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Abstract. The classical coin tossing experiment is studied. Limit theo-
rems are obtained concerning the head-runs containing certain number of
tails. It is proved that the limit of the number of those runs of length n
which contain at most T tails is compound Poisson. Accompanying dis-
tributions are obtained for the length of the longest head-runs containing
at most T tails. To this end a two parameter family of accompanying
distributions is offered.

1. Introduction

In this paper, we consider the length of consecutive heads interrupted by
several tails in the usual coin tossing experiment. So let p ∈ (0, 1) be the prob-
ability of heads and q = 1 − p the probability of tails. During the paper p is
fixed. We toss the coin N times independently. We write 1, when the result
is head and 0, when the result is tail. So the experiment can be described us-
ing independent identically distributed random variables X1, X2, . . . , XN with
P(Xi = 1) = p and P(Xi = 0) = q, i = 1, 2, . . . , N . Let T ≥ 0 be a fixed in-
teger. We shall study the precisely and the at most T -contaminated (in other
words T -interrupted) runs of heads having length n.
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distribution.
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Before going into the details, we list some results of the huge literature of
the topic. One of the most famous classical results is the following theorem
of Erdős and Rényi [3]. Consider the case of a fair coin, that is let p = 1/2.
Let µ(N) denote the length of the longest pure head run during N tosses. Let
0 < c1 < 1 < c2 < ∞. Then for almost all elementary event ω there exists a
finite N0 = N0(ω, c1, c2) such that

[c1 logN ] ≤ µ(N) ≤ [c2 logN ]

if N ≥ N0. Here log denotes logarithm base 2 and [ . ] is the integer part.
More precise result was obtained by Erdős and Révész in [4]. Furthermore,
in [4], almost sure limit results were proved for the length of the longest runs
containing at most T tails when p = 1/2.

Földes, in [7], studied also the case of the fair coin. She proved asymptotic
results for the distributions of the number of pure head runs, the first hitting
time of a run having a fixed length, and the length of the longest pure head-
run. Then she announced the extensions of the above mentioned results for
T contaminated runs of heads. Földes presented the proofs for her results on
T contaminated runs of heads in [6]. The aim of our paper is to extend the
results of Földes [7] to the case of possibly biased coins and to give detailed
proofs. In our proofs we use the ideas given in [6] and [7].

Gordon, Schilling, and Waterman in [8] used extreme value theory to find
the asymptotic behaviour of the expectation and the variance of the length of
the longest precisely T -contaminated head run. Also in [8], accompanying dis-
tributions were obtained for the length of the longest precisely T -contaminated
head run. We shall show, that the accompanying distributions of [8] are simple
consequences of our approach.

Móri in [11] also studied the longest precisely T -contaminated head run. He
presented the limiting distribution for the first hitting time (without proof) and
a so called almost sure limit theorem (see Corollary 5.1 in [11]). We emphasize
that, contrary to [11] and [8], our main results concern the case of at most
T -contaminated head runs and not the precisely T -contaminated head runs.

There are several extensions and applications of the results on the longest
head-run, see e.g. [1] and [2]. The Markovian case is also studied. For example,
in [12], the accuracy of the approximation to the distribution of the length of
the longest head run in a Markov chain is considered. See also the references
in [12].

In [9], [5] and [13] recursive formulae were used to describe the properties of
the longest head run. It is known that the properties of longest runs are used
to test random number generators, see e.g. [10].



Runs of heads 133

2. Notation and limit theorems for the number of runs

Consider the classical coin tossing experiment. Let p ∈ (0, 1) be the proba-
bility of heads and q = 1− p the probability of tails. Here p is fixed. We toss a
coin N times independently. We shall write 1, when the result is head and 0,
when the result is tail. Therefore consider independent identically distributed
random variables X1, X2, . . . , XN with P(Xi = 1) = p and P(Xi = 0) = q,
i = 1, 2, . . . , N . Let T ≥ 0 be a fixed integer.

