
Annales Univ. Sci. Budapest., Sect. Comp. 52 (2021) 163–176

TIME COMPLEXITY OF A∗∗

Tibor Gregorics (Budapest, Hungary)

Communicated by András Benczúr

(Received April 30, 2021; accepted August 5, 2021)

Abstract. This paper focuses on the time complexity of three famous
heuristic graph-search algorithms, namely the algorithm A∗, B and A∗∗,
and analyzes their executions. The concept of the super-threshold will be
introduced which draws attention to certain steps of the executions of the
graph-search algorithms. It will be shown that the states of the executions
of A∗, B and A∗∗ at these moments are identical and the executions of
these algorithms can differ at most between two such adjacent moments.
Thereafter a secondary tie-breaking rule for the algorithm A∗∗ will be
defined in order for this algorithm to be better than the other two.

1. Introduction

Few years ago I made some remarks on the algorithm A∗∗ [1] in the paper
[2]. At the end of that work the time complexity of A∗∗ was compared to the
algorithm A∗ [4] under a special condition. In the last paragraph I mentioned
that our results may also be valid in a general case and A∗∗ with an extra
tie-breaking rule may be better than the algorithm B [5], which is famous for
being better than A∗. However, I think I owe accurate proof and the time is
ripe for completing that work.

Firstly, a short overview of heuristic graph-search will be presented. After
the general version of the graph-search algorithm is outlined, the algorithms
A∗, B and A∗∗ will be defined as special heuristic graph-searches. (Section 2)

Secondly, my earlier results about the time complexity of A∗∗ will be sum-
marized with a few new remarks. (Section 3 and Section 4)

Key words and phrases: Heuristic graph-search, algorithm A∗, A∗∗ and B.
2010 Mathematics Subject Classification: 68T20, ACM I.2.8.

https://doi.org/10.71352/ac.52.163

https://doi.org/10.71352/ac.52.163


164 T. Gregorics

Thirdly, the concept of the super-threshold will be defined which can help to
compare the executions of A∗∗, A∗ and B over the same arbitrary path-finding
problems. It will be shown that these algorithms achieve the same states from
time to time during their executions. (Section 5)

Fourthly, it will be proved that A∗∗ with an extra tie-breaking rule is never
worse than A∗ or B with respect to the number of expansions (i.e. the number
of iterations), and some path-finding problems will be demonstrated where A∗∗

terminates with fewer expansions than the other two algorithms. (Section 6)

2. Basic concepts and related works

A∗∗ was introduced by Dechter and Pearl [1] when they analyzed the mem-
ory complexity of A∗. These algorithms are graph-searches which gradually
discover a δ-graph going out from a given start node and trying to find a path
to any goal node. A δ-graph is a directed arc-weighted (not necessarily finite)
graph where the number of the outgoing arcs of each node is finite and the cost
of each arc is greater than or equal to a given positive constant number δ.

A graph-search algorithm stores all the paths outgoing from the start node
(denoted by s) that are discovered during the search. The graph formed by
these paths and stored by the graph-search is the search graph that is denoted
by G. The algorithm maintains a so-called parent pointer function (denoted
by π), which shows one parent node of each discovered node. Since there may
be several discovered paths from the start node to the same node, one path
is always highlighted by the values of the parent pointer function. In order to
find the minimal cost path, the algorithm uses a cost function (denoted by g).
For every discovered node m, g(m) gives the cost of the preferably cheapest
discovered path from s to m. The functions π and g are calculated by the
graph-search algorithms themselves.

The last nodes of the discovered paths, whose sequels have not been known
yet or enough, are stored separately. These last nodes are called open nodes.
The set of the open nodes is denoted by OPEN . In each step, these open
nodes are compared according to a so-called evaluation function (denoted by
f) and the one which has got the smallest evaluation function value, i.e. which
is the best open node, is selected for expansion. It means that if the selected
node (n) is a goal node, the algorithm terminates, otherwise the children of the
selected node (Children(n)) are generated.

