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Abstract. Let g be a completely multiplicative function, g(n) € T,
T={2€C:|z| =1}. Let A={ai,...,ar} C T. Assume that

o1 _
Jim —#{n <2 [ |g(n+1)g(n) - aj| < e} = p(a;) >0
for each € > 0 which is small enough. Assume furthermore that if § € T\ A,
then 1
lim —#{n<z||g(n+1)g(n) — 0| <e} =0

r—o00 I
if € is small enough. We formulate our conjecture on the possible A and g.
We can prove our conjecture for k = 1, 2 and for £ = 3 with exception if

A={1, B, B}.

1. Introduction

Let, as usual, N, R, C be the set of positive integers, real and complex
numbers, respectively. Let A, A*, M, M* be the set of real-valued additive
(completely additive) and the set of complex-valued multiplicative (completely
multiplicative) functions. We say that f € My  (resp. M%), if f € M (resp.
M*) and |f(n)] =1 for every n € N. Let T:= {2z € C | |z| = 1}.
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In 1946 P. Erdos proved the following result.
Theorem A. (P. Erdés [2]) If f € A and
fin+1) = f(n) =0 (n— o),
then f(n) = clogn with some ¢ € R.
Conjecture 1. (P. Erdés [2]) If f € A and

SN )~ f@)] 50 (@ o0),

n<z
then f(n) =clogn (c€R).
Conjecture 1 was proved by I. Kdtai [4] and E. Wirsing [14].

We now present the short history of the results initiated by Erdds, and
analogous questions for multiplicative functions.

Conjecture 2. (I. Kétai [5]) If g € M and
gn+1)—g(n) =0 (n— o),
then either g(n) — 0 (n — 00), or g(n) =n®, Ns < 1.
It is proved by E. Wirsing. Another proof is given in [16].
Conjecture 3. (I. Kédtai and M. V. Subbarao [7]) Let
A={ay,...,ap} CT.
If g € My and the whole set of limit points of g(n + 1)g(n) (n € N) is A, then
AF={1}, ie of=...=af =1

Kétai and Subbarao proved this conjecture for k = 1,2,3. E. Wirsing[15]
and B. M. Phong [13] proved a somewhat weaker result, namely that if the
conditions hold, then there exists such an £ € N for which A* = {1}.

Conjecture 4. (I. Kétai [5]) If g € M7 and

(1) Jim =S Jgln+ 1) — gn)] =0,

n<zx

(1.2) gn)=n" (neN), 7TcR.
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Theorem B. (O. Klurman [8]) Conjecture 4 is true.

He proved more, namely that if ¢ € M; and

1 lg(n+1) —g(n)| _
(1.3) lim oz z Z =0,

T—00 n

n<x
then (1.2) is true.

Remark. O. Klurman proved it for ¢ € M7, but using the method of Mau-
claire and Murata [3] one can prove that if (1.3) holds for ¢ € M;j, then
g € Mj.

Further results on these topics can be found in [6], [9], [10], [11], [12].
2. Our conjecture

We state the following conjecture.
Conjecture 4. (I. Kétai and B. M. Phong) Let
A:{al,...,ak} QT

Let g € M5 and C(n) = g(n + 1)g(n) (n € N). Assume that

1
2.1 lim — in|C(n)— B =0
21 Jim, 7 2 min |Cm) =8

and that for every v € A,

(22 Jim 4 {0 < | 100) — 5| = min [Cl) - 1} = p(r)

Tr—00 I

exists, and p(y) > 0.
Then there exists such an £ € N for which A* = {1}. Consequently

g'(n)=n"", g(n)=n"""G(n), GeM;i, G'(n)=1.

We shall prove the following result:
Theorem 1. Conjecture 4 is true if
a) k=1, 2,

b) k =3, possibly except the case when A = {ay, as, az} = {1, B, B}.
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Proof. Let B(n) be the closest element of A to C(n). B(n) is well determined
for almost all n € N and furthermore

(2.3) lim é S B(n) - C(n)] = 0.

n<z
Since

g(n+1)g(n) = g(2n +2)g(2n) = g(2n + 2)g(2n + 1)g(2n + 1)g(2n)

and
g(n+1)g(n) = g(3n+ 3)g(3n) =
=9g(Bn+3)g(3n+2)g9(3n +2)g(3n + 1)g(3n + 1)g(3n),
thus
C(n) =C(2n)C(2n+1), C(n)=CBn)C(3n+1)C(3n+ 2),
and so

B(n) = B(2n)B(2n+1), B(n)=B(3n)B(3n+1)B(3n+2),
and in general,
(2.4) B(n) = B(n)B({n+1)---B({n+{—1)

holds for almost all n, for every fixed /.