Let ξ̃ = ξ̃T (n,N) denote the number of those precisely T -contaminated n-
length runs of heads for which the preceding element is a tail. More precisely
let

(2.1) η̃i = η̃Ti (n) =




1, if there are precisely T 0 values among
Xi, . . . , Xi+n−1 and Xi−1 = 0,

0, otherwise.

Here X0 is defined as X0 ≡ 0. Now let

(2.2) ξ̃ = ξ̃T (n,N) =
N−n+1∑

i=1

η̃Ti (n).

So ξ̃ can be considered as the number of those precisely T -contaminated head-
runs having length n for which the preceding value is tail.

Our main condition is the following. Let p ∈ (0, 1) be fixed. Let T be a
fixed non-negative integer. Let N → ∞ and n → ∞ so that

(2.3)
NqT+1pn−TnT

T !
→ λ > 0,

where λ is fixed. We remark that condition (2.3) implies that N/n → ∞.

Now we show that the distribution of ξ̃ converges to the λ parameter Poisson
distribution.

Theorem 2.1. Let T be fixed. Let N → ∞ and n → ∞ so that condition (2.3)
is satisfied. Then

lim
N→∞

P
(
ξ̃T (n,N) = k

)
=

e−λλk

k!
, k = 0, 1, 2, . . . .

The above theorem is proved in [6] for p = 1/2 (see Theorem 3.1 in [6], see
also Theorem 1.A in [7]).

To obtain the proofs of our theorems we need the following known result.
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Proposition 2.2. (See [14].) Let Y
(m)
i , i = 1, 2, . . . , lm, m = 1, 2, . . . , be a

triangular array of Bernoulli random variables, i.e. the values of Y
(m)
i are 0

or 1. Let
Zm = Y

(m)
1 + Y

(m)
2 + · · ·+ Y

(m)
lm

, m = 1, 2, . . .

be the row sums. Let

b
(m)
i1,...,ir

= P(Y (m)
i1

= Y
(m)
i2

= · · · = Y
(m)
ir

= 1),

where (i1, . . . , ir) denotes an r dimensional vector such that the integers i1, . . . , ir
are pairwise different with 1 ≤ it ≤ lm, t = 1, . . . , r, r = 1, 2, . . . . Assume that
for each r = 2, 3, . . . , m = 1, 2, . . . there exists an exceptional set Ir(m) con-
sisting of certain vectors αr = (i1, . . . , ir) such that the numbers i1, . . . , ir are
pairwise different with 1 ≤ it ≤ lm, t = 1, . . . , r. Assume that

(2.4) lim
m→∞

max
1≤i≤lm

b
(m)
i = 0,

(2.5) lim
m→∞

lm∑
i=1

b
(m)
i = λ > 0,

(2.6) lim
m→∞

∑
αr∈Ir(m)

b
(m)
i1,...,ir

= 0,

(2.7) lim
m→∞

∑
αr∈Ir(m)

b
(m)
i1

· · · b(m)
ir

= 0,

and uniformly for all αr /∈ Ir(m)

(2.8) lim
m→∞

b
(m)
i1,...,ir

b
(m)
i1

· · · b(m)
ir

= 1.

Then

(2.9) lim
m→∞

P(Zm = k) =
λke−λ

k!
, k = 0, 1, 2, . . . .

Proof of Theorem 2.1. We apply Proposition 2.2 for lm = N − n + 1
and Yi = η̃i, i = 1, 2, . . . , lm. So we check the conditions of Proposition 2.2.
Condition (2.4) is satisfied because

max
1≤i≤N−n+1

bi = max
1≤i≤N−n+1

P(η̃i = 1) =

= max{1, q}
(
n

T

)
qT pn−T ≤ cnT pn → 0(2.10)
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as N,n → ∞, because 0 < p < 1. Condition (2.5) is satisfied because, by
condition (2.3),

N−n+1∑
i=1

bi =
N−n+1∑

i=1

P(η̃i = 1) =

= (1 + (N − n)q)

(
n

T

)
qT pn−T ≈ N

nT

T !
qT+1pn−T → λ(2.11)

as n,N → ∞. Here we applied that, by (2.3), n/N → 0.

