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Abstract. We give all solutions of the arithmetical functions f, g, F,G :
: N0 → C which satisfy the relations

f
(
a2 + b2 + c2 + d2

)
= g

(
a2)+ g

(
b2
)
+ g

(
c2
)
+ g

(
d2
)

and
F
(
a2 + b2 + c2 + d2

)
= G

(
a2 + b2

)
+G

(
c2 + d2

)

for every a, b, c, d ∈ N0, where N0 is the set of all non-negative integers.

1. Introduction

Let, as usual, N, N0, C be the set of positive integers, non negative integers
and complex numbers, respectively. Moreover, let P stand for the set of all
primes.

By using the result of H. A. Helfgott [1] concerning the ternary Goldbach
conjecture, in [2] we proved that if the functions f and g satisfy the condition

f (p1 + p2 + p3) = g(p1) + g(p2) + g(p3)

for every p1, p2, p3 ∈ P, then there exist constants A,B ∈ C such that

f(n) = An+ 3B and g(p) = Ap+B
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hold for n ∈ M, p ∈ P, where

M := {p1 + p2 + p3 | p1, p2, p3 ∈ P}.

We also proved in [3] that if the sets

A = {a1 < a2 < · · · } ⊆ N, S := {m2 | m ∈ N}

and the arithmetical functions f : A+S → C, g : A → C and h : S → C satisfy
the equation

f
(
a+ n2

)
= g(a) + h

(
n2

)
for every a ∈ A, n ∈ N,

then the assumption 8N ⊆ A − A implies that there is a complex number A
such that

g(a) = Aa+g(a), h(n2) = An2+h(n) and f(a+n2) = A(a+n2)+g(a)+h(n)

hold for all a ∈ A, n ∈ N, and also that

g(a) = g(b) if a ≡ b (mod 120), (a, b ∈ A)

and
h(n) = h(m) if n ≡ m (mod 60), (n,m ∈ N).

By assuming the unknown hypothesis that every positive number of the
form 8n is the difference of two primes, we determined all functions F,G, for
which

F
(
p+ n2

)
= G(p) +H

(
n2

)
for every p ∈ P, n ∈ N.

It was proved in [4] that if the functions f, g, h : N → C satisfy the following
equation

f
(
p+ n3 +m3

)
= g(p) + h

(
n3

)
+ h

(
m3

)
for every p ∈ P, n,m ∈ N,

then there exist A,B,C ∈ C such that

h
(
n3

)
= An3 +B and g(p) = Ap+ C for every p ∈ P, n ∈ N.

In this note we prove the following results.

Theorem 1. Assume that the arithmetical functions f, g : N0 → C satisfy the
relation

(1.1) f
(
a2 + b2 + c2 + d2

)
= g

(
a2
)
+ g

(
b2
)
+ g

(
c2
)
+ g

(
d2
)

for every a, b, c, d ∈ N0. Then there are numbers A and B such that

(1.2) f(n) = An+ 4B and g
(
m2

)
= Am2 +B

hold for every n,m ∈ N0.
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Theorem 2. Assume that the arithmetical functions F,G : N0 → C satisfy the
relation

(1.3) F
(
a2 + b2 + c2 + d2

)
= G

(
a2 + b2

)
+G

(
c2 + d2

)

for every a, b, c, d ∈ N0. Then there are numbers C and D such that

(1.4) F (n) = Cn+ 2D and G
(
n2 +m2

)
= C

(
n2 +m2

)
+D

hold for every n,m ∈ N0.

We derive the following corollaries from Theorem 1 and Theorem 2.

Corollary 1. Assume that the arithmetical function f : N0 → C satisfies the
relation

f
(
a2 + b2 + c2 + d2

)
= f

(
a2
)
+ f

(
b2
)
+ f

(
c2
)
+ f

(
d2
)

for every a, b, c, d ∈ N0. Then f(n) = f(1)n holds for every n ∈ N0.

Corollary 2. Assume that the arithmetical function F : N0 → C satisfies the
relation

F
(
a2 + b2 + c2 + d2

)
= F

(
a2 + b2

)
+ F

(
c2 + d2

)

for every a, b, c, d ∈ N0. Then F (n) = F (1)n holds for every n ∈ N0.

2. Proof of Theorem 1

Lagrange’s Four-Square Theorem states that every positive integer can be
written as the sum of at most four squares. This theorem, also known as
Bachet’s conjecture, which Bachet inferred from a lack of a necessary condition
being stated by Diophantus. Although the theorem was proved by Fermat
using infinite descent, the proof was suppressed. The first published proof was
given by Lagrange in 1770 and made use of the Euler four-square identity.

