
Annales Univ. Sci. Budapest., Sect. Comp. 52 (2021) 73–92

UML BASED MODELING AND CODE GENERATION

OF NETWORK PROTOCOLS

Máté Cserép and Rudolf Szendrei

(Budapest, Hungary)

Communicated by András Benczúr

(Received May 2, 2021; accepted July 30, 2021)

Abstract. For a high-level description of communication protocols for
client-server architectures, we present a modified version of the UML class
diagram. This makes it easier to understand the protocol with the help of
the diagram, and to automatically generate its code in a specific program-
ming language. Using this method, programmers unfamiliar with network
communication can easily and quickly implement a reliable client-server
connection in a platform-independent manner. The procedure speeds up
the creation of programs, reduces the number of possible errors, and helps
programmers focus on the problem to be solved.

1. Introduction

While in the past a large part of Internet data traffic was characterized
by stateless communication (e.g. web browsing), a significant progress has
been made in recent years to spread stateful communication. The method we
present can be applied in both cases. There is plenty of technology background
(IDEs, APIs, libraries, methods) available to implement high level stateless
communication, but there is much less for the stateful approach.

Key words and phrases: UML, class diagram, communication protocol, code understanding,
client-server connection, code generation, websocket.
2010 Mathematics Subject Classification: 68N19, 68M12, 68U35.

https://doi.org/10.71352/ac.52.073

https://doi.org/10.71352/ac.52.073


74 M. Cserép and R. Szendrei

Reviewing the current tools, we found that although methods for designing
communication protocols with different high-level [3, 19, 21] and low-level [29]
descriptions are given, using different diagrams, the implementation should be
done at the discretion of the programmer. There are also methods that allow
the automatic generation of a code skeleton after the formal description of
the given protocol, although in these cases the descriptions mostly involve the
creation and editing of text files [8]. However, text files do not provide a visual
overview and better understanding of communication.

In this paper, we present a method that is suitable for modeling both state-
ful and stateless network connections by extending the UML class diagram.
However, in addition to visual modeling of the network connection, we also
provide an answer to how such a model can be used to automatically generate
code skeletons for endpoints for different programming languages.

In Chapter 2, we provide an overview of the state of the art approaches and
tools to demonstrate the benefits of our method through them. In Chapter 3 we
introduce our concept, which allows the visual design of stateless and stateful
communication protocols, as well as the creation of appropriate code skeletons,
even in different programming languages. To do this, we will modify the UML
class diagram. In Chapter 4 we present a possible implementation for creating
a diagram editor for the proposed diagram. In Chapter 5 we present how it
is possible to generate a code skeleton from the diagram describing the proto-
col, demonstrating it through the selected Java and JavaScript programming
languages for the server and client parts respectively. Finally, in Chapter 6
we discuss the future direction of our research; then in Chapter 7 we summa-
rize the results achieved and propose the wide application of the benefits of
theoretical and practical results.

2. Background and related work

Historically one of the most popular syntactic description model for web
services is Web Services Description Language (WSDL) [4], which describes
web services by separating the abstract functionality offered by a service from
concrete details such as how and where that functionality is offered. It supports
descriptions for both SOAP-based services and REST API services, and serves
as the standard for the former. However it is rarely adopted for the latter
as WSDL contains too much technical details, a complex system to learn and
difficult to read and understand for humans.

Multiple solutions have been proposed to model web services defined in the
WSDL web services, specifically as UML diagrams. De Castro et al. introduced



UML based modeling 75

a UML language extension for WSDL [7], which enables not only the graphic
representation of a web service, but also allows the automatic generation of
WSDL code from a UML diagram. Based on their work Vara et al. constructed
the MIDAS-CASE system [32] – a MDA (Model Driven Architecture) tool –
which supports the modelling of web services in an extended UML format and
the automatic generation of the respective web service descriptors in WSDL
format. Another, but similar approach was presented by Skogan et al. [28],
that create an extended form of UML activity diagrams from WSDL to ease
the design web service compositions.

In their work Jiang and Systä proposed an approach [17] to utilize the UML
model representation of WSDL web service descriptions to check the validity
of these descriptions with respect to the WSDL structure, SOAP binding, and
WS-I Basic profile rules.