Now let αr = (i1, . . . , ir) denote an r dimensional vector such that the
numbers i1, . . . , ir are pairwise different with 1 ≤ it ≤ N − n+ 1, t = 1, . . . , r.
Define the set Ir(n,N) of exceptional indices as the set of those indices αr =
= (i1, . . . , ir) such that there are i, j ∈ {1, . . . , r}, j �= l with |ij − il| < n+ 1.

The random vectors Xi−1, Xi, . . . , Xi+n−1 and Xj−1, Xj , . . . , Xj+n−1 are
independent if n < j − i. Therefore η̃i1 , . . . , η̃ir are independent if αr =
= (i1, . . . , ir) /∈ Ir(n,N). So (2.8) is satisfied.

Now turn to (2.7). By the definition of Ir(n,N), we should choose r elements
out of N elements so that there should be a pair among them with distance
being not greater than n. Therefore

(2.12)
∑

αr∈Ir(n,N)

bi1 · · · bir =
∑

αr∈Ir(n,N)

P(η̃i1 = 1) · · ·P(η̃ir = 1) ≤

≤
(

N

r − 1

)
(r − 1)2n

[(
n

T

)
qT pn−T

]r
≤ c

n

N

(
NnT pn

)r → 0

as n,N → ∞, because of condition (2.3).

Now consider condition (2.6). For r = 1 conditions (2.6) and (2.7) are
equivalent. For r ≥ 2 and T = 0 we have

(2.13)
∑

αr∈Ir(n,N)

bi1,...,ir =
∑

αr∈Ir(n,N)

P(η̃i1 = 1, . . . , η̃ir = 1) = 0,

because in the definition of η̃i we claim Xi−1 = 0.

Now we shall prove condition (2.6) for T �= 0. For any αr = (i1, . . . , ir) the
indices of Xi variables involved belong to the intervals

(2.14) [i1 − 1, i1 + n− 1], [i2 − 1, i2 + n− 1], . . . , [ir − 1, ir + n− 1].

If αr ∈ Ir(n,N), then at least two of the above intervals have a common
point. So we can divide the family of intervals (2.14) into disjoint components
so that inside each component the intervals are connected. The random vari-
ables having indices in disjoint components are independent. Therefore the
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term
∑

αr∈Ir(n,N) P(η̃i1 = 1, . . . , η̃ir = 1) is a sum of the products of terms

corresponding to connected components. Using this fact and (2.11), we can
see that it is enough to prove (2.6) for a connected set of intervals (2.14). So
let I∗r = I∗r (n,N) be the set of indices α ∈ Ir(n,N) with a connected family
(2.14) of intervals. Denote by s the overall length of these intervals. Then
n + r ≤ s ≤ rn + 1. Divide I∗r into two parts; αr ∈ I∗r (1) = I∗r (1, n,N) if and
only if s ≤ 2n+ 1 while αr ∈ I∗r (2) = I∗r (2, n,N) if and only if s > 2n+ 1. So
in the case of I∗r (1) there is a common point of the intervals (2.14) but in the
case of I∗r (2) the first and the last intervals are disjoint. In the case of I∗r (2) a
rough upper bound will do.

∑
αr∈I∗

r (2)

P(η̃i1 = 1, . . . , η̃ir = 1) ≤ N
rn+1∑

s=2n+2

rT∑
j=2T

(
s

j

)
qjps−j ≤

≤ cNp2n−rT (rn+ 1)rT (rn+ 1)(rT ) ≤ cNp2nnrT+1 =

= c(NpnnT )(pnn(r−1)T+1) → 0

as n,N → ∞, because of condition (2.3). Now consider the case of I∗r (1)
that is when s ≤ 2n + 1. Then the intersection of all the intervals in (2.14)
is not empty. The case r > T + 1 is impossible as then at least r − 1 tails
(r − 1 > T ) would be in the first interval. So let r ≤ T + 1. Concerning the
location of the intervals (2.14) let lj = ij+1 − ij , j = 1, . . . , r− 1. If l1, . . . , lr−1

are fixed, then the locations of r − 1 tails are given. So in the first interval
we can choose the locations of T − r + 1 tails. The starting point of the first
interval can be chosen less than N different ways. Moreover, the probability
that at most T tails occur from l tosses is not greater than ql0(T + 1)lT , where
q0 = max{q, p} < 1. Therefore