The general graph-search algorithm, which is the ancestor of all special
variants, is the following:



Time complexity of A∗∗ 165

procedure Graph-search
G := ({s}, ∅) ; OPEN := {s} ; π(s) := nil ; g(s) := 0
while OPEN �= ∅ loop

n := arg min{f(m)|m ∈ OPEN}
if goal(n) then return solution is shown by π endif
foreach m ∈ Children(n) loop

if m /∈ G or g(m) > g(n) + c(n,m) then
π(m) := n ; g(m) := g(n) + c(n,m)
OPEN := OPEN ∪ {m}

endif
endforeach
G := G ∪ (Children(n), {(n,m)|m ∈ Children(n)})

endwhile
return there is no solution

end

(The signs /∈ and ∪ are not the usual set theoretic operators. The notation
m /∈ G shows that the node m is not in the set of the nodes of the search
graph G. The operator ∪ must be applied on graphs rather than on sets: more
precisely, it must be applied separately on the nodes and on the arcs.)

Different graph-search algorithms apply different evaluation functions. For
example, A∗, which was published by Hart, Nilsson and Raphael in 1968 in [4],
uses the sum of two functions. By definition,

fA∗
(m) ::= g(m) + h(m)

where m is an open node, g is the cost function, and h is a heuristic function.
The value h(m) estimates the cost of the optimal path from the node m to
the goal nodes. The function h has to be admissible, i.e. h(m) has to be a
non-negative lower bound on the remaining optimal cost.

Many researchers have investigated the complexity of A∗ and have given its
improved modifications. Perhaps the most remarkable modification isB defined
by Martelli in 1977 in [5]. This algorithm alternates between two different
evaluation functions depending on a permanently changing threshold value (this
value is denoted by F ). One of these evaluation functions is the function g and
the other one is the function g + h (this is the evaluation function of A∗).

fB(m) ::=

{
g(m) if g(m) + h(m) < F

g(m) + h(m) if g(m) + h(m) ≥ F

Initially, the threshold value F is the g + h value of the start node and in
each step, if there is no open node whose g + h value is below the current
threshold value, this threshold value must be overwritten by the g+ h value of
the currently selected open node.



166 T. Gregorics

A∗∗, which is in the focus of this paper, is another modification of A∗. Its
evaluation function takes some ancestors of the current node into consideration
so that the value f(m) is equal to the maximum of the values g(k)+h(k), where
g is the cost function, h is an admissible heuristic function, and k is a node via
the path recorded by π from the start node to the node m (s →π m). [1]

fA∗∗
(m) ::= maxu∈s→πm g(u) + h(u) =

= max{g(u) + h(u)|u ∈ s →π m}

Because of this definition the evaluation function values of the nodes ex-
panded by A∗∗ form a monotone increasing sequence in the order of their
expansions [2].

In addition, the definition of A∗∗ includes a tie-breaking rule. If there are
several best open nodes and the set of the best open nodes contains a goal node,
A∗∗ selects the goal node for expansion and terminates immediately. This rule
tries to manage the non-deterministic behavior of the graph-search algorithm
with resolving ties, however, in order to transform it into a deterministic form,
additional tie-breaking rules may be required.

Russel and Norviq, in their famous book [6] suggested the following evalu-
ation function:

f(m) ::= max{g(m) + h(m), f(π(m))}

together with the rule that the value f(m) is always recalculated whenever a
better (a cheaper) path to m is found. It can be observed that the evaluation
function of Dechter and Pearl and the evaluation function of Russel and Norviq
are similar. However, it is obvious that the computational cost of Russel and
Norviq’s function is better. I have shown that the execution of A∗∗ is almost
identical to the execution of the graph-search algorithm of Russel and Norviq if
these algorithms use the same tie-breaking rules.[2] The only difference between
these algorithms is that the version of Russel and Norviq stores the evaluation
function values of the non-open nodes, too.

It can be proved that all algorithms mentioned above always find an optimal
solution path even in infinite δ-graphs if there exists a solution path.

3. Execution diagram and the time complexity

The time complexity of a graph-search algorithm depends on the cost of
one iteration and the number of iterations. One iteration consists of two parts:
the selection of the best open node and its expansion. These are dependent
on the computation cost of the evaluation function (in this regard, there are
no significant difference between A∗, A∗∗ and B) and the structure of the



Time complexity of A∗∗ 167

representation graph of the path-finding problem (this is independent of the
graph-search algorithm). Thus the comparison of the time complexity of the
mentioned algorithms may be limited to the measurement of the number of
expansions (i.e. the number of iterations) with respect to the number of the
expanded nodes.