The WSDL specification of a web service also enables both the server and
the client side code generation, which is widely supported in many profes-
sional integrated development environments (IDEs). The automation is often
two-way: the WSDL specification can also be extracted from the implemented
server-side codebase – then can be used the client-side stubs. As an exam-
ple, Microsoft Visual Studio provides both code generation from WSDL and
WSDL extraction from code for the .NET programming language family (pri-
marily C#) [30], while the same can be achieved for Java with Eclipse [26, 27].
Beside server and client side stub generation based on the WSDL specification,
various research showed the process and algorithms of automatic test case gen-
eration based on it for distributed service testing [1, 2, 15, 31]. Most approaches
focus on to describe or deduce an interface grammar – a formalism for express-
ing constraints on sequences of messages exchanged between two components.
It can be utilized to generate both a parser, to check the correctness of the
messages generated by a web service client; and sentence generator producing
compliant message sequences, to verify that the web service responds to the
messages according to the interface specification.

In the past years remote procedure call (RPC) frameworks like Apache
Thrift1 or Google’s gRPC2 have been introduced and gained significant user
base in the software industry. These systems provide more human-readable
and editable formats to define the data transfer types and service interfaces,
typically supported by code stub generation in various programming languages.
While these systems have already obtained integrated support from many pop-
ular IDEs, graphic visualization and construction of web services through UML
or other type of diagrams is still a missing feature.

In regard of REST APIs, instead of WSDL, more human-readable and easier
to use metadata formats have also been introduced more recently, along with

1https://thrift.apache.org/
2https://grpc.io/



76 M. Cserép and R. Szendrei

editors to support developers in the creation of descriptions for REST APIs
[8, 6]. Among others, popular description formats are the following:

� Open API Specification (OAS)3 (previously also known as Swagger spec-
ification), which provides a standard, language-agnostic way of defining
a REST API interface based on YAML and JSON.

� RESTful API Modeling Language (RAML)4 is YAML-based language
designed to support an API-First top-down development approach. It
provides the format for the contract between the API provider and the
API consumer.

� API Blueprint5 is a document-oriented language for describing REST
API using Markdown syntax. This specification uses Markdown syntax
to provide a set of semantic assumptions laid on top of the Markdown
syntax.

As a follow-up for WSDL, the Web Application Description Language (WADL)
[14] was explicitly proposed for API services, which still provides a machine-
readable XML format, but addresses the previously mentioned criticism. How-
ever while WADL was also proposed for standardisation, this still have not
been executed, as there is an ongoing controversy whether something like this
is needed at all [6]. A different approach has also been proposed to integrate
SOAP services and RESTful services by wrapping the latter into SOAP ser-
vices automatically. Such a solution is demonstrated by the REST2SOAP
framework [22].

For all discussed formats a proper toolset is provided, that is the reason
they managed to gather a considerable user-base in the first place. With these
tools a developer usually can achieve the following.

� Manually specify the API before the application itself through a text
editor with special syntax-highlight and intelligent code completion.

� Generated (either manually or automatically) the API from the an exist-
ing application.

� Generate a documentation of the API in various formats, in most cases
static HTML web pages.

� Generate static code samples or even an interactive JavaScript client to
test the API.

3https://swagger.io/specification/
4https://raml.org/
5https://apiblueprint.org/



UML based modeling 77

� Parse the API specification and generate client stubs and server-side
skeleton code in various supported languages that can be further de-
veloped.

Beside open-source tools (e.g. for OAS the Swagger product family6: Swagger
Editor, Swagger UI and Swagger CodeGen), commercials tools like APIMatic7

or REST United8 are also available. Without proper UML support current
tools still require a considerable effort to visualize and understand what the
APIs offer [16].

In their work Ed-Douibi et al. [11] proposed a tool called OpenAPItoUML,
which generates UML models from OpenAPI definitions, thus offering a better
visualization of the data model and operations. The same authors have pre-
sented WAPIML in their later work [12] as an OpenAPI round-trip tool that
leverages model-driven techniques to create, visualize, manage, and generate
OpenAPI definitions using an OpenAPI DSL also expressed as a UML pro-
file for a simpler integration with existing modeling tools. WAPIML has been
implemented as a set of Eclipse plugins and is available open-source9.

Koren and Klamma realized in their paper [18] that existing web-based
solutions that generate interactive OpenAPI documentation with HTML and
JavaScript are far from real-world practices of designers and end-users; instead
they are focused on developing and testing the API. In their work they present
an approach to overcome this gap, by using a model-driven methodology, the
Interaction Flow Modeling Language (IFML) as intermediary model specifica-
tion resulting in state-of-the-art responsive web user interfaces.

