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Abstract. We consider the interpretation and the numerical construc-
tion of the inverse branches of n factor Blaschke-products on the disk D
and show that these provide a generalization of the n-th root function.
The inverse branches can be defined on pairwise disjoint regions, whose
union provides the disk. An explicit formula can be given for the n factor
Blaschke-products on the torus, which can be used to provide the inverse
branches on T. The inverse branches can be thought of as the solutions
z = z(r) (0 < r < 1) to the equation B(z) = re’*, where B denotes an n
factor Blaschke-product. We show that starting from a known value z;(1),
any z:(r) point of the solution trajectory can be reached in finite steps.
The appropriate grouping of the trajectories leads to two natural interpre-
tations of the inverse branches (see Figure 2). We introduce an algorithm
which can be used to find the points of the trajectories.

1. Introduction

In this work we consider a generalization of the n-th root function w —
— Yw (w € C). Using polar coordinates w = re’ (0 < r < oo, t € I :=
:= [—m, 7)), we can express the branches of the root function as

Ok (7“, t) — Tl/nei(t/n+2k7r/n)

(1.1)
(r>0,tel, k=0,1,...,n—1).
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One can acquire all of the branches from a single one, using rotations of angle
27 /n. The roots’ absolute values r'/™ and angles can be found with Newton’s
method and division respectively. Figure (1a) shows the range of the branches
of the n-th root function for n = 3.

(b) Initial points of Newton’s method

(a) Ranges of ¢

Figure 1: Branches of the n-th root function

The solution of the equation 2" = w (w € R) is equivalent to the n-th root
function’s value at w. In figure (1b) we illustrate the roots of w for n = 3 on
the unit disk. Each color represents a single root denoted by zi, 29, 2z3. The
roots can be identified as the limit of the Newton iteration

9(vr) n
1.2 Vg1 = VU — , v)=v"—w (v €D, E=0,1,...).
(12) o S aw) ( )
Any vg € D initial points for which the method diverges are colored black, the
rest of the colors show the basins of attractions for each root z;. The figure
shows that choosing an initial point close to a particular root will result in
Newton’s method (quadratically) converging to that root.

In this paper we propose a generalization of the above problem by consider-
ing n factor Blaschke-products instead of the n-th root function [2]. Blaschke-
functions have proven to be fundamental tools in the factorization of analytic
functions and the construction of rational bases, while playing an important role
for many applications in signal processing and control theory [3, 4, 5, 11, 12, 13].
The Blaschke-functions

(1.3) Ba(z) == Z_;Z (:€C,aeD:={zeC: 2| < 1})

are bijections on the disk D and torus T := {z € C : |z| = 1}. They can also
be used to describe congruent transformations in the Poincaré model of the
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Bolyai-Lobachevskian geometry [5, 14]. The n-factor Blaschke-products

B(z) :=¢ H z 7fak

1 —a,z
k=1 k

(ZG(C, e €T, A::{akzlgkgn}CD)

(1.4)

map I, T and their complements into themselves. We refer to the set A’ :=
:={b e C: B'(b) = 0} as the set of critical points and to the values B(b) b € A’
as critical values. If a line segment S; := {re” : 0 < r <1} takes a critical
value for some r, then ¢ is referred to as a critical parameter. The set of critical
parameters will be denoted by Tp. We note that if a; = --- = a, = 0,e = 1,
then B(z) = 2™ (z € C) therefore the inverse of B can be considered as a
generalization of the n-th root function.

The Riesz-factorization provides the basis for several algorithms which deal
with the rational represenation of signals [6, 7, 17]. It can be considered as a
generalization of polar coordinates for functions in H?(D) (0 < p < co) Hardy-
spaces. In this work instead of HP(ID), we consider the class of functions Ag,
which are analytic on Dg := {z € C: |z| < R}. For this class, if the roots of a
function f are known, its Riesz-factorization can be easily acquired. Namely,
let ay,...,a, denote the zeros of f € Agr. Then the factorization is given as

n
)1 S
k=1

(1.5) .
H 1 —arz) =B(2)S(2) (2 € Dg),

where the function S € Ag has no zeros on ID. The existence of such a factoriza-
tion, when f € H?(D) is however not easy to prove [13]. Since S(z) # 0 (z € D)
and |B(z)| =1 (2 € T), this factorization is often considered a generalization
of polar coordinates.

