + Isx5(¢) + T
that

F(1) = Taxa(1) + T3x3(1) + Tsxs(1) + T =To + T3 + s + T,
F(2) = Tax2(2) + Tax3(2) + Tsxs(2) + I =T3 - T's + T,
F(4) =Tax2(4) + Taxs(4) + Isxs(4) + ' =T3 + I's + T,
F(7) =Tax2(7) + Taxs3(7) + Isxs(7) + T =To + '3 =I5 + T,
F(IO) = F2X2(10) + F3X3(10) + F5X5(10) +I'=IT3+7T,
F(12) =Tox2(12) + I'sxs(12) + Tsx5(12) +T'= —T'5 + T,
F(15) = Tox2(15) + I'sx3(15) + Tsx5(15) + T'=T2 + T,
F(25) = Tax2(25) + I'3x3(25) + Isx5(25) + I =T2 + I3 + T,
F(30) = FQXQ(SO) + F3X3(30) + F5X5(30) +I'=T.

Since

12=1,22=4,102=10,4>=16,7> = 19,122 = 24,30° = 0 (mod 30),
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and F(¢) is periodic (mod 30), we infer from (2.1) that

F(k) = (F(30) + DF(30) + k)° = (D + )T + k),

F(k+1) = (F(1)+ DF(30) + k)* = (Ty + T3+ Ts + (D + )T + k),

F(k+4) = (F(2) + DF(30) + k)* = (T3 — Ts + (D + )T + k)°,
F(k+10) = (F(10) + DF(30) + k)> = (T3 + (D + )T + k)°,
F(k+15) = (F(15) + DF(30) + k) = (T + (D + )T + k)7,
F(k+16) = (F(4) + DF(30) + k)° = (T3 + Ts + (D + )T + k),
F(k+19) = (F(7) + DF(30) + k)* = (T3 + T5 — Ts + (D + )T + k),
F(k+24) = (F(12) + DF(30) + k)? = (-Ts + (D + )T + k),
F(k+25) = (F(25) + DF(30) + k)* = (Ta + Ts + (D + DI + k).

By using theses, we obtain that
Fk) + F(k +4) — F(k + 10) — F(k + 24) =
= (D+ )T +k) + (T3 —T5+ (D+1)T +k)°—
— (s 4+ (D+ DI +k)* = (—Ts+ (D+ DI+ k) =
= —2I'3T's,
F(k+1)+ F(k+4) — F(k+16) — F(k + 19) =
— (T4 T+ T5+ (D+ D +k)° + (T —Ts + (D + 1) + k) —
~ (D34 05+ (D+ DL+ k) = (Co+ T3 — D5+ (D+ DL+ k) =
— AT, T
and
F(k) + F(k +25) — F(k + 10) — F(k + 15) =
= ((D+ 1T +k)* + (D2 +Ts+ (D + DT + k)~
— T3+ (D+ D)L+ k) = (Ta+ (D+ DL+ k) =
= 21750;.
By applying (2.4), (2.5) and (2.6) for the case when n = k, we obtain from
(2.7), (2.8) and (2.9) that
[T =0, TsT5=0 and T,Ts=0.

Lemma 2 is proved. |
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Lemma 3. We have I's = 0.

Proof. We will prove that I'y = 0. Assume by contradiction that 'y # 0.
Then we infer from Lemma | and Lemma 2 that I's = 'y = I's = 0. Conse-
quently

(210) F(f) = FQXQ(K) +T

is a periodic sequence (mod 2) and (2.1) holds.

First we prove that
(2.11) D=1 (mod2).
Assume by contradiction that D =0 (mod 2). Then
n?+Dm?>+k=n’>+k (mod2),
therefore we obtain from (2.1) that
F(n?+k) = F(n® + Dm? + k) = (F(n) + DF(m) + k)
holds for every n,m € N. This with m = 1 and m = 2 shows that
F(n?+k) = (F(n) + DF(1) + k)* = (F(n) + DF(2) + k)°,

consequently

0= D(F(1) — F(2))(2F(n) + DF(1) + DF(2) + 2k).
Since F'(1) — F(2) = (I's +I') = T' =T'3 # 0, we have

DF(1)+ DF(2)+2
F(n)=— <)+2 (2) + 2k for every n €N,

and so
F(1)=F(2), TI';=0.