These expansions can be described in the so called execution diagram (Fig-
ure 1) whose horizontal axis enumerates the nodes that are expanded by the
algorithm in the order of their expansions. The same node can occur several
times in this diagram because a node can be expanded more than once by a
graph-search algorithm. The vertical axis shows the f values of the expanded
nodes. Using this diagram different graph-search algorithms can be compared
according to the number of their iterations. A monotone increasing sub-

Figure 1. Execution diagram and its thresholds

This diagram contains the f values of the expanded nodes
in the order of the expansions of a graph-search algorithm.

A monotone increasing subsequence can be selected
from these values. These values are the threshold values.

sequence can be constructed from the values of the diagram so that it starts
with the first value and then the next one is always the closest value which is
greater than or equal to the previous selected one. These selected values are
called threshold values, the nodes belonging to them are the threshold nodes,
and a sequence of the neighboring nodes of this diagram starting with a thresh-
old node and including all nodes before the next threshold is called a ditch. In
the Figure 1, ni is the i

th threshold node, Fi is the i
th threshold value, and the

section between the expansions of ni and ni+1 including ni is the ith ditch.

We remark that a node may be a threshold node at most only once at its
first expansion if the evaluation function is decreasing [3] as it holds on A∗,
A∗∗ and B.



168 T. Gregorics

4. When thresholds of A∗ are strictly monotone increasing

In [2] the executions of A∗ and A∗∗ have been compared above the problems
whose threshold values in the execution diagram deriving from the execution
of A∗ form a strictly monotone increasing sequence. It was proved that A∗∗

expands all the threshold nodes of A∗ with the same threshold values and in
the same order. (Figure 2)

Figure 2. Execution diagrams of A∗ and A∗∗

Both diagrams can be divided into the same sections
along the strictly monotone increasing thresholds of A∗.

There were two interesting side effects of the proof of this theorem. Firstly,
A∗ and A∗∗ expand the same nodes between two neighboring thresholds of A∗.
Secondly, the f values according to A∗∗ (shortly the fA∗∗

values) of all nodes
are equal to Fi between the expansions of ni and ni+1 because the fA∗∗

values
of the nodes form a monotone increasing sequence but the fA∗∗

values of the
nodes expanded before ni+1 are not allowed to be greater than Fi. It follows
that the execution of A∗∗ consists of many one length ditches.

The executions of A∗ and A∗∗ over the same problem can be divided into the
same kind of sections along the thresholds of A∗. In the corresponding sections
the same nodes are expanded by these algorithms. The difference between
these corresponding sections is the number of times that a node is expanded
and the order of expansions of the nodes belonging to these sections.



Time complexity of A∗∗ 169

One section is analogous to one ditch in the execution of A∗ thus the first
fA∗

value, which is a threshold, is greater than the rest. Meanwhile, the
fA∗∗

values of the execution of A∗∗ are identical alongside in each section thus
a section consists of many one-length ditches in the diagram of A∗∗ (see in
Figure 2). That is why an appropriate tie-breaking rule is able to change the
order of expansions, moreover, the number of expansions inside the sections of
A∗∗.

Let A∗∗ use the cost function g as a secondary tie-breaking rule. (The
primary tie-breaking rule of A∗∗ prefers the goal nodes.) It means that, if
there are several best open nodes and none of them is a goal node, the best
open node which has got the smallest g value must be selected for expansion.
Since the evaluation function values of the expanded nodes inside every section
are equal, the usage of this secondary tie-breaking rule is as if the evaluation
function of A∗∗ were exchanged for the cost function g inside the sections.

This was the basic idea of Martelli when he introduced B [5]. It is a well-
known fact that the thresholds of B are equal to the thresholds of A∗, and
when these thresholds are strictly monotone increasing, A∗∗ also expands them
in the same order as it has been shown in [2]. In a section (in a ditch of B and
also A∗), B uses the cost function g as an evaluation function in the same way
as A∗∗ does it with my secondary tie-breaking rule. It follows that B and A∗∗

with the secondary tie-breaking rule expand the same nodes in the same order.
Therefore their time complexity, i.e. the number of their iterations is the same
as well. Since Martelli has proved that B expands a node at most once in a
section, this time complexity is quadratic with respect to the number of the
expanded nodes in the worst case. Meanwhile, A∗ can produce an exponential
running time [5].

5. When thresholds of A∗ are non-strictly monotone increasing

What can we say about the time complexity of A∗∗ over the problems whose
threshold values deriving from the execution of A∗ are non-strictly monotone
increasing? In this case a new concept must be introduced.