Lagrange also proved that, where 4 may be reduced to 3 except for numbers
of the form 4n(8k + 7), as proved by Legendre in 1798. We state these results
as follows:

Lemma 1. (Lagrange’s Four-Square Theorem.) Every positive integer can be
written as the sum of at most four squares.

Lemma 2. (Lagrange.) Every positive integer can be expressed as the sum of
three squares if and only if it is not of the form 4n(8k + 7) for non negative
integers n and k.
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First we prove the following lemma.

Lemma 3. Assume that (1.1) holds for every a, b, c, d ∈ N0. Then there are
numbers A,B such that (1.2) is satisfied for n,m ∈ {0, 1, 2, 3, 4, 5}.

Proof. Let A := g(1)− g(0) and B := g(0). Since

f(0) = f
(
02 + 02 + 02 + 02

)
= 4g(0) = 4B

and
f(1) = f

(
12 + 02 + 02 + 02

)
= g(1) + 3g(0) = A+ 4B,

consequently (1.2) is true for n,m ∈ {0, 1}.
We infer from (1.2) that if

(2.1) x2 + y2 + z2 + t2 = a2 + b2 + c2 + d2,

then

(2.2) g
(
x2

)
+ g

(
y2
)
+ g

(
z2
)
+ g

(
t2
)
= g

(
a2
)
+ g

(
b2
)
+ g

(
c2
)
+ g

(
d2
)
.

Since

(x, y, z, t, a, b, c, d) ∈
{
(2, 0, 0, 0, 1, 1, 1, 1), (3, 0, 0, 0, 2, 2, 1, 0),

(4, 0, 0, 0, 2, 2, 2, 2), (5, 0, 0, 0, 4, 3, 0, 0)
}

satisfies (2.1), therefore we infer from (2.2) that



g(4) = 4g(1)− 3g(0) = 4A+B,

g(9) = 2g(4) + g(1)− 2g(0) = 2(4g(1)− 3g(0)) + g(1)− 2g(0) =

= 9g(1)− 8g(0) = 9A+B,

g(16) = 4g(4)− 3g(0) = 4(4g(1)− 3g(0))− 3g(0) = 16g(1)− 15g(0) =

= 16A+B,

g(25) = g(16) + g(9)− g(0) = (16g(1)− 15g(0)) + (9g(1)− 8g(0))− g(0) =

= 25g(1)− 24g(0) = 25A+B.

Thus we have proved that g(m2) = Am2+B holds for m ∈ {0, 1, 2, 3, 4, 5}. By
using these relations, we get from (1.1) that



f(1) = f
(
12 + 02 + 02 + 02

)
= g(1) + 3g(0) = A+ 4B,

f(2) = f
(
12 + 12 + 02 + 02

)
= 2g(1) + 2g(0) = 2A+ 4B,

f(3) = f
(
12 + 12 + 12 + 02

)
= 3g(1) + g(0) = 3A+ 4B,

f(4) = f
(
12 + 12 + 12 + 12

)
= 4g(1) = 4A+ 4B,

f(5) = f
(
22 + 12 + 02 + 02

)
= g(4) + g(1) + 2g(0) = 5g(1)− (5− 4)g(0) =

= 5A+ 4B,
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which proves that f(n) = An+ 4B holds for n ∈ {0, 1, 2, 3, 4, 5}.
Lemma 3 is thus proved. �

Lemma 4. Assume that (1.1) holds for every a, b, c, d ∈ N0, then there are
numbers A,B such that

(2.3) g
(
m2

)
= Am2 +B for every m ∈ N0.

Proof. By using Lemma 3, we assume that (2.3) holds for every m < M ,
where M ∈ N,M ≥ 6. If M2 − (M − 1)2 = 2M − 1 �= 4n(8k + 7) for every
n, k ∈ N0, then Lemma 2 implies that there are x, y, z ∈ N0 such that

M2 − (M − 1)2 = 2M − 1 = x2 + y2 + z2.

It is clear that x, y, z < M , and so by our assumptions, we have g(x2) =
= Ax2 + B, g(y2) = Ay2 + B and g(z2) = Az2 + B. On the other hand, we
have

f
(
M2

)
= f

(
(M − 1)2 + x2 + y2 + z2

)
=

= g
(
(M − 1)2

)
+ g

(
x2

)
+ g

(
y2
)
+ g

(
z2
)
=

=
(
A(M − 1)2 +B

)
+
(
Ax2 +B

)
+
(
Ay2 +B

)
+
(
Az2 +B

)
=

= A
(
(M − 1)2 + x2 + y2 + z2

)
+ 4B = AM2 + 4B.