This contradicts to the fact T'y # 0. Thus, (2.11) is proved.
Assume now that I's # 0 and D =1 (mod 2). Thus, we have

(2.12) F(n*+m®+k) =F(n*>+ Dm?+k) = (F(n)+ DF(m) + k;)2

for every n,m € N. This shows that

F(k)=F(22+22+k) = (F(2) + DF(2) + k)* = (D+ DT + k)°,
k

F(k)=F(>+12+4k) = (F(1) + DF(1) + k)® = (D + 1)(T2 + T) + k)7,
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consequently
0=((D+ D)2 +T)+k)> = (D+ 1T +k)° =
=D+ 12 ((D+ 1)y +2(D + 1T + 2k)

and so

D+1

D+ 1\2
(D4 DT 4+k=-"""T, and F(k) = (T*) r2.
By applying (2.12) with n =1 and m = 2, we obtain
F(k+1)=F(1*+ 2 + k) = (F1) + DF(2) + k)" =

=T+ (D+ 1L +k)* = (Fz - D; 1F2)2 = (%)2@

If k is even number, then F(k) = F(2), F(k+ 1) = F(1), and so

(?)zrg — ([ +T) =0.

Solving this system, using I's # 0, we have

F2:_i F:(D—&—l)Q

D’ 2D
and
b=+ 0r -2 = oy (25D - PR () =

_ 14+D*+D+D?
=- 1Dz <0,

which contradicts to the fact k € N.

Now we consider the case 2 fk. Then F(k) = F(1), F(k+1) = F(2), and
S0

(P5) 13-, +1) =0,

Solving this system, using I's # 0, we have

ed o= (Gl
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and
k——1+D2+D+D3 “0
B 4D2 ’

This is impossible, because k € N. Thus we have proved that I's = 0.

Lemma 3 is proved. |

Lemma 4. We have I's = 0.

Proof. Assume by contradiction that I's # 0. Then from Lemmas 1-3 we
have I'y =Ty = I's = 0, consequently

F(0) =T'sxs(f) + T,

for every n,m € N and
F(1)=T3+T, F@2)=T3+T, F(@3)=T.

We infer from (2.13) that

F(k) = (F3)+ DF(3)+k)> = (D+1)T + k),

(1) JFE+D = (F(1) + DF(3) )2:( + D0+ T + k),
F(k+ D)= (F(3) + DF(1) )2:(D+1F+Drg+k)
Fk+D+1)= (()+DF +B)? = (D+1)(T5+T) + k)Q.

The case (A): D =0 (mod 3).
Since a sequence {F(n)}52, is periodic (mod 3), we infer from (2.14) that
F(k)y=F(k+D)= (D+ 1) +k)> = (D+ 1) 4+ DI's + k%) =
= —DT3(2(D + 1)l + DI’ + 2k) =0
and
Flk+1)—F(k+D+1)=(D+ 1)L +T5+k —(D+1)(T3+1)+k)? =
= —DI'3(2(D+ 1)L + (D +2)I's + 2k) = 0.

The last relations with I's # 0 imply

2(D+ 1)+ DI's + 2k =0,
2(D+ 1)+ (D+2)'s + 2k =0,

consequently
2’3 =0,

which is impossible.
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The case (B): D =1 (mod 3).

In this case, we distinguish three cases according to k& (mod 3).
The case (B1): D=1 (mod 3), k=1 (mod 3).

Then F(k)— F(1)=0, F(k+1)—F(2)=0and F(1+k+ D) — F(3) =0,
and so we have

F(k)y—F1)=(D+ 1)l +k)>=T3-T =0,
(B1) F(k+1)—F(2) = ((D +1F+F3+k) —TI's—T' =0,
F(k+D+1)—F3) = ((D+1)(Ts+T)+k)° T =0.