It is well known that B : T — T provides an n-fold mapping of T, moreover
there exists a 8 = (3, : R — R strictly increasing function (¢t 4+ 27) = B(t) +
+27 (¢t € R) for which

(1.6) B(e) = ™) (t € R).
The function S can be expressed in an explicit form if the parameters of the
Blaschke-product are known. As a result, we can easily produce the inverse of

a Blaschke-product on the torus [14]. Namely, for the function

m(t) == B t/n+2kn/n) (tER, k=0,...,n—1),
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the following holds

B(eirk(t)) _ einﬂ(ﬂ_l(t/n+2kﬂ’/n)) _ eit.

From the above, we get that o (1,t) := e!™(*) (¢ € R) are the inverse branches
of B on the torus.

In general, finding the inverse branches can be reduced to finding the roots
of an n-th degree polynomial. Unfortunately, when considering this form of
the problem, accurate geometric description of the results seems impossible. In
the case of two factor Blaschke-products, the inverse branches can be expressed
explicitly using the complex root function [8]. These results provide a basis for
the description of the inverse branches for n factor Blaschke-products.

In this paper, we consider a description of the inverse branches and propose
a numerical algorithm to produce them. We plan to extend these results to
functions in Ag in a future work, hence providing a numerical method to
produce their Riesz-factorization. Notice, that when considering the inverse
branches of B, for each w = re’ € D, the equation B(z) = w is equavilent to
finding the roots of an n degree polynomial, therefore (considering multiplicities
as well) has exactly n solutions. When grouping these solutions into n classes,
there are several ways we can define (continous) inverse branches. In Section 2,
we shall prove the following theorem about the branches:

Theorem 1.1. For allt € T,t ¢ Ty the equation B(z) = re'* has a single,
unique (continuous in 1) solution @i (r,t), for which

(1.7) B(pk(r,t)) = re, op(1,t) = ™"
' 0<r<1,k=0,...,n—1),

furthermore these solution curves are disjoint forr > 0 and their union provides
the closed disk.

There are other ways of defining the inverse lines of the generalized root
function as well. For example one could consider all trajectories ending in the
same zero to be an inverse branch. Figure 2 depicts the inverse branches for
a 3 pole Blaschke-product. In Figures (2b) and (2c), small circles show the
zeros of B, while larger circles refer to the critical points. Figure (2a) shows
the branches of the function w — Jw, in which case a; = --- = a3 = 0, or
in other words 0 is a root with a multiplicity of 3. Figure (2b) illustrates the
inverse branches as defined in Theorem 1, while in (2¢) a branch is made up of
the trajectories ending in the same zero points. The dots show the positions of
the inverse poles and critical points.
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(a) Inverse branches of (b) Theorem 1. based classifica-
a1=--=a3=0 tion of branches

(¢) Common zero based classifica-
tion of branches

Figure 2: Classification of inverse branches

2. Differential equation form of the problem

The Blaschke-product [16] B has 2n — 2 critical points which fall in the
hyperbolic convex hull of the zeros. All other critical points fall outside D and
are the reflections of the ones in D with respect to T [16]. Let R := min{1/|a] :
: a € A} and set of critical values by

K :=B(A"):={B(2):z€ A'}.

We show that if w = re®o ¢ K (r € [r1,72]) and B(z) = wp, then the implicit
equation

B(g(r)) =w=re", ¢(rg) =2 (r€lri,r)cl:=(0,R))

is equivalent to an initial value problem corresponding to a first order differ-
ential equation [1]. Since for all r € [ry,ra], w = re® ¢ K, the function
B(z) = w has a locally unique inverse, piecing these together yields the dif-
ferentiable solution p(r) = ¢(r,to) (r € [r1,72]) of the implicit equation, for
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which
(2.1) B(p(r)) =re'™, o' (r)B'(¢(r)) =€ (r € [r1,r2]).

We note that if the roots of B have a multiplicity of 1, then the choice r; =0
is also possible.