∑
αr∈I∗

r (1)

P(η̃i1 = 1, . . . , η̃ir = 1) ≤

≤ N
∑

1≤l1,...,lr−1≤n

[(
n

T − r + 1

)
qT pn−T

]
ql10 (T + 1)lT1 . . . q

lr−1

0 (T + 1)lTr−1 ≤

≤ cNnT−r+1qT pn−T

(
n∑

l=1

lT ql0

)r−1

(T + 1)r−1 ≤ cNpnnTn1−r → 0

as N → ∞, because r = 2, 3, . . . . Above we applied that
∑n

l=1 l
T ql0 ≤

c
∫∞
0

xT qx0dx < ∞. So we obtained

(2.15)
∑

αr∈Ir(n,N)

bi1,...,ir =
∑

αr∈Ir(n,N)

P(η̃i1 = 1, . . . , η̃ir = 1) → 0

as N → ∞. �
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Now we define the number of at most T -contaminated runs of heads having
length n as follows. Let

(2.16) ηi = ηTi (n) =




1, if there are at most T 0 values among
Xi, . . . , Xi+n−1,

0, otherwise.

Now let

(2.17) ξ = ξT (n,N) =

N−n+1∑
i=1

ηTi (n).

ξ can be considered as the number of head-runs being at most T -contaminated
and having length n.

Now we prove that the distribution of ξ converges to a compound Poisson
distribution.

Theorem 2.3. Let T be fixed. Let N → ∞ and n → ∞ so that condition (2.3)
is satisfied. Then for the generator functions we have

lim
N→∞

E
(
zξ

T (n,N)
)
= exp

[
λ

(
qz

1− pz
− 1

)]
.

The above theorem is proved in [6] for p = 1/2 (see Theorem 3.2 in [6], see
also Theorem 2.A in [7]).

Proof. First recall the notion of the compound Poisson distribution. Here we
need its particular version, that is the so called geometric Poisson distribution.
Let γ have Poisson distribution P(γ = k) = λke−λ/k!, k = 0, 1, 2, . . . . Let
�1, �2, . . . , be independent random variables each having q parameter geometric
distribution: P(�i = l) = pl−1q, l = 1, 2, . . . , q ∈ (0, 1), p = 1 − q. Let the
distribution of � be the same as �1 + · · · + �k when γ = k. (Here an empty
sum is defined as 0, i.e. � = 0 when γ = 0.) Then � has generator function

E (z�) = exp
[
λ
(

qz
1−pz − 1

)]
for |zp| < 1.

It is easy to see that for any run of length n containing at most T zeros
either there exists a preceding run of length n containing precisely T zeros or
all preceding runs contain zeros less than T . To give a formal explanation of
this fact let

(2.18) η′i = η′i
T
(n) =

{
η̃Ti (n) ·Xi+n−1, if i > 1
ηTi (n), if i = 1.

Therefore η′i = 1 either if i = 1 and among the first n tosses there are at most
T tails, or i > 1 and Xi−1 = 0, Xi+n−1 = 1 and between these locations there
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are precisely T zeros. We see that in the second case shifting left by 1 the
interval i, i+1, . . . , i+n− 1 we obtain an interval containing T +1 zeros. Now
starting at an arbitrary interval i, i+1, . . . , i+n−1 containing at most T tails,
shift left this interval step by step until there are more than T tails in it. If
k+1 denotes the number of steps until that situation is reached, then η′i−k = 1.
(Moreover, η′i−k = 1 means always the end of the above shifting procedure.)
Therefore we can find the longest sequences of overlapping intervals of type
i, i+1, . . . , i+n−1 containing at most T tails. We shall refer to these sequences
of intervals as chains of intervals. So to count the number of head-runs being at
most T -contaminated and having length n we should find the number of these
chains of intervals and their length. To be more precise, we should consider
the following representation of ξ = ξT (n,N).