Solving this system, we obtain that

2D +1 \2 1 4D? 42D +1
:(7) g=——— and k=-———" " "
2D(D + 1) D(D +1) 4D%2(D + 1)

These are impossible, because D € N and k € N. Thus, the case (B1) does not
occur.

The case (B2): D=1 (mod 3), k=2 (mod 3).
In the case (B2), we infer from (2.14) that

F(k+D+1)— F(k) = F(1) — F(2) =0,
and so
0=F(k+D+1)—F(k) = (D+1)(Ts+T)+ k) — (D+ DI +k)* =
=(D+1)3(2(D+ 1T + (D + 1)T'3 + 2k).
Since I3 # 0, we have
(D+1)T +k = —¥r3,
which with (2.14) show that
F(2)=F(k) = (D+ 1)l +k)° = (?) r2
(B2) {F@3)=F(k+1)=((D+ 1) +T5+k) :( )
F(1)= F(k+D+1) = (D +1)(Ts + T) + k) = (D s

Since F(1) = F(2) =T34 T and F(3) =T, we infer from (B2) that

1 D—1\2 D3+ D?+D+1
Is =5 (21)) an iD? ’

which are impossible, because k € N. Thus, the case (B2) does not occur.
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The case (B3): D=1 (mod 3), k=0 (mod 3).

In same way as above, in the case (B3) we have
F(k)—F(3)=(D+ 1)l +k)* =T =0,

(B3) Fk+1)—F(1)= (D+ 1) +T5+k)> =Ty —T =0,
Flk+D+1)—F(2) = ((D+1)(Ts+T)+k)° T35 —T =0.

Solving (B3), we obtain that

1 (D + 2)?
M3=-—), T=—-""" and k=
STTD+ U AD+12 ™

D(D +2)
C4(D+1)°

These are impossible, because k € N. Thus (B3) and (B) do not occur.
The cases (C): D =2 (mod 3).
The proof of (C) is similar as above, we infer from the following relation
0=F(k+D+1)—F(k) = (D+ 1)(Ts+T) +k)* = (D+ DI + k)* =
=(D + 1)I'3(2(D + 1)I' + (D + 1)T3 + 2k).
Since I's # 0, we have

D+1

D+1)T+k=— I's

and so
F(k)= ((D+ 1)+ k) = (%)2@
(5

F(k+2)=F(k+ D)= ((D+1)I'+ DT; +k)2 = (?)zrg.

(C) SF(k+1)=((D+1C+T5+k)°

Since F'(1) = F(2) =T's+T and F(3) =T, we infer from (C) that F(k) = F(3),

F(k+1)=F(k+2) = F(1), consequently
_ (D1,
b= (zg e
-1
Ly +0 = (=) T3
Hence

D +1\2 D +1\2
, F:(;)ng(i>

Iy = —
3 2 2D

1
D
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and
k=— D+1P3—(D+1)F %—(D—i—l)(%)z—
D3 +D*+D+1
B 4D?
The last relation contradicts to the fact k € N.
Thus, (C) and so Lemma 4 are proved. |

Lemma 5. We have I's = 0.

Proof. Assume by contradiction that I's # 0. Then from Lemmas 1-4 we
have I'y = I's = I'y = 0, consequently

o) F(0) = Toxs(0) + T,
' F(n?+Dm?+k) = (F(n)+ DF(m)+k)?
for every n,m € N. The elements of this sequence are:

F(1)=Ts+T, F(2)=-T5+T, F(3)=-I's+T, F(4)=T5+T,F(5)=TI.

We infer from (2.15) that
F(k) = (F(5)+ DF(5) + k)* = (D+1)T +k)*,

(2.16) F(k+1) = (F(1)+ DF(5) +k)2 (D4 DT +T5+ k),
F(k+4) = (F2)+ DF(5) +k)> = (D+1)T =T5 + k)°.