But

AM2 + 4B = f(M2) = f(M2 + 02 + 02 + 02) = g(M2) + 3g(0) = g(M2) + 3B,

which implies that
g(M2) = AM2 +B.

Consequently Lemma 2 is proved for the case M2 − (M − 1)2 = 2M − 1 �=
�= 4n(8k + 1) for every n, k ∈ N0.

Now assume that M2−(M−1)2 = 2M−1 = 4n(8k+7) for some n, k ∈ N0.
This relation implies that n = 0 and M = 4(k + 1). Thus M

2 ∈ N0 and so

f
(
M2

)
= f

((M
2

)2

+
(M

2

)2

+
(M

2

)2

+
(M

2

)2)
= 4g

((M
2

)2)
=

= 4
(
A
(M

2

)2

+B
)
= AM2 + 4B.

Similarly as above, we have

AM2+4B = f
(
M2

)
= f

(
M2+02+02+02

)
= g

(
M2

)
+3g(0) = g

(
M2

)
+3B,

which implies that
g
(
M2

)
= AM2 +B.

Hence, (2.3) holds for every m ∈ N0. Therefore, the proof of Lemma 4 is
complete. �
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3. Proof of Theorem 1

Assume that function f, g satisfy (1.1). It follows from Lemma 1 that for
every n ∈ N0 there exist a, b, c, d ∈ N0 such that

n = a2 + b2 + c2 + d2.

Then we infer from (1.1) and (2.3) that

f(n) = f
(
a2 + b2 + c2 + d2

)
= g

(
a2
)
+ g

(
b2
)
+ g

(
c2
)
+ g

(
d2
)
=

=
(
Aa2 +B

)
+
(
Ab2 +B

)
+

(
Ac2 +B

)
+

(
Ad2 +B

)
=

= A
(
a2 + b2 + c2 + d2

)
+ 4B = An+ 4B

is satisfied for every n ∈ N0.

Theorem 1 is thus proved. �

4. Proof of Theorem 2

Assume that the arithmetical functions F,G : N0 → C satisfy the relation
(1.3). Now we prove the following lemmas.

Lemma 5. Assume that the functions F,G : N0 → C satisfy (1.3) for every
a, b, c, d ∈ N0. Then

(4.1) G
(
n2 +m2

)
= C

(
n2 +m2

)
+D for every n,m ∈ N0,

where C = G(1)−G(0) and D = G(0).

Proof. First we prove that (4.1) holds for n2 +m2 ∈ {0, 1, 2, 4, 5}. It follows
from the definitions of C and D that (4.1) holds for the cases n2+m2 ∈ {0, 1}.

We obtain from (1.3) that

F (2) = F
(
12 + 12 + 02 + 02

)
= G

(
12 + 12

)
+G

(
02 + 02

)
= G(2) +G(0)

and

F (2) = F
(
12 + 02 + 12 + 02

)
= G

(
12 + 02

)
+G

(
12 + 02

)
= 2G(1),

consequentlyG(2) = 2G(1)−G(0) = 2C+D. Thus, (4.1) is true for n2+m2 = 2.

We also have

F (4) = F
(
22+02+02+02

)
= G

(
22+02

)
+G

(
02+02

)
= G(4)+G(0) = G(4)+D
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and

F (4) = F
(
12 +12 +12 +12

)
= G

(
12 +12

)
+G

(
12 +12

)
= 2G(2) = 2(2C +D),

which give G(4) = 4C +D, consequently (4.1) is true for n2 +m2 = 4.

Finally, using the two relations

F (5) = F
(
22+02+12+02

)
= G

(
22+02

)
+G

(
12+02

)
= G(4)+G(1) = 5C+2D

and

F (5) = F
(
22+12+02+02

)
= G

(
22+12

)
+G

(
02+02

)
= G(5)+G(0) = G(5)+D,

we obtain that G(5) = 5C +D. Thus, (4.1) is true for n2 +m2 = 5.

Now we assume that (4.1) is true for every n2 +m2 < N2 +M2, N ≤ M .
As we have seen above, we have N2 +M2 > 5, and so M ≥ 2.

(a) We consider the cases when N = 0. The proof of G
(
M2 + N2

)
=

= C
(
M2 + N2

)
+D in this case is similar to the proof of Lemma 3. Indeed,

if M2 − (M − 1)2 = 2M − 1 �= 4n(8k + 7) for every n, k ∈ N0, then Lemma 2
implies that there are x, y, z ∈ N0 such that

M2 − (M − 1)2 = 2M − 1 = x2 + y2 + z2.