(2.19) ξ = ξT (n,N) =
N−n+1∑

i=1

γT
i (n) =

N−n+1∑
i=1

γi,

where

(2.20) γi = γT
i (n) = η′i

[
min

{
k > 0 :

either ηi+k = 0
or i+ k + n− 1 > N

}]
.

Let γ = γT (n) denote the number of non-zero γi’s (i.e. the number of non-

zero η′i elements). We know that ξ̃ is the number of precisely T -contaminated

head-runs of length n so that the preceding element is 0. So γ �= ξ̃ only in the
following two cases. The first case is when η1 = 1 and η̃1 = 0. The second case
is η′i �= η̃i for some i > 1. The probability of these events is not greater than

P(η1 = 1, η̃1 = 0) +
N−n+1∑

i=2

P(η′i �= η̃i) ≤

≤ P(at the beginning of the tosses there is a run containing tails less than T )

+NP(there are precisely T tails among n tosses,

the last and the previous are tails) ≤

≤
T−1∑
i=0

(
n

i

)
pn−iqi +Nq

(
n− 1

T − 1

)
pn−T qT−1q ≤

≤ cTnT pn−T+1 + cNnT−1pn−T qT+1 → 0

as N,n → ∞, because of condition (2.3).

Therefore P(γ = ξ̃) → 1 if N,n → ∞. By Theorem 2.1, the limit distribu-

tion of ξ̃ is λ parameter Poisson. So, by Slutsky’s lemma, the limit distribution
of γ is also λ parameter Poisson.
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We shall show that

(2.21) lim
N,n→∞

P(γi > k|γi > 0) = pk, k = 0, 1, 2, . . . ,

i.e. the (conditional) limiting distribution of γi is the q parameter geometric
distribution. To this end we shall use the following elementary fact. When
P(BnCn) �= 0, then limn→∞ P(BnCn)/P(Bn) = 1 implies that

(2.22) lim
n→∞

P(An|Bn) = lim
n→∞

P(An|BnCn)

in the sense that if one side of the above equation exists, then the other side
also exists and the two sides are equal.

For any fixed i ∈ {1, 2, . . . } and k0 ≥ 1 let An = {γT
i (n) > k0}, Bn =

= {γT
i (n) > 0}, Cn = {

∏i+k0−1
j=i Xj = 1}. First let i > 1. Then

Bn = {Xi−1 = 0, Xi+n−1 = 1,

there are precisely T zeros among Xi, . . . , Xi+n−2}.

Then
P(BnCn)

P(Bn)
=

qpk0
(
n−k0−1

T

)
qT pn−k0−1−T p

q
(
n−1
T

)
qT pn−1−T p

→ 1.

So, by (2.22),

lim
n→∞

P(γi > k0|γi > 0) = lim
n→∞

P(An|Bn) =

= lim
n→∞

P(An|BnCn) = lim
n→∞

P(Xi+n = · · · = Xi+n+k0−1 = 1) = pk0 .

Now let i = 1. Then

Bn = {γT
1 (n) > 0} = { there are at most T zeros among X1, . . . , Xn}.

Let
B′

n = { there are precisely T zeros among X1, . . . , Xn}.
Then P(B′

n) =
(
n
T

)
qT pn−T , P(Bn) =

∑T
j=0

(
n
j

)
qjpn−j . We see that B′

n ⊆ Bn

and
P(BnB

′
n)

P(Bn)
=

P(B′
n)

P(Bn)
→ 1 as n → ∞. So, using (2.22) with Cn = B′

n, we see

that limn→∞ P(An|Bn) = limn→∞ P(An|B′
n). Then with Cn = {

∏k0

j=1 Xj = 1}
we have

P(B′
nCn)

P(B′
n)

=
pk0

(
n−k0

T

)
qT pn−k0−T

(
n
T

)
qT pn−T

→ 1.