In the proof of Lemma 5 we will distinguish five cases according to & (mod 5).

o Ifk=1 (mod 5), then F(k) = F(1), F(k+1) = F(2), F(k+4) = F(5),
and so )
(D+1)P+k)" =T5+T,
(D+ DL +T5+k)° = —T5 +T,
(D+1)T =T +k)° =
Solving this system, using I'5 # 0, we have
25 3 29 25
F—E, F5——§ and ]{——E—ED,
which contradicts to k € N.
o If k =2 (mod5), then F(k) = F(2), F(k+1) = F(3), F(k+4) =
= F(6) = F(1), and so
(D+ DI +k)* = —T5 +T,
(D+ DL +T5+k)° = —T5 +T,
(D+1)T =T5+k)° =T5 +T.
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Solving this system, using I's # 0, we have
b) 7 5
r=2, Iy=1 - ?p
1 5 and k 11D
which contradicts to k& € N.
o If k = 3 (mod 5), then F(k) = F(3), F(k+1) = F(4), F(k+4) =
= F(7) = F(2), and so
(D+ 1) +k)* = -T5+T,
(D+ 1T +T5+k)° =T5 +T,
(D+ 10 =T5+k)° = —T5 +T.
Solving this system, using I'5 # 0, we have
b) 3 5
7 5 and k 1 P
which contradicts to k& € N.
o If k =4 (mod5), then F(k) = F(4), F(k+1) = F(5), F(k+4) =
= F(8) = F(3), and so
(D+1)T +k)* =T5+T,
(D+ 1) +T5+k)* =T,
(D4+ 10 =T5+k)° = —T5 +T.

Solving this system, using I's # 0, we have

25 3 21 25
r—22 p.—_=° -_=_2p
5 5= 73 awd k=—ge-6D

which contradicts to k € N.
o If k=5 (mod 5), then F(k) = F(5), F(k+ 1) = F(6) = F(1), F(k+4) =

= F(9) = F(4), and so

(D+ 1T +k)* =T,

(D+1) F+F5+k) =I5+T,

(D+1)T - F5+k) =I5+1T.
Solving this system, using I's # 0, we have

I'=0, I's=1 and k=0,

which contradicts to k € N.

Lemma 5 is proved. |
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3. The proof of Theorem 2

It follows from Lemmas 1-5 that
Ip=T3=Ty=T5=0 and F{)=T forevery ¢€&N.
Thus, the relation (1.3) gives
I'=(I+Dr+k)°,
which implies

2
 1—2Dk —2k++/T— 4Dk — 4k _ (11\/14%41@)

g 2(D +1)2 2(D +1)

Thus, we proved that

2
1++/1—-4Dk — 4k
F(E)—l"—( 5D+ 1) ) for every ¢ € N.
Theorem 2 is proved. ]

4. The proof of Theorem 1. Lemmas

In this section we assume that the function T,G,H : N — C and the
numbers k € Ng, D € N, U,V € C, U # 0 satisfy the relation

(4.1) T(n?+Dm?+k)=G(n) +UH(m)+V for every n,m € N.

Lemma 6. Assume that the function T, G, H : N — C and the numbers
keNy, DeN, UV eC, U +#0 satisfy (4.1). Then

H((+12m) = H({ + 9m) + H({ + 8m) + H({ + Tm)—

42) — H(E+ 5m) — H(E-+ 4m) — H(C+ 3m) + H()

holds for every ¢,m € N and

H(7) 2H(5) — H(1),
H®) = 2H(5)+ H(4) —2H(1),
(43) H(9) = H(6)+2H(5) — H(2)— H(1),
' H(10) = H(6)+3H(5) — H(3) —2H(1),
H(11) = H(6)+4H(5) — H(3) — H(2) —2H(1),
H(12) H(6) +4H(5) + H(4) — H(2) — 4H(1).
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Proof. We note from (4.1) that

(44) T(2*+Dy*+k) =G(lz])+UH(ly|)) +V for every =,y € Z\{0}.
First we prove the following assertion:

(4.5) H(n+2m)— H(n—2m|) = H(2n+ m) — H(|2n — m|)

for every n,m € N,n # 2m,m/2.
Assume that the numbers n, m € N satisfy the conditions n # 2m,n # m/2.
If Dn — 2m # 0, then we infer from (4.1) and the next relations

(Dn+42m)? + D(n —2m)? + k = (Dn — 2m)* + D(n + 2m)* + k
and
(Dn+2m)* + D(2n —m)* + k= (Dn —2m)*> + D2n +m)* + k
that
G(Dn+2m)+UH(In —2m|)+V = G(|Dn —2m|) + UH(n+2m) +V
and
G(Dn+2m)+UH(|]2n —m|)+V = G(|Dn —2m|) + UH(2n + m) + V.
These imply that

G(Dn+2m)—G(|Dn—2m|) =UH(n+2m)—UH(jn —2m|) =
=UH(2n+m) —UH(|2n — m|),

which prove (4.5) in the case Dn — 2m # 0.