Let us introduce the function
B(2)

(€ Q:=Dg\ (AUA)).

We show that if zg € Q, then the problem (2.1) is equivalent to the initial value
problem for the function y : I — Q, I C (0,00):

(2.2) X'(r) = M, X(ro) =z0 (ro €1,z9 € )
where B(zg) = wg = roe’® ¢ K. Indeed, by (2.1)
P = Blelr)

C B(p(r)  rB(e(r)’
therefore ¢ is a solution of (2.2). Conversely, for any x solution of (2.2)

d 1, B’(X(r)) o d
%logr ==X (r)m = %logB(X(r))

holds, therefore B(x(r)) = er (r € (r1,72)), where by the initial values, for the
constant ¢ we get

Toeito = B(ZO) = B(X(T‘())) = C-To,

from which ¢ = e follows.

The right side of (2.2) fulfills the usual conditions for the existance and
uniqueness of the solution, therefore for any (rg,2¢) € I x , the differen-
tial equation (2.2) has a unique extended solution x.,(r) (r € J C I) to the
boundary [1] (pp. 50-57). The ranges of these solutions will be referred to as
trajectories henceforth. From the existence and uniqueness theorem, it follows
that two trajectories are either disjoint or are the same. Furthermore, for any
point in € there is a trajectory which passes through it, therefore taking the
union of these trajectories yields (2.

In order to describe the maximal solutions, let us introduce the partitioning
of the line segments .S; induced by the finite set K. For

SiNK = {pje':j=1,...,m}
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let po := 0, pm,+1 := R, furthermore let

o= {Jj = (pj—ae”,pje’) 1 j =1,...,my + 1},
Jo=1{(0,R)}, it S,NK =0.

Denote line segments J = (pe't, oe'®) € J; by J = (p,o). Then the solutions
v =y (J €T of the implicit equation

B(p(r)) =e'r (relJ, JeF, tel)

match the maximal solutions of (2.2).

Now we can describe the inverse branches in the following manner. For
any w = ret’o ty ¢ Ty take the initial values 2o = et (t0) (k=0,...,n—1).
We note that for these values B(zox) = €0 holds. Using these initial values,
let us consider the maximal solutions of (2.2) ¢ = Xz,,.- If the zeros have
a multiplicity of one and tg ¢ Ty, the domain of these solutions is [0, R),
furthermore the solutions match the trajectories from Theorem 1.

Figure 3 illustrates the partitioning of the trajectories. Figure (3a) shows
the set K = B(A’) (for |K| = 2) and the partitioning of the critical line
segments S; (¢t € Tp), which in this case consists of 2 segments. The inverse
images of these are illustrated in Figure (3b).

N

(a) Critical lines S (b) Inverse images of S; and the
trajectories

Figure 3: Critical lines and their inverse images

Taking nested circles instead of line segments, we get the following theorem.

Theorem 2.1. Suppose that for the circle C, := {re® : t € I} (0 < r < 1),
C.NK = holds. Let wy = re**® € C, and denote by zoj the inverse images of
wo: B(zo;) =wo (j =0,...,n—1). Then, the smooth solutions of the implicit
equation

(2.3) B(y;(t)) = re' (t € 1), 1;(to) = 20,

exist uniquely.
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Figures (4a) and (4b) show the nested circles and the corresponding inverse
images.

(a) Nested circles (b) Inverse images of nested circles

Figure 4: Nested circles and the corresponding inverse images

3. Inverse algorithm

In this section we consider a numerical solution to the problem outlined
above. The problem of finding the inverse of a Blaschke-product can be posed
in three equivalent forms. Namely, the inverse images are solutions to the
following implicit equation, differential equation and line integral problems.

Any of these forms can be solved with various efficient numerical algorithms
[10]. In this section we introduce an algorithm based on Newton’s method
which solves the implicit equation form of the problem. We generalize the
findings of the previous section and examine the solutions of

(3.1) B(z) =weT,

where I' € Di, I'N K = ) is a simple smooth curve. We show that starting
from the initial solution B(zp) = wg, one can acquire a finite number of (zj, wy,)
(k=1,...,N) solutions for which (z,w) = (zn,wn) and zj4; is a limit point
of a Newton-iteration starting from zj. These results are a consequence of the
following theorem.