It is clear that (M−1)2+x2, y2+z2 < N2+M2, and so by our assumptions, we
have G

(
(M−1)2+x2

)
= C

(
(M−1)2+x2

)
+D and G

(
y2+z2

)
= C

(
y2+z2

)
+D.

On the other hand, we have

F
(
M2

)
= F

(
(M − 1)2 + x2 + y2 + z2

)
= G

(
(M − 1)2 + x2

)
+G(y2 + z2) =

=
(
C((M − 1)2 + x2) +D

)
+

(
C(y2 + z2) +D

)
=

= C
(
(M − 1)2 + x2 + y2 + z2

)
+ 2D = CM2 + 2D.

But

CM2 + 2D = F
(
M2

)
= F

(
M2 + 02 + 02 + 02

)
= G

(
M2 + 02

)
+G

(
02 + 02

)
=

= G
(
M2

)
+D,

which implies that
G
(
M2

)
= CM2 +D.

Consequently Lemma 5 is proved for the case M2 − (M − 1)2 = 2M − 1 �=
�= 4n(8k + 1) for every n, k ∈ N0.

Now assume that M2−(M−1)2 = 2M−1 = 4n(8k+7) for some n, k ∈ N0.
This relation implies that n = 0 and M = 4(k + 1). Thus M

2 ∈ N0 and so

F
(
M2

)
= F

((M
2

)2

+
(M

2

)2

+
(M

2

)2

+
(M

2

)2)
= 2G

((M
2

)2

+
(M

2

)2)
=

= 2
(
C
((M

2

)2

+
(M

2

)2)
+D

)
= CM2 + 2D.
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Similarly as above, we have

CM2 + 2D = F
(
M2

)
= F

(
M2 + 02 + 02 + 02

)
= G

(
M2 + 02

)
+G

(
02 + 02

)
=

= G
(
M2

)
+D,

which implies that

G
(
M2

)
= CM2 +D.

Thus, Lemma 5 is proved in the case N = 0.

(b) Assume that N ≥ 1. Then N2 + 12 < N2 +M2, M2 + 02 < N2 +M2

and

G
(
N2 + 12

)
= C

(
N2 + 1

)
+D, G

(
M2

)
= CM2 +D.

On the other hand, we have

F
(
N2 +M2 + 02 + 12

)
= G

(
N2 +M2

)
+G

(
02 + 12

)
= G

(
N2 +M2

)
+G(1)

and

F
(
N2 +M2 + 02 + 12

)
= G

(
N2 + 12

)
+G

(
M2 + 02

)
=

=
(
C
(
N2 + 1

)
+D

)
+
(
CM2 +D

)
=

= C
(
N2 +M2

)
+ C + 2D =

= C
(
N2 +M2

)
+D +G(1).

These imply that

G
(
N2 +M2

)
= C

(
N2 +M2

)
+D,

which completes the proof of Lemma 5. �

Proof of Theorem 2. Assume that function F,G satisfy (1.3). It follows
from Lemma 2 that for every n ∈ N0 there exist a, b, c, d ∈ N0 such that

n = a2 + b2 + c2 + d2.

Then we infer from (1.3) and (4.1) that

F (n) = F
(
a2 + b2 + c2 + d2

)
= G

(
a2 + b2

)
+G

(
c2 + d2

)
=

=
(
C
(
a2 + b2

)
+D

)
+
(
C
(
c2 + d2

)
+D

)
=

= C
(
a2 + b2 + c2 + d2

)
+ 2D = Cn+ 2D

is satisfied for every n ∈ N0.

Theorem 2 is thus proved. �
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5. Proofs of the corollaries

Assume that the arithmetical function f : N0 → C satisfies the relation

f
(
a2 + b2 + c2 + d2

)
= f

(
a2
)
+ f

(
b2
)
+ f

(
c2
)
+ f

(
d2
)

for every a, b, c, d ∈ N0. Then Theorem 1 implies that f(n) = An + 4B and
f
(
m2

)
= Am2 + 2B for every n,m ∈ N, consequently B = 0 and f(n) = An

for every n ∈ N. Corollary 1 is thus proved. �

If the arithmetical function F : N0 → C satisfies the relation

F
(
a2 + b2 + c2 + d2

)
= F

(
a2 + b2

)
+ F

(
c2 + d2

)

for every a, b, c, d ∈ N0, then Theorem 2 implies that f(n) = Cn + 2D and
f(m2) = Cm2 + D for every n,m ∈ N. Consequently D = 0 and f(n) = Cn
for every n ∈ N. Corollary 2 is thus proved. �
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