If Dn—2m =0, then 2Dn —m = 4m — m = 3m # 0. In this case, we infer
from (4.1) and the next relations

(2Dn +m)? + D(n —2m)? + k = (2Dn —m)* + D(n + 2m)* + k
and
(2Dn +m)? +D(2n —m)? + k= (2Dn —m)* + D(2n +m)* + k
that
G(2Dn+m)+UH(n—2m|)+V =G(]2Dn—m|)+ UH(n +2m) +V
and

G2Dn+m)+UH(|2n —m|)+V = G(|2Dn —m|) + UH(2n +m) + V.
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Similar as above, we deduce from these relations

G(2Dn+m) —G(2Dn—m|) =UH(n+2m) —UH(|n — 2m|) =
=UH2n+m) — UH(|2n — m|),

which prove (4.5) in the case Dn — 2m = 0, and so (4.5) is proved.

Applications of (4.5) in the cases
(n,m) € {(1,3); (2,3); (1,4); (1,5); (3,4); (2,5)}
prove that (4.3) holds for H(7), H(8), H(9), H(11), H(10) and H(12). Thus,

(4.3) is proved.
Now we prove (4.2). By applying (4

=

.5) with n = £ + 2t, we have
H((+4t) — H(¢) = H(2¢ + 5t) — H(2¢ 4+ 3t) for every {,t € N.
This with ¢t = 3m shows that
H(¢+12m) — H(¢) = H(2¢ + 15m) — H(2¢ + 9m).

Since H(2x + 5y) — H(2x + 3y) = H(x + 4y) — H(x) holds for every =,y € N,
the last relation implies that
H({l+12m) — H(¢) = H(2(+ 15m) — H(2( + 9m) =
= [H(2(¢ + 5m) + 5m) — H(2(£ + 5m) + 3m)]+
[H( (€ +4m) + 5m) — ( (£ +4m) —I—3m)}
[H( (€ +3m) +5m) — H (2(¢ + 3m) —|—3m)}
H(
+
+

—

(+9m) — H(€+5m)]|+
+ [H(¢+8m)) — H({+4m)]+
H(+7Tm)) — H(¢+3m)],
which prove (4.2).
Lemma 6 is proved. |

In the next lemma we shall follow a method in part similar to the one used
in the proof of Lemma 2 of the paper [8].
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Lemma 7. Assume that the function T, G, H : N — C and the numbers
DeN, UV eC, U #0 satisfy (4.1). Let

A = (H6) + 4H(5) — H(3) ~ H(2) ~ 3H(1),
ry ;:%1 (H(6) — 4H (5) + AH (4) — H(3) + 3H(2) — 3H(1)),
Iy ;:%1 (H(6) —2H(5) + 2H(3) — H(2)),
T, ;:i (H(6) — 2H(4) — H(3) + H(2) + H(1)),
I, ;:é(H((s) — H(5) — H(3) — H(2) + 2H(1)),
r ::i (H(6) — 4H(5) + 2H(4) + 3H(3) + H(2) + H(1)),

F(0) :=Tax2(0) + Tsxs(l) + Tuxa(¢ — 1) + Tsxs(0) + T,

where x2(¢) (mod 2), x3(¢) (mod 3) are the principal Dirichlet characters and
X4(€) (mod 4), x5(¢) (mod 5) are the real, non-principal Dirichlet characters,
i.e.

x2(0) =0, x2(1) =1,

x3(0) =0, x3(1) = x3(2) = 1,

x4(0) = xa(2) = 0, xa(1) =1, xa(3) = —1,

x5(0) =0, x5(2) = x5(3) = =1, x5(1) = x5(4) =1

Then we have
(4.6) H(0) = A> + F({) for every (€ N.