Case k = 1. This case is immediate, since B(n) = B(2n) = B(2n+1) = «

implies that o = 2. This shows that a = 1 and our result follows from

Theorem B.

Case k=2. If 1 € A, B(2n) # B(2n + 1) cannot occur for almost all n, since
in the opposite case (2.4) £ = 2 would imply that 1 € A. Then o = 3% and
B=a% andso aB =1, a =a* a® = 32 = 1. Consequently (1.1) holds for g*
instead of g. Thus g*(n) = n'", g(n) = n'/3G(n), G € M*, G(n)> = 1.

We shall prove that this cannot occur. Since
B(n) = G(n+ 1)G(n) € {w,@}, W =1, w#1,

therefore .
E#{n <z | Gn+1)=Gn)} =0 (z— ).

Let R={neN|Gn+1)=G(n)}.
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Let us consider the sequence:
G(12m —4), G(12m — 3), G(12m — 2), G(12m — 1), G(12m).

We shall prove that at least one of 12m—¢ € R (£ =1, 2, 3, 4). In the opposite
case:
G(12m) # G(12m — 2), G(12m —4), G(12m — 3)

and

G(12m —4), G(12m — 3), G(12m — 2), G(12m) are distinct values.

It is impossible. Consequently

el
h;r_l}géf;#{ngx|n€7€}zﬁ,

which shows that such a case cannot occur.

Assume that 1 € A. Then A = {1, B}, B # 1. Let I;, = [2¥ 2kF1 —1]. Tt is
clear that

Mp(k) = #{n € I | B(n) = 8} = p(8)2" + o(2"),

My(k) = #{n € I | B(n) =1} = p(1)2" + o(2").
Consider the set of those n for which B(n) = . Then

(B(2n),B(2n+1)) # (B8,8), (1,1) for almost all n.

If 1 = B(n). Then 1 = B(2n)B(2n+ 1), and so (B(2n), B(2n+ 1)) = (5, ) or
(B(2n),B(2n + 1)) = (1,1). The first case implies that 3% = 1, consequently
B = —1. Assume that (B(2n), B(2n + 1)) = (1,1). We obtain that
(2.5) Mg(k) = Mg(k — 1) + o(2%).

Since Mg(k) = p(B)2* + 0(2F), thus p(B)2F = p(B)2*~1 + 0(2%). This is impos-
sible if p(B) # 0. Thus = —1 and we are done.

Case k = 3. Assume that A = {«, 8,~v}. First we consider the case o = 1. If
B =~2and v = B2, then 8 = 8%, 82 =1, v = 1 and we are done. Assume
that 3 # 2. If B(n) = 3, then for almost all such n

(B(2n), B(2n+1)) € {(1,8), (8,1)}.
Since 8 # 7, we obtain that

My (k) > 2My (k — 1) + Mg(k — 1),
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which contradicts the assumption that p(5) # 0. We also obtain a contradiction
if v # B2. So we have
A={w|w* =1}

Now we consider the case 1 ¢ A.
a) Let a = 8%, B =92, v =a? Then A" = {1}, and we are done.

b) Let a = 82, B3 = 4%, v = aB. Then o® = ° = 4° = 1, consequently
A® = {1}, and we are done.

c) Let a = B2, B = ay, v = af. In this case, we have
By=ayaf, a=-1, f=-y and p'=+'=1
Therefore, A* = {1}.
d) Let a = v, f = avy, v = af. Then
afy=1, a=pay?, y=-1, a=—-0F, af=—1and a® =% =1,

which cannot occur.

All the possible cases are covered above by a permutation of A. |
3. Further remarks

Let 0 <ug <o < -+ <y < 1 pl,...,pk>0with2f:1pi:1.

Let H be the class of the distribution functions of the random variables &
satisfying the conditions P(§ = u;) = p;.

Conjecture 5. (I. Kdtai and B. M. Phong) Let h(n) be an additive function,
0(n) = h(n+1) — h(n) (mod 1). Assume that it has a limit distribution, and
that its distribution F' € H,

Fly)=P(E<y), PE=uw)=p (i=1,... k).

Then
h(n) =7logn + E(n)

and
é#{n§z|E(n—|—l)—E(n) (mod 1) =u;} =p; (i=1,....k),

furthermore LE(n) =0 (mod 1) for a suitable £ € N.
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Conjecture 5 is a variant of Conjecture 4.

Conjecture 6. (I. Kitai and B. M. Phong) Let h(n), é(n) be as above. Let
I=la,8) C[0,1) and assume that

.1
TILH;O ;#{n <wz|dn)el}=0.
Then
h(n) =71logn+ E(n) (mod 1)

and (E(n) =0 (mod 1) for a suitable ¢ € N.
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