The research field to define an executable variant of UML diagrams has
been active since the introduction of UML 2.0 [9, 5], and the automated val-
idation and verification of APIs have also gained attention in recent years.
Ed-Douibi et al. [10] proposed an approach and provided a proof-of-concept
tool implemented as an Eclipse plugin to generate specification-based test cases
for REST APIs. These test suites make sure that such APIs meet the require-
ments defined in their specifications. Sferruzza et al. combined automated
code generation and verification and their approach automates both of them
[25]. Their tool named Safe Web Services Generator (SWSG) is based on a
meta-model that allows developers to define implementations of web services,
starting from the corresponding high-level contract as expressed by a standard
OpenAPI model. Consistency of models can be verified using an operational
semantics so that code generated from these models is safe.

6https://swagger.io/tools/
7https://www.apimatic.io/
8https://restunited.com/
9https://github.com/opendata-for-all/wapiml



78 M. Cserép and R. Szendrei

As REST APIs are not backed by a uniform standard or specification, but
instead several specification formats have been proposed, conversion between
them have also created a challange to address. Both professional services such
as APIMatic API Transformer10 and free, open-source solutions like the API
Spec Converter11 are available to overcome this obstacle.

While there are many approaches proposed to enrich the API description
formats discussed so far with semantics, the manual work required to cre-
ate descriptions, the lack of interoperability standards limited their adoption.
Another approach proposed by the semantic web community was to define a
global ontology to include model, definitions and descriptions in a coherent
system that can be used to make discovery and automatic composition. The
most popular proposals were Ontology Web Language for Services (OWL-S)
[20] and Web Service Modelling Ontology (WSMO) [24]. Unfortunately, the
expertise required to build and manage such descriptions resulted that nobody
actually use them [6].

3. The concept of a high-level description of communication
protocols

As reviewed in Chapter 2, current technologies and research are very ex-
tensive. However, it can also be seen that the emphasis in describing protocols
is mainly on supporting text formats, with (UML) diagram visualization being
a possible additional feature without playing a central role in the design and
maintenance of the protocols. Our further observation is that nowadays they
focus more on stateless communication, while the use of stateful communication
can provide significant benefits in real-time applications. For this reason, we
want to support both types of communication. Instead of textual descriptions,
we consider a description created with a graphic designer, which we imagine in
the form of a diagram, to be easier to see and maintain.

One of the main ideas of our article is to apply an object-oriented approach
to the high-level description of communication. Based on this, the transmission
and reception of data means the sending and receiving of message objects. We
also assume that the participants in the communication implement a client-
server architecture.

Due to the object-oriented approach, we chose the UML class diagram for
this purpose. We will modify this diagram type according to the task later,

10https://www.apimatic.io/transformer/
11https://lucybot-inc.github.io/api-spec-converter/



UML based modeling 79

but the benefits are already visible:

� The diagram of the communication protocol can be defined simply with
drag and drop technique,

� We can get a visual overview of the whole protocol,

� We can more easily understand the way of communication, the structure
of messages.

Before presenting the method for defining communication protocols, we
make two important constraints.

The first assumption is that a message sent during communication can be
interpreted as an object (we call these from now on simply messages). The
second assumption is that our proposed method must adapt to the technologies
currently in use. The significance of the latter will be important for code
generation.

Considering current technologies, we have found that most communications
are consisting of remote procedure calls (RPC) and notifications (one-way mes-
sage sending), so we divided the messages into three groups: request, response,
event. A request sent by a client can be interpreted as an asynchronous method
call to which the server must respond with a response message. The event rep-
resents a notification that can be sent by the server (one-way messaging).

Because messages are objects, so it is possible to define their classes. The
UML class diagram that defines the messages is modified as follows:

� Only association and inheritance are allowed.

� Multiple generalizations are prohibited (only ”trees” can be created).

� Classes should not contain methods.

� The associations are represented with attributes.

� A string value can be assigned (as an annotation) to the class name as a
key that will help identifying the message type in the communication.

Due to the above, an association with multiplicity is represented with a
collection. Its dimension can be specified as a separate property, which makes
it possible to represent arrays and matrices. We also make the following changes
(see Figure 1):

� In accordance with the message types, the graph of the diagram consists
of three trees, where the root vertices are: REQUEST, RESPONSE,
EVENT.



80 M. Cserép and R. Szendrei

� In the vertices at the first-level of these trees, the selector name must
be defined, which is interpreted as a special attribute of the class, and it
identifies the super class of the message object during the communication.