Proof. With the help of compute, we proved that (4.6) holds for 1 < k < 12.
Indeed, by using (4.3), we show with Maple that

H(l)— A> —F({) =0 forevery (=1,...,12,

where F(£) = Tax2(€) + Tax3(€) + Taxa( — 1) + T5x5(¢) + T for every £ € N.
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Assume that H(k) = Ak? + F(k) holds for £ < k < £+ 11, where ¢ > 1. By
applying (4.2) with m = 1, we have
H{(+12)=H({+9)+H{(+8)+H({+7) —H({+5)—

—H(+4)— H(+3)+ H(t) =

=A[(l+9)2+ (L+8)+(L+T7)°— (£+5)°—
— (044 = (+3)>+ 0]+
+ [F(l+9)+F({+8)+F({+7)—F({+5)—
—F(l+4)—F(+3)+ F(0)]=

= A(L+12)* + F(£ +12),

which proves that (4.6) holds for ¢ + 12 and so it is true for all £. In the last
relation we have used

Fl+9)+F{l+8)+F({+7) —F({+5)—F(+4)—F(+3)+F{) =
£+9 £+6

:1“2[ Z Xa(k) — Z Xz(/f)"‘Xz(f)}"'
k=0+6 k=043
49 +5
T D7 xalk) = D2 xa(k) + xs(0)]+
T k=047 k=043
49 046
FT[ D k=1 = Y xalk -+l -1+
" k=0+6 k=(+3
0410 0+6
5[ 0 xslh) = D2 xa(k) = xs(£+10) + x5 (¢ +2) + x5(0)] +T =
" k=0+6 k=0+2

=Taxa(f) + T3x3(f) + Laxa(l — 1) + Tsxs(£+2) + ' =
=F((+12).

Lemma 7 is proved. |
5. Proof of Theorem 1

Assume that the numbers k& € Ny, D € N and the arithmetical function
f N — C satisfy the equation

f(n®+Dm? + k) = f*(n) + Df*(m) + k for every n,m € N.
Let F(n) := f2(n) for every n € N and U = D, V = k. Thus, we have
f(n®+Dm? + k) = F(n) + DF(m) + k for every n,m € N.
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and
(5.1) F(n® + Dm? + k) = (F(n) + DF(m) + k)

for every n,m € N. We shall use the notations of Lemmas 67 for the cases
G = F and H = F. Hence

=5 (F(6) +4F(3) = F(3) — F(2) - 37(1)),
Dy == (F(6) — 4F(5) + 4F(4) — F(3) + 3F(2) - 37(1),
s =1 (F(6) — 2F(5) + 27(3) ~ F(2)),
Dy = (F(6) ~ 2F(4) — F(3) + F(2) + F(1)),
s == (F(6) ~ F(5) ~ F(3) ~ F(2) + 27(1),
P i=3 (F(6) — 4F(5) + 2F(4) + 3F(3) + F(2) + F(1),
F(£) :=Tyxs(6) + Toxs(6) + Taxa(t = 1) + Tsxs(0) + T

From (4.6) we have
(5.2) F() = f2(t) = A* + F({) for every (€ N.

Lemma 8. We have
Ae{0,1}.

Proof. We infer from (5.1) and (5.2) that
A+ Dm? + k)? + F(n®> + Dm?* + k) =
(5:3) = (A(n2 + Dm2) + F(n)+ DF(m) + k>2
for every n,m € N. Since
F(0)] < V| + [Ts| + [Ty + Ts| + |T| for every £€ N,
for each fix n € N, we infer from (5.3) that

A(n? + Dm? 4+ k)? + F(n® + Dm? + k)

A= mlgnoo (Dm2)2 =
2 2 2
— lim (A(n +Dm)+F(n)+DF(m)+k) a2
m—00 Dm2

Therefore, we have A € {0,1}, and so Lemma 8 is proved. |
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Lemma 9. Assume that A =1. Then

and

for every n,m € N.