A generalization of the root function 105

Theorem 3.1. There exist numbers rg > 0, r1 > 0, such that for any B(z) =
= wy, |20] <1 initial solution and any w € K., (wo) NT" a unique z € K,,(20),
|z| <1, B(z) = w solution exists of (3.1), which is the limit of the quadratically
convergent sequence

ziv1 = 9(2), (Jj€N),

where
z):= z)=(z— =z —m z z
gy )= (o) = S (€K (e)
z = lim z;.

Proof. We show the existence of r > 0 (independent of zy), such that the
mapping ¢ is contractive on the disk Z :={z € C: |z — 29| < r}:

9:2—27Z, |g(z1) — g(22)| < 1|21 — 22| (21,22 € 2).

The function g is twice differentiable on Dg and its derivatives satisfy

)

) (B(» )B”
(2) =
’ ( =)’
B’ (2 (B —w)B®)(2) (B(z)—w)(B”(z))Z.

7(z) = -2 3
g'(z) = B’(z) (B(2))° (B(2))

First we prove that there exists py > 0, independent of zg, so
(3.3) wo=B(z) €T = VieK: |k— 2| > po.

Indeed, by the mean value theorem B'(x) = 0, M := sup|,|< [B"(2)| < oo we
get
0<d:= min |x—w|<|B(k)—B(20)| < M|k — 2/,

reK,wel

from which (3.3) holds with the constant pg := \/d/M. Let

H:=Dgr\ |J K (r) (p1:=po/2).

rEK
The functions ¢’, g” are bounded on H, furthermore K ,, (20) C H holds. Let
:= min |B’ M, = ” .
mi= iy (B, My = max g ()
Then by M; < oco,m > 0 and the mean value theorem
19"(2)] < 19'(2) — g'(20)| + 19’ (20)] <

(3-4) M 1
< M|z — 20l + — |w0—w|<§ (z € Kp, (20))
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holds if, for example

| |<m2 | |< 1
w — w _— zZ—Z —_—.
Ofln{; 072.7‘[1

By the above, for r = min{p;, 1/(2M;)} the mapping g is contractive:
lg(z1) — g(z2)| < 5121 — 22| (21,22 € K (20)) -

Since

IN

19(2) — 9(20)| + |9(20) — 20| <

wo —w
S%|Z—Zo|+%,

l9(2) — 2ol
(3.5)

choosing the parameters r,rg,r; according to

(3.6) r=ro <min{py,1/(2M;1)}, K,.(20) C Kg(0),
' |w —wo| < ry:=min{mr/2,m/(2M)}

the mapping g : Z := K,(29) — Z is indeed contractive, with a contraction
coefficient of 1/2.

By the fixed-point theorem the limit

z:=lim z; € Z
Jj—o0
exists and
g(z) =2z <= B(»)=w.

Finally, |2| < 1 holds, since w € I' € D and B maps D onto itself. Since
g(z) = z, the derivative ¢’(z) = 0 and by the mean value theorem
|71 = 2 = lg(25) — 9(2)] < max|g”(C)] - |z - 2?/2 < Mz — 2 /2,

meaning that the method is quadratically convergent, which concludes our
proof. |

We would like to draw attention to the fact, that in applications calculating
the derivative function B’(z) in (3.2) may pose some difficulty. In [15] the
authors describe a method with which the derivatives of a polynomial can be
calculated from its roots and the function value. The same idea can be easily
extended for Blaschke-products and a simple formula for B’(z) expressed with
the function value and the poles can be given:

(3.7) B'(z) = B(2) - Z 1 ,fZl =
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Suppose we have wy, zo; such that B(zp;) = wo, (¢ = 1,...,n). Then, zy; are
the roots of the polynomial

n n

P(z) = [[(z = @) —wo [ [(1 - @2),

i=1 i=1

furthermore P(zp;) = B(zp;) — wo = 0. In a future work we hope to develop
a method to calculate the derivative values from only the known zp;, (i =
=1,...,n) based on the above observations.
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