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Abstract. Let g be a completely multiplicative function, g(n) ∈ T,
T = {z ∈ C : |z| = 1}. Let A = {α1, . . . , αk} ⊂ T. Assume that

lim
x→∞

1

x
#

{
n ≤ x

∣∣ |g(n+ 1)g(n)− αj | < ε
}
= ρ(αj) > 0

for each ε > 0 which is small enough. Assume furthermore that if δ ∈ T\A,
then

lim
x→∞

1

x
#

{
n ≤ x

∣∣ |g(n+ 1)g(n)− δ| < ε
}
= 0

if ε is small enough. We formulate our conjecture on the possible A and g.
We can prove our conjecture for k = 1, 2 and for k = 3 with exception if
A = {1, β, β}.

1. Introduction

Let, as usual, N, R, C be the set of positive integers, real and complex
numbers, respectively. Let A, A∗, M, M∗ be the set of real-valued additive
(completely additive) and the set of complex-valued multiplicative (completely
multiplicative) functions. We say that f ∈ M1 (resp. M∗

1), if f ∈ M (resp.
M∗) and |f(n)| = 1 for every n ∈ N. Let T := {z ∈ C | |z| = 1}.
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In 1946 P. Erdős proved the following result.

Theorem A. (P. Erdős [2]) If f ∈ A and

f(n+ 1)− f(n) → 0 (n → ∞),

then f(n) = c log n with some c ∈ R.

Conjecture 1. (P. Erdős [2]) If f ∈ A and

1

x

∑
n≤x

∣∣f(n+ 1)− f(n)
∣∣ → 0 (x → ∞),

then f(n) = c log n (c ∈ R).

Conjecture 1 was proved by I. Kátai [4] and E. Wirsing [14].

We now present the short history of the results initiated by Erdős, and
analogous questions for multiplicative functions.

Conjecture 2. (I. Kátai [5]) If g ∈ M and

g(n+ 1)− g(n) → 0 (n → ∞),

then either g(n) → 0 (n → ∞), or g(n) = ns, �s < 1.

It is proved by E. Wirsing. Another proof is given in [16].

Conjecture 3. (I. Kátai and M. V. Subbarao [7]) Let

A = {α1, . . . , αk} ⊆ T.

If g ∈ M1 and the whole set of limit points of g(n+ 1)g(n) (n ∈ N) is A, then

Ak = {1}, i.e αk
1 = · · · = αk

k = 1.

Kátai and Subbarao proved this conjecture for k = 1, 2, 3. E. Wirsing[15]
and B. M. Phong [13] proved a somewhat weaker result, namely that if the
conditions hold, then there exists such an � ∈ N for which A� = {1}.

Conjecture 4. (I. Kátai [5]) If g ∈ M1 and

(1.1) lim
x→∞

1

x

∑
n≤x

|g(n+ 1)− g(n)| = 0,

then

(1.2) g(n) = niτ (n ∈ N), τ ∈ R.
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Theorem B. (O. Klurman [8]) Conjecture 4 is true.

He proved more, namely that if g ∈ M1 and

(1.3) lim
x→∞

1

log x

∑
n≤x

|g(n+ 1)− g(n)|
n

= 0,

then (1.2) is true.

Remark. O. Klurman proved it for g ∈ M∗
1, but using the method of Mau-

claire and Murata [3] one can prove that if (1.3) holds for g ∈ M1, then
g ∈ M∗

1.

Further results on these topics can be found in [6], [9], [10], [11], [12].

2. Our conjecture

We state the following conjecture.

Conjecture 4. (I. Kátai and B. M. Phong) Let

A = {α1, . . . , αk} ⊆ T.

Let g ∈ M∗
1 and C(n) = g(n+ 1)g(n) (n ∈ N). Assume that

(2.1) lim
x→∞

1

x

∑
n≤x

min
β∈A

∣∣C(n)− β
∣∣ = 0

and that for every γ ∈ A,

(2.2) lim
x→∞

1

x
#
{
n ≤ x

∣∣ |C(n)− γ
∣∣ = min

β∈A
|C(n)− β|} = ρ(γ)

exists, and ρ(γ) > 0.

Then there exists such an � ∈ N for which A� = {1}. Consequently

g�(n) = niτ , g(n) = niτ/�G(n), G ∈ M∗
1, G�(n) = 1.

We shall prove the following result:

Theorem 1. Conjecture 4 is true if

a) k = 1, 2,

b) k = 3, possibly except the case when A = {α1, α2, α3} = {1, β, β}.
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Proof. Let B(n) be the closest element of A to C(n). B(n) is well determined
for almost all n ∈ N and furthermore

(2.3) lim
x→∞

1

x

∑
n≤x

|B(n)− C(n)| = 0.

Since

g(n+ 1)g(n) = g(2n+ 2)g(2n) = g(2n+ 2)g(2n+ 1)g(2n+ 1)g(2n)

and

g(n+ 1)g(n) = g(3n+ 3)g(3n) =

= g(3n+ 3)g(3n+ 2)g(3n+ 2)g(3n+ 1)g(3n+ 1)g(3n),

thus

C(n) = C(2n)C(2n+ 1), C(n) = C(3n)C(3n+ 1)C(3n+ 2),

and so

B(n) = B(2n)B(2n+ 1), B(n) = B(3n)B(3n+ 1)B(3n+ 2),

and in general,

(2.4) B(n) = B(�n)B(�n+ 1) · · ·B(�n+ �− 1)

holds for almost all n, for every fixed �.

Case k = 1. This case is immediate, since B(n) = B(2n) = B(2n + 1) = α
implies that α = α2. This shows that α = 1 and our result follows from
Theorem B.