Proof.  Assume that A = 1. In this case, we have F(n) = n? + F(n). Then
we infer from (5.1) and (5.2) that
0= F(n®+ Dm? +k) — (F(n) + DF(m) + k)* =
= (n®+ Dm® + k) + F(n> + Dm® + k) —
(5.4) — (n®+ F(n) + Dm?* + DF(m) + k)* =
=2D(n* +k— (n®+ F(n) + DF(m) + k))m* + W(n,m) =
= —2D(F(n) + DF(m))m* + W (n,m)

holds for every n,m € N, where

W(n,m) : = (n* —|—k;)2 + F(n®+Dm” +k)—
(5.5) )
— (n*+ F(n)+ DF(m)+k)".

Now let n, a € N be fixed, m € N, m = a (mod 60). Since F(k) is a
periodic function (mod 60), we have n? + Dm? + k = n? + Da® +k (mod 60),
and so

F(n?+ Dm?+ k) = F(n® + Da® + k)

and
n? + F(n) + DF(m) + k = n® + F(n) + DF(a) + k.

On the other hand
[W(n,m)| = |(n* + k)*> + F(n* + Da® + k) — (n® + F(n) + DF(a) + k)*| < o0
and so we obtain from (5.4) that
F(n)+ DF(a) = Aim
m=a (mod 60)

Thus, we proved that F'(n) + DF(a) = 0 holds for each fixed n, a € N, conse-
quently

(5.6) F(n)+DF(m)=0 and W(n,m)=0
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hold for every n,m € N. Applying (5.6) for the case n = m, we have

(D+1)F(n)=0 forevery ne€N.

Consequently
F(n)=0 forevery meN
and
F(m) = f*(m) =m*, f(m)=+m
and

f(n?* +Dm? + k) = f2(n) + Df*(m) + k=n>+Dm? + k

for every n,m € N.

Lemma 9 is proved. |

Now we complete the proof of Theorem 1.
Assume that A = 0. Then

F(n) = f(n)? = Taxa(n) + Tsxs(n) + Taxa(n — 1) + Tsxs(n) + T

and
F(n® 4+ Dm? + k) = (F(n) + DF(m) + k)*.

We infer from Theorem 2 that

Ty=T3=0,=T5=0

and

2
1++1—-4Dk — 4k 1+ +v1—-4Dk — 4k

We have
f(n®+Dm* +k) = f(n)*+ Df(m)* + k=

2
1+ +/1—4Dk — 4k 1++/1—4Dk — 4k
(DJrl)( 2(D+1) ) k= 2(D+1) '

Thus, all assertions of Theorem 1 are proved.
The proof of Theorem 1 is finished. |
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6. Proof of Corollary 1

Assume that the numbers £ € Ny, D € N and a multiplicative function
f N — C satisfy the equation

(6.1) f(n®+Dm? + k) = f*(n) + Df*(m) + k for every n,m € N.

From Theorem 1, one of the following assertions holds:

@ 1) = el 55—
() f0) = epaln) G5

(c)  f(n)=epr(n)n,
where ep (n) € {1,—1} and ep x(n® + Dm? + k) = 1 for every n,m € N.
Assume that (a) or (b) holds, then f(n) = ep x(n)C, where C' € C. Since
f € M, by applying (6.1) with n := n; ---n;, where nq,...,n; are pairwise
relatively primes, we have
C = ED’k((’nq coooong)? + Dm? 4+ k:)C =
=f(n1-...om) + DfF(m)+ k= f2(n1) ... f2(ne)? + DC* + k =
=C*" 4+ DC? +k.

Thus, C?' = C — DC? — k holds for every t € N, consequently
C*=C? andso C€{0,—1,1}.

Since f is multiplicative, f(1) = 1, therefore C' # 0.
If C = +1, then C* = C — DC? — k implies 1 = +1 — D — k, and so
k=+1—-1—D ¢ N. This is a contradiction and so (a) and (b) do not occur.

Thus, the case (c) is true, i. e. f(n) =ep x(n)n. It is obvious from f € M
that ep r € M and ep (n? + Dm? + k) = 1 for every n,m € N,

Corollary 1 is proved. |
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