Definition 5.1. A strictly monotone increasing subsequence can be con-
structed from the values of the execution diagram of a graph-search algorithm
so that it starts with the first value and then the next one is always the clos-
est value which is greater than the previously selected one. These selected
values are called super-threshold values, the nodes belonging to them are the
super-threshold nodes, and a sequence of the neighboring nodes of this diagram
starting with a super-threshold node and including all nodes before the next
super-threshold is called a super-ditch.



170 T. Gregorics

Figure 3. Super-thresholds

A super-ditch is a maximal-length section of
the neighboring ditches having the same threshold value.

It can be observed that a super-ditch is a maximal-length section of the
neighboring ditches having the same threshold values. The super-ditch starting
with the expansion of ni can be named the super-ditch of ni. The f values
of the expansions in this super-ditch are less than or equal to Fi. Since the f
values of the nodes expanded by A∗∗ form a monotone increasing sequence [2],
the values of the super-ditch of ni are equal to Fi in the execution of A∗∗.

Lemma 5.1. Let a path-finding problem be given with its graph representation.
Let us suppose that when A∗ and A∗∗ expands the node ni with the Fi value,
this node is a super-threshold node in the executions of both algorithms and
these algorithms maintain the same search graphs (Gi), the same open sets
(OPENi), the same recorded paths (πi) and the same cost function (gi) values
of the nodes of Gi. In this case the next super-threshold will be the same in
the executions of these algorithms, and these algorithms will maintain the same
search graphs, the same open sets, the same recorded paths and the same cost
function values at the execution of this next super-threshold.

Proof. Let fA∗

i (m) and fA∗∗

i (m) denote the f value of the node m (m ∈
∈ OPENi) according to A∗ or A∗∗ at the expansion of the super-threshold ni.
We have that fA∗

i (ni) = fA∗∗

i (ni) = Fi.

Let us describe the set of the nodes expanded by A∗ in the super-ditch
of ni. This set is denoted by SDi. Every node which gets into the open set
and whose f value is less than or equal to Fi is expanded before the next
super-threshold whose f value is greater than Fi. Thus a node m belongs to
SDi if it is either already in OPENi and fA∗

i (m) = Fi or it will get into the
open set during the expansions of the nodes of SDi and fA∗

(m) ≤ Fi. In
the latter case there must exist a path α from some node n of OPENi to m
through SDi. If m was in Gi, the cost of the path from s to m including α



Time complexity of A∗∗ 171

(s → n →α m) must be cheaper than the cost of the former recorded path
from s to m, i.e. gi(n) + cα(n,m) < gi(m). (The cost of the path n →α m is
denoted by cα(n,m).) Because of fA∗

(m) = gi(n) + cα(n,m) + h(m) (see the
definition of A∗), we have gi(n) + cα(n,m) + h(m) ≤ Fi. Formally

SDi = {m ∈ N | either m ∈ OPENi and fA∗

i (m) = Fi(5.1)

or ∃n ∈ OPENi and ∃α ∈ {n → m} so that

∀k ∈ α− {m} : k ∈ SDi

and gi(n) + cα(n,m) < gi(m) if m ∈ Gi

and gi(n) + cα(n,m) + h(m) ≤ Fi }.

We prove first that A∗∗ expands all nodes of SDi in the super-ditch of ni.
Let m be a node in the set SDi ∩OPENi. If this node is ni, it is expanded by
A∗∗ (see the conditions of this lemma). Otherwise, the inequality fA∗∗

i (m) ≥ Fi

is hold because the node ni is selected instead of m. We also have fA∗∗

i (m) ≤ Fi

because fA∗∗

i (m) = maxu∈s→πim {gi(u) + h(u)} = maxu∈s→πim fA∗

i (u) where
fA∗

i (m) = Fi (see (5.1)) and the other nodes in the path s →πi m has also
been expanded by A∗ in the super-ditch of ni thus f

A∗

i (u) ≤ Fi. To summarize
the above, fA∗∗

i (m) = Fi and it follows that m is expanded by A∗∗ in the
super-ditch of ni.

Now let us suppose that every node in SDi which can be reached from a
node of OPENi via a k steps path (k > 0) through SDi is expanded by A∗∗ in
the super-ditch of ni. (This is the induction hypothesis.) Let us have a node
m in SDi so that there exists a node n in OPENi and a path α from n to m
through SDi whose length is k + 1.