So we can use (2.22) with B′
n instead of Bn. Then we obtain

lim
n→∞

P(An|Bn) = lim
n→∞

P(An|B′
n) = lim

n→∞
P(An|B′

nCn) =

= lim
n→∞

P(Xn+1 = · · · = Xn+k0
= 1) = pk0 .

So we obtained (2.21).
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Now let αr = (i1, . . . , ir) be a vector of indices with ij �= il for j �= l.
Introduce notation

C(αr) = {γ = r, η′i1 = η′i2 = · · · = η′ir = 1}.

The meaning of C(αr) is that there are r above mentioned chains of intervals
and they start at positions i1, i2, . . . , ir. Obviously C(αr) ∩ C(α′

r) = ∅ for
αr �= α′

r, moreover {γ = r} = ∪αr
C(αr). Therefore

P({γ = r}) =
∑
αr

P(C(αr)).

Now let K = (k1, . . . , kr), |K| = k1 + · · ·+ kr, and let

C1(αr,K) = C(αr) ∩ {γi1 > k1, . . . , γir > kr}.

The meaning of C1(αr,K) is that lengths of the above mentioned chains of
intervals are greater than k1, . . . , kr. Using event C1(αr,K), we can describe
the asymptotic joint distribution of the positive γi’s.

To finish the proof we have to prove the following. Given that there are
r positive γi variables, then the asymptotic joint distribution of the positive
γi variables is equal to the joint distribution of r independent geometrically
distributed random variables. That is we have to prove

(2.23)

∑
αr

P(C1(αr,K))

P(γ = r)
→ p|K|.

Let k = max1≤i≤r ki and let the exceptional set Ir(n + k,N) be defined as in
the proof of Theorem 2.1. That is αr ∈ Ir(n+ k,N) if and only if there exists
ij , il ∈ αr such that |ij − il| ≤ n+ k. Now we show that

(2.24)
∑

αr∈Ir(n+k,N)

P(C(αr)) → 0.

We have

P(C(αr)) ≤ P({η′i1 = η′i2 = · · · = η′ir = 1}) ≤ P({η̃i1 = η̃i2 = · · · = η̃ir = 1})

because of the inclusion relations among the above events. Using this relation
and the fact that η̃i1 , η̃i2 , . . . , η̃ir are independent for αr /∈ Ir(n,N), we obtain

∑
αr∈Ir(n+k,N)

P(C(αr)) ≤
∑

αr∈Ir(n,N)

P({η̃i1 = η̃i2 = · · · = η̃ir = 1})

+|Ir(n+ k,N)|
[
q

(
n

T

)
qT pn−T

]r
.
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During the proof of Theorem 2.1 we obtained that the limit of the first term is
0 (see (2.15)). On the other hand, for the second term we have

lim
N→∞

|Ir(n+ k,N)|
[
q

(
n

T

)
qT pn−T

]r
≤

≤ lim
N→∞

c

((
N

r − 1

)
(r − 1)2(n+ k)

)[
nT q(T+1)p(n−T )

]r
≤

≤ lim
N→∞

c
n

N
|
[
NnT pn

]r
= 0

by condition (2.3). So we obtained (2.24). Now we have
∑
αr

P(C1(αr,K)) =

=
∑

αr∈Ir(n+k,N)

P(C1(αr,K)) +
∑

αr /∈Ir(n+k,N)

P(C1(αr,K)).(2.25)

By (2.24), the first term in (2.25) converges to 0. Now we consider the second
term. By the definition of C1(αr,K), we have

∑
αr /∈Ir(n+k,N)

P(C1(αr,K)) =

=
∑

αr /∈Ir(n+k,N)

P
(
γi1 > k1, . . . , γir > kr | γ = r, η′i1 = η′i2 = · · · = η′ir = 1

)
×

× P
(
γ = r, η′i1 = η′i2 = · · · = η′ir = 1

)
.