� In the vertices at the second and lower levels of the trees, a selector
value can be optionally defined, which is related to the selector name in
the first-level parent of the vertex. It represents the concrete type of the
message object. The above mentioned name - value pair defines the super
class of the message, and the concrete type of the message object. This
information is used during message dispatching.

� In the case of request classes, an association pointing to a response type
class must also be defined.

Although, the above mentioned message types can realize most communica-
tion scenarios, our method is free to extend in the future, if a special application
would require it.

In most programming languages, the supported basic attribute types in the
class diagram are: null, boolean, integer, float, string. By using these
basic types, programmers can create custom types by defining classes, which
they can also use to define their messages or even more complex types. Arrays
are allowed for class fields. In order to support custom types, the following
addition is required to the modified class diagram:

� Make a fourth tree with a root called PLAIN. Call this PLAIN tree for
short. Aggregation and multiple inheritance are not allowed here either
(see Figure 1).

� Classes are free to reference any class in the PLAIN tree to define at-
tributes. An example of the resulting modified and simplified UML class
diagram is shown in Figure 1.

In order to demonstrate the concept, a simple use case of a two player
TicTacToe game is shown in Figure 1. A new game can be started by sending
a NewGame request to the server by both players. Then, the server replies with
a NewGame response to both players, telling which player is in turn. When a
player tries to put its sign on the board, it sends a PutSign request to the server,
which holds a Coordinate object, that describes the desired place. If the place
is already occupied or the player is not in turn, the answer in the response is
refused, otherwise accepted. If the answer was accepted, the server also notifies
the other player about the changes by sending it an OpponentPlacedASign

event, which holds a copy of the last received coordinate. For sake of simplicity,
we do not discuss here other aspects of the implementation, e.g., visualization,
model representation, logic etc.



UML based modeling 81

Figure 1. Defining messages of a TicTacToe game using a UML class diagram.

In our implementation we used JSON as the message serialization format,
as it is human readable and programming language independent. It is an ex-
tremely popular data interchange format among web services, and most modern
programming languages provide parsing and writing JSON-format data capa-
bility as a standard feature, therefore it simplifies the implementation of our
proposed protocol in general.

4. Using the modified UML class diagram

For our modified class diagram, we propose a UML editing tool that en-
forces the constraints discussed earlier and provides the extra functionality. An
additional need is to have a better understanding of the hierarchy of message
types represented by classes and to be able to edit diagrams in an intuitive
way. We see the reason for this in the fact that there are now a lot of program-
mers dealing with e.g. web technologies, including network communication,
although it is not necessarily their field of expertise. For them, the right tool
can help to understand the processes going on in the background.

Based on the above idea, we find such a design interface useful in which
classes can be organized as shown in Figure 1. Based on the tree hierarchy
constraint, the arrangement of classes in a diagram is simple and does not
require complex algorithms. As a possible editing interface for each property
of the classes, we recommend the layout shown in Figure 2. Due to the specifics
of the task, we consider it expedient to omit the possibilities of the original UML
class diagram type that we do not use, such as set the visibility of an attribute
or method, and so on.



82 M. Cserép and R. Szendrei

Figure 2. An editing tool of the UML diagram designer for the class. 1) class
name, 2) selector value for message delivery, 3) selector key to decide message
type, 4) response type for request type message, 5-8) field variable name, JSON
name, type, and its dimension in case of arrays

Most programming languages have strict variable naming conventions, while
JSON permits any arbitrary string to be an attribute name. To overcome the
possible conversion difficulties, we allow to define both the variable name and
the related JSON field name for each field. We also use the terminology JSON
key for JSON field name, because JSON represents the attributes of objects as
key-value pairs.

In Figure 2, Selector is a special field. The name of this field is given in
the editor as a JSON key at the first-level of the message class tree. The
value of the Selector field is determined in the subclasses by setting the JSON
value property in the editor. This key-value pair effectively determines the
endpoint and its concrete service on the server during the message dispatching.
In practice, the Selector name is often equal to the name of the superclass,
while the Selector value is equal to the name of the derived class.

We note that in our implementation the fields of objects are unordered,
because we have found that it does not have a meaning in JSON and neither
in popular programming languages.

5. Automatic code skeleton generation

By modifying the class diagram, it is possible to automate the production
of both classes and program codes related to message sending and receiving.
To prove this, we have created a diagram designer and an associated code
generator as a web browser application. The two important elements of the
diagram designer (creating classes and their hierarchies, and editing classes)
are shown in Figures 1 and 2. The code generator is designed to be able
to support different programming languages in the future. This is done by
developers creating code templates and code libraries for the corresponding



UML based modeling 83

programming language they want to support. We have done all of this for
JavaScript and Java so far, which we will present in the next two chapters.
For specific applicability, we chose the stateful connection based WebSocket
technology for the client-server architecture. We have to note that our proposed
method could be applied also to a stateless communications (e.g. REST API
can be used instead of WebSocket).