On the one hand, m gets into the open set of A∗∗ since the path α is
discovered after the expansion of ni (see the induction hypothesis) and either
this path is the only one that leads to m, or this path is cheaper than all paths
discovered before the expansion of ni (see the definition of (5.1)).

When the path α is discovered, we have

gA
∗∗
(u) ≤ gi(n) + cα(n, u) for all u ∈ n →α m(5.2)

where gA
∗∗

denotes the g cost value computed by A∗∗.



172 T. Gregorics

On the other hand,

fA∗∗
(m) = maxu∈s→πm {gA

∗∗
(u) + h(u)} =

= max{maxu∈s→πin {gA
∗∗
(u) + h(u)},

maxu∈n→αm {gA
∗∗
(u) + h(u)}} =

where n ∈ OPENi ∩ {s →π m}
= max{fA∗∗

i (n),maxu∈n→αm {gA
∗∗
(u) + h(u)}} =

sincefA∗∗

i (n) = Fi because n ∈ SDi ∪OPENi

= max{Fi,maxu∈n→αm {gA
∗∗
(u) + h(u)}} ≤

see (5.2)

≤ max{Fi,maxu∈n→αm {gi(n) + cα(n, u) + h(u)}} ≤ Fi

(In the last step we used that each node in the path α is in SDi.) Therefore
m is expanded by A∗∗ in the super-ditch of ni.

We finish the proof by showing that there are no nodes outside SDi which
are expanded by A∗∗ in the super-ditch of ni. Let us suppose indirectly that
there exist such nodes and take the first one according to the sequence of
expansions of A∗∗. This node is denoted by m. In order for m to be expanded
in the super-ditch of ni it must get into the open set and fA∗∗

(m) = Fi must
hold. It means that either m is in OPENi, or there is a path α from a node n
of OPENi to m through SDi (see indirect assumption) so that if m is in Gi,
then gi(n)+cα(n,m) < gi(m). But gi(n)+cα(n,m)+h(m) ≤ fA∗∗

(m) because
of the definition of A∗∗, thus gi(n) + cα(n,m) + h(m) ≤ Fi holds. Therefore
the node m must belong to SDi and this is a contradiction.

All in all, A∗∗ expands the same nodes like A∗ in the super-ditch of ni thus
these algorithms store the same information about the problem when they must
select the next super-threshold node. �

Theorem 5.1. A∗∗ expands the same super-threshold nodes with the same
super-threshold values in the same order like A∗ or B.

Proof. We prove this theorem using induction on the super-threshold nodes of
the execution diagram of A∗. It is enough to examine the connection of A∗ and
A∗∗ since B expands the same threshold nodes with the same threshold values
in the same order like A∗ [5], and these thresholds include the super-thresholds.

The first super-threshold node is the start node and this same node is
expanded by A∗∗ at first. It is clear that fA∗

(s) = fA∗∗
(s) = F1. Let us

suppose that until the expansion of the super-threshold node ni the statement
is true, that is, at the expansion of ni both algorithms maintain the same search
graphs (Gi), the same open sets (OPENi), the same recorded paths (πi), the
same cost function values of the nodes of Gi and Fi = fA∗

i (ni) = fA∗∗

i (ni).



Time complexity of A∗∗ 173

(This is the induction hypothesis.) We have shown in the previous lemma
(Lemma 5.1) that these algorithms expand the same nodes in the super-ditch
of ni thus after this process they store the same information about the problem
and they expand the same next super-threshold node. �

Corollary 5.1. The only difference of the executions of A∗, A∗∗, and B is
how many times a node is expanded in a super-ditch and what is the order of
their expansions.

6. A∗∗ is better than A∗ or B

Now we are going to focus on the differences between A∗∗ and the other
two algorithms.

Theorem 6.1. A∗∗ using the cost function g as a secondary tie-breaking rule
expands a node at most once in a super-ditch.

Proof. Let us suppose indirectly that A∗∗ expands the node m twice in the
super-ditch of ni. It means that there are two different paths (α and β) from
the start node through one-one node of OPENi to m and both paths have been
discovered in the super-ditch of ni. It can only happen that the more expensive
path is discovered at first. Let us suppose that the cost of β is cheaper than
the cost of α (If there were more than two paths, let α and β be the cheapest
ones.)