By independence and (2.21),
∑

αr /∈Ir(n+k,N)

P(C1(αr,K)) ≈

≈
∑

αr /∈Ir(n+k,N)

(
r∏

i=1

pki

)
P
(
γ = r, η′i1 = η′i2 = · · · = η′ir = 1

)
=

= p|K|


∑

αr

P(C(αr))−
∑

αr∈Ir(n+k,N)

P(C(αr))


 ≈ p|K|P(γ = r).(2.26)

In the last step we applied (2.24). As the limit distribution of γ is Poisson, that
is the limit of P(γ = r) is non-zero, we obtain from (2.25), (2.24) and (2.26)
that (2.23) is satisfied.

So we obtained for relation (2.19) that is for ξ =
∑N−n+1

i=1 γi the following
facts. The number γ of the non-zero terms γi is asymptotically Poisson with
parameter λ. Moreover, the positive ones out of the variables γ1, γ2, . . . are
asymptotically geometric and they are asymptotically independent. Therefore
ξ is asymptotically compound Poisson. �
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3. First arrival time and longest run

Let

(3.1) τ = τT (n) = min{N : ξT (n,N) > 0}.

τ is the first hitting time of the run having length n and containing at most
T tails. We show that the appropriate normalised version of τ has exponential
limiting distribution.

Theorem 3.1. Let T be fixed. Then for any 0 < x < ∞

lim
n→∞

P
(
τT (n)nT

T !
qT+1pn−T ≤ x

)
= 1− e−x.

The above theorem is proved in [6] for p = 1/2 (see Theorem 3.3 in [6], see
also Theorem 3.A in [7]).

Proof.

P
(
τT (n)nT

T !
qT+1pn−T > x

)
=

= P
(
τT (n) >

xT !

nT qT+1pn−T

)
= P

(
ξT (n,N(x)) = 0

)
,

where N(x) =
[

xT !
nT qT+1pn−T

]
. By Theorem 2.3, the asymptotic distribution of

ξ is compound Poisson, it is obtained from a λ parameter Poisson and q pa-
rameter geometric distributions. Therefore (using notation from the beginning
of the proof of Theorem 2.3) the limiting distribution is

P(� = 0) =
∞∑
k=0

P(� = 0 | γ = k)P(γ = k) =

= P(0 = 0)P(γ = 0) +

∞∑
k=1

P(�1 + · · ·+ �k = 0)P(γ = k) = 1e−λ + 0.

We have to check condition (2.3) and to find the value of λ.

N(x)nT qT+1pn−T

T !
=

[
xT !

nT qT+1pn−T

]
nT qT+1pn−T

T !
→ x

as n → ∞. Therefore the λ parameter is equal to x. �

Let

(3.2) µ = µT (N) = max{n : ξT (n,N) > 0}.
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Considering the result of tossing a coin N times, µ is the length of the longest
run of heads containing at most T tails. The following theorem describes
the accompanying distribution of µT (N). We offer a two parameter family of
distributions to approximate the distribution of µ. We shall use the following
notation. Let B be a fixed positive number. For any positive x we have that

x = kB + r,

where k is integer and r is the residual for which 0 ≤ r < B. Here k and r are
uniquely determined. We define [x]B and {x}B as [x]B = kB and {x}B = r.

Theorem 3.2. Let T be fixed. Let B be a fixed positive number and let S be a
fixed number. Then for any integer k we have

P
(
µT (N)− [logN + T log(logN + S log logN)]B < k

)
=

(3.3) = exp
(
−qT+1p(k−T−{logN+T log(logN+S log logN)}B/T !

)
+ o(1).

Here log denotes logarithm of base 1/p.

For B = S = 1 and p = 1/2, the above theorem is proved in [6] (see
Theorem 3.4 in [6], see also Theorem 4.A in [7]).