Case k = 2. If 1 �∈ A, B(2n) �= B(2n+ 1) cannot occur for almost all n, since
in the opposite case (2.4) � = 2 would imply that 1 ∈ A. Then α = β2 and
β = α2, and so αβ = 1, α = α4, α3 = β3 = 1. Consequently (1.1) holds for g3

instead of g. Thus g3(n) = niτ , g(n) = niτ/3G(n), G ∈ M∗, G(n)3 = 1.

We shall prove that this cannot occur. Since

B(n) = G(n+ 1)G(n) ∈ {ω, ω}, ω3 = 1, ω �= 1,

therefore
1

x
#
{
n ≤ x | G(n+ 1) = G(n)

}
→ 0 (x → ∞).

Let R = {n ∈ N | G(n+ 1) = G(n)}.
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Let us consider the sequence:

G(12m− 4), G(12m− 3), G(12m− 2), G(12m− 1), G(12m).

We shall prove that at least one of 12m−� ∈ R (� = 1, 2, 3, 4). In the opposite
case:

G(12m) �= G(12m− 2), G(12m− 4), G(12m− 3)

and

G(12m− 4), G(12m− 3), G(12m− 2), G(12m) are distinct values.

It is impossible. Consequently

lim inf
x→∞

1

x
#
{
n ≤ x

∣∣ n ∈ R
}
≥ 1

12
,

which shows that such a case cannot occur.

Assume that 1 ∈ A. Then A = {1, β}, β �= 1. Let Ik = [2k, 2k+1 − 1]. It is
clear that

Mβ(k) = #
{
n ∈ Ik

∣∣ B(n) = β
}
= ρ(β)2k + o

(
2k
)
,

M1(k) = #
{
n ∈ Ik

∣∣ B(n) = 1
}
= ρ(1)2k + o

(
2k
)
.

Consider the set of those n for which B(n) = β. Then

(
B(2n), B(2n+ 1)

)
�= (β, β), (1, 1) for almost all n.

If 1 = B(n). Then 1 = B(2n)B(2n+1), and so (B(2n), B(2n+1)) = (β, β) or
(B(2n), B(2n + 1)) = (1, 1). The first case implies that β2 = 1, consequently
β = −1. Assume that (B(2n), B(2n+ 1)) = (1, 1). We obtain that

(2.5) Mβ(k) = Mβ(k − 1) + o
(
2k
)
.

Since Mβ(k) = ρ(β)2k + o(2k), thus ρ(β)2k = ρ(β)2k−1+ o(2k). This is impos-
sible if ρ(β) �= 0. Thus β = −1 and we are done.

Case k = 3. Assume that A = {α, β, γ}. First we consider the case α = 1. If
β = γ2 and γ = β2, then β = β4, β3 = 1, γ3 = 1 and we are done. Assume
that β �= γ2. If B(n) = β, then for almost all such n

(
B(2n), B(2n+ 1)

)
∈
{
(1, β), (β, 1)

}
.

Since β �= γ, we obtain that

M1(k) ≥ 2M1(k − 1) +Mβ(k − 1),
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which contradicts the assumption that ρ(β) �= 0. We also obtain a contradiction
if γ �= β2. So we have

A = {ω | ω3 = 1}.

Now we consider the case 1 /∈ A.

a) Let α = β2, β = γ2, γ = α2. Then A7 = {1}, and we are done.

b) Let α = β2, β = γ2, γ = αβ. Then α5 = β5 = γ5 = 1, consequently
A5 = {1}, and we are done.

c) Let α = β2, β = αγ, γ = αβ. In this case, we have

βγ = αγαβ, α = −1, β = −γ and β4 = γ4 = 1.

Therefore, A4 = {1}.

d) Let α = βγ, β = αγ, γ = αβ. Then

αβγ = 1, α = βαγ2, γ = −1, α = −β, αβ = −1 and α2 = β2 = 1,

which cannot occur.

All the possible cases are covered above by a permutation of A. �

3. Further remarks

Let 0 ≤ u1 < u2 < · · · < uk < 1; p1, . . . , pk > 0 with
∑k

i=1 pi = 1.

Let H be the class of the distribution functions of the random variables ξ
satisfying the conditions P (ξ = ui) = pi.

Conjecture 5. (I. Kátai and B. M. Phong) Let h(n) be an additive function,
δ(n) = h(n + 1) − h(n) (mod 1). Assume that it has a limit distribution, and
that its distribution F ∈ H,

F (y) = P (ξ ≤ y), P (ξ = ui) = pi (i = 1, . . . , k).

Then
h(n) ≡ τ log n+ E(n)

and

1

x
#
{
n ≤ x

∣∣ E(n+ 1)− E(n) (mod 1) = ui

}
= pi (i = 1, . . . , k),

furthermore �E(n) ≡ 0 (mod 1) for a suitable � ∈ N.
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Conjecture 5 is a variant of Conjecture 4.

Conjecture 6. (I. Kátai and B. M. Phong) Let h(n), δ(n) be as above. Let
I = [α, β) ⊆ [0, 1) and assume that

lim
x→∞

1

x
#
{
n ≤ x

∣∣ δ(n) ∈ I
}
= 0.

Then
h(n) ≡ τ log n+ E(n) (mod 1)

and �E(n) ≡ 0 (mod 1) for a suitable � ∈ N.

References

[1] Elliott, P.D.T.A., Arithmetic Functions and Integer Products, Grund.
der Math. Wiss. 272, Springer-Verlag, New York, Berlin, 1985.
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