If the generator needs to create interoperable codes in different languages,
it is advisable for developers to create a kind of API, which is implemented in
a consistent way in different languages (because the generated code skeletons
are linked to the technology’s own API). The function of the API is generally
to perform network management activities, authorization, coordinate message
processing, and serialize and deserialize messages.

The code skeletons created with the tool and the accompanying code library
together are able to deliver messages between the client and the server in such
a way that the developer’s next task after creating the diagram is only to
implement the body of methods generated to handle each message type.

The following two chapters describe in detail the principles of operation and
the usage of the code generated for Java and JavaScript languages.

5.1. Automatically generated Java specific implementation

In Java, both client- and server-side implementations are conceivable, so
the generator creates code skeletons for both sides (see Figure 3). The code
skeleton consists of three classes:

� An authenticator, which decides whether the new client has permission
to connect to the server. For decision making the API provides the user-
name and the hashed value of the password. Developer can turn this
feature completely off during the implementation, if authentication is not
required.

� In the client class, the declared event processing methods must be imple-
mented, and it must be possible also to create and send request objects.
This task depends entirely on the specifics of the particular application.

� The request processing methods must be implemented in the server class.
Each method handles a specific request type, for which it provides a
response object that the programmer must “fill out”. In the same class,
the programmer should provide functionality for the user to create and
send events.

The classes shown in Figure 3 can be divided into three groups, based on
their purposes:



84 M. Cserép and R. Szendrei

AuthMessage

Client

Event_1

Server

Event_n ...

Response_1 Response_n

Request_1 Request_1

 ...

 ...

Figure 3. Classes created by the tool related to the Java endpoint.

� The Response, Request and Event classes are the Java classes equivalent
of the message classes defined in the diagram designer. These classes
contain only those variables that are associated with the annotations
specified in the diagram. These annotations as JSON keys connect the
variable with the corresponding field of a JSON object.

� Classes marked in grey are code skeletons that contain declarations for
all methods to be implemented.

Listing 1 shows how a message class of the TicTacToe game (see Figure 1)
is mapped to a Java class. The JsonField annotation lets define the relation
between a variable and its corresponding JSON field, when the name of the
JSON field is not a valid variable name in the programming language.

The template of the declarations of message processing methods located at
the endpoint are shown in Listing 2. In practice, the generated code skeleton
has all the necessary method declarations, so only the actions based on the
received information need to be implemented regardless of the networking tasks.

1 class Request{

2 @JsonField(name = "request -type")

3 public String requestType;

4 @JsonField(name = "message -id")

5 public String messageId;

6 }

7

8 class PutSignRequest extends Request{

9 public PutSignRequest (){

10 requestType = "PutSign";

11 }

12 @JsonField(name = "x")

13 public int x;

14 @JsonField(name = "y")

15 public int y;

16 }

Listing 1. Example: Automatically generated Java message classes for the
PutSign functionality of the TicTacToe game.



UML based modeling 85

1 // Message handler declarations

2 // at the client side

3 public void on_ <EventName >(<EventName > e);

4

5 public void on_ <ResponseName >(

6 <RequestName > R,

7 <ResponseName > r);

8

9 // Message handler declarations

10 // at the server side

11 public void on_ <RequestName >(

12 WebSocket w,

13 <RequestName > R,

14 <ResponseName > r);

Listing 2. Declarations of the message processing methods to be implemented.

5.2. Automatically generated JavaScript specific implementation

Since this article is intended to use WebSocket technology and the selected
programming languages only to demonstrate the technology, the generator pro-
gram generates code in JavaScript only for web browsers, although this would
be entirely possible for the server side.

The method of generating the client-side code skeleton is the same as that
discussed in the Java language. However, it is not necessary to create classes
for messages because the language allows message objects to be created directly
from a string, that represents a JSON object. The generated class structure is
shown in Figure 4, where our API parts are marked in white and the class to
be implemented is marked in grey.

WebSocketMessaging

Client

Map SHABase64

Figure 4. Classes provided by the JavaScript client generating tool.



86 M. Cserép and R. Szendrei

5.3. The message routing method of the API

Our API provides several classes, that are responsible