Proof. For any integer k let

f(N) = P
(
µT (N)− [logN + T log(logN + S log logN)]B < k

)
.

Then

f(N) = P
(
µT (N) < n(k)

)
= P

(
ξT (n(k), N) = 0

)
,

where n(k) = k + [logN + T log(logN + S log logN)]B . For any fixed k, the
sequence n(k) converges to infinity as N → ∞. Let λ0 ∈ [0, B] be fixed and
choose a subsequence

(3.4) Nj ↑ ∞ such that {logNj + T log(logNj + S log logNj)}B → λ0.

For this subsequence Nj and for

nj(k) = k + [logNj + T log(logNj + S log logNj)]B ,

condition (2.3) is satisfied in the following form:

(3.5)
Njq

T+1pnj(k)−T (nj(k))
T

T !
→ qT+1pk−T p−λ0

T !
.
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Therefore, by Theorem 2.3, and using the argument of the proof of Theorem 3.1,
we obtain

lim
j→∞

f(Nj) = lim
j→∞

P
(
µT (Nj)− logNj + T log(logNj + S log logNj)]B < k

)
=

(3.6) = lim
j→∞

P
(
ξT (nj(k), Nj) = 0

)
= exp(−qT+1pk−T p−λ0/T !).

If (3.4) is satisfied, then for

g(N) = exp
(
−qT+1p(k−T−{logN+T log(logN+S log logN)}B)/T !

)

(3.7) lim
j→∞

g(Nj) = exp(−qT+1pk−T p−λ0/T !)

is true. To obtain (3.3), we have to show that f(N) − g(N) → 0. Sup-
pose that it is not satisfied, i.e. there exists ε > 0 such that for certain
subsequence N ′

j we have |f(N ′
j) − g(N ′

j)| > ε for any j. As the sequence{
logN ′

j + T log(logN ′
j + S log logN ′

j)
}
B
has an accumulation point λ0 in [0, B],

so there exists a further subsequence Nj of N ′
j so that

{logNj + T log(logNj + S log logNj)}B → λ0.

Now, by (3.6) and (3.7), f(Nj) − g(Nj) → 0. It is a contradiction, so (3.3) is
satisfied. �

Now we give a new proof for Theorem 1 of [8]. In Theorem 1 of [8] the
longest head run containing (precisely) T tails was studied. However, we have
the following

Remark. The limiting distribution of the length of the longest head run con-
taining T tails is the same as the limiting distribution of the length of the
longest head run containing at most T tails. To prove it, let A be the event
that the length of the longest head run containing at most T tails is greater
than n. Then A = B ∪ C, where B is the event that the length of the longest
head run containing precisely T tails is greater than n and C is the event that
the length of a head run containing less than T tails is greater than n and it is
not possible to add some tails to it. But

P(C) ≤
T−1∑
i=0

(
N

i

)
pN−iqi ≤ cpNNT−1 → 0

as N → ∞.
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In [8], the original proof was based on extreme value theory, but here we
give a new proof using the method of our Theorem 3.2. Let [x] denote the
usual integer part of x and {x} its fractional part.

Proposition 3.3. (Theorem 1 of [8].)

P
(
µT (N)− µT (qN) ≤ t

)
= P

([
W

ln( 1p )
+ {µT (qN)}

]
− {µT (qN)} ≤ t

)
+o(1)

for all t, where

µT (qN) = log(qN) + T log log(qN) + T log(q/p)− log(T !)

and the distribution of W is P(W ≤ t) = exp(−e−t).

Proof. Some algebraic calculation shows, that we have to prove that

P
(
µT (N)− [µT (qN)] < k

)
= P

([
W

ln( 1p )
+ {µT (qN)}

]
< k

)
+ o(1)

for all integers k. Using the definition of the distribution of W , this relation is
equivalent to

P
(
µT (N)− [µT (qN)] < k

)
= exp

(
−pk−{µT (qN)}

)
+ o(1).

The remaining part of the proof is the same as that of Theorem 3.2. �
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