When the node m is expanded at first after the path α has been discovered,
fA∗∗

(m) = maxu∈s→αm {g(u)+h(u)} = Fi holds, where g(m) is the cost of α.
At the same time on the path β there must be a node m′ which is in the open
set and fA∗∗

(m′) = maxu∈s→βm′ {g(u) + h(u)}. We have fA∗∗
(m′) = Fi since

the node m′ will be expanded in the current super-ditch and there are no other
cheaper path from the start node to m′ which is discovered in this super-ditch.

It can be seen that when the node m is expanded at first, m and m′ are
in the open set and fA∗∗

(m′) = fA∗∗
(m). It means that the secondary tie-

breaking rule selects the node m for expansion instead of the node m′, i.e.
g(m) ≤ g(m′) must hold. But g(m′) is cheaper than the cost of whole β and
the cost of β is cheaper than the cost of α (see the indirect assumption), thus
g(m′) < g(m). This is a contradiction. �

The Lemma 6.1 shows that A∗∗ expands a node only once in a super-
ditch. Comparing this with the Corollary 5.1, we can say that the number of
expansions of A∗∗ can never be larger than the number of expansions of A∗

and B. It follows the next corollary.



174 T. Gregorics

Figure 4. Example where A∗∗ is better than A∗ and B
The node c is expanded by A∗∗ only once since A∗∗ expands the node a

before the node b and the node c because of its secondary tie-breaking rule.

Corollary 6.1. The time complexity of A∗∗ can never be worse than the time
complexity of A∗ and B.

Now we are going to show that it can be better. In the following examples,
A∗∗ terminates earlier than the other algorithms because of its tie-breaking
rules.

In the first example (Figure 4), the node c is expanded twice by A∗ and
B in two different ditches, but these ditches form only one super-ditch, where
A∗∗ with my secondary tie-breaking rule expands this node only once.

In the second example (Figure 5), the node a and the node b race in the
open set after the first expansion of each algorithm. In the second step, A∗

and B expand b, A∗∗ expands a (because of the different evaluation functions).
However, all algorithms put the goal node t in the open set. In the third step,
A∗ and B expands a (because its f value is less than the f value of the goal
node t), but A∗∗ terminates since the f value of b and t is the same and, in
this case, the primary tie-breaking rule works and the goal node is selected for
expansion.

7. Summary

The concept of super-ditch (Definition 5.1) made it possible to divide the ex-
ecutions of the graph-search algorithms into successive sections (super-ditches)
and compare the states of the executions of some famous algorithms at the
boundary of these sections. It has been shown that the states of the executions



Time complexity of A∗∗ 175

of A∗∗, A∗ and B are the same at the end of every super-ditch (Theorem 5.1).
The only difference between the executions of these algorithms is the number of
times that a node is expanded in the corresponding super-ditches and the order
of expansions of the nodes belonging to these super-ditches (Corollary 5.1).

Adding another tie-breaking rule to the algorithm A∗∗, it expands a node
at most once in a super-ditch. (Theorem 6.1) Thus the time complexity, more
precisely, the number of the expansions of A∗∗ is never larger than the number
of the expansions of A∗ and B. (Corollary 6.1).

At the end, two examples (Figure 4, Figure 5) were presented where A∗∗

with our secondary tie-breaking rule is faster than the other algorithms. Thus
we can say that A∗∗ is better than A∗ and B with respect to their time com-
plexity.

Figure 5. Example where A∗∗ is better than A∗ and B
A∗∗ terminates earlier because of its primary tie-breaking rule.

References

[1] Dechter, R., J. Pearl, Generalized best-first search strategies and opti-
mality of A∗, Journal of the Association for Computing Machinery, 32(3)
(1985), 505–536.

[2] Gregorics, T., Remarks on the A∗∗ algorithm, Acta Sapientiae Infor-
matica, 6(2) (2014), 190–205.



176 T. Gregorics

[3] Gregorics, T., Which of graphsearch versions is the best?, Annales Univ.
Sci. Budapest., Sect. Comp., 15 (1995), 93–108.

[4] Hart, P., N.J. Nilsson, and B. Raphael, A formal basis for the heuris-
tic determination of minimum cost paths, IEEE Trans. System, Man and
Cybernet, 4(2) (1968), 100–107.

[5] Martelli, A. On the complexity of admissible search algorithms, Artificial
Intelligence, 8(1) (1977) 1–13.

[6] Russell, S.J. and P. Norvig, Artificial Intelligence. A Modern Ap-
proach, Prentice Hall Inc., 1995.

T. Gregorics
Eötvös Loránd University
Budapest
Hungary
gt@inf.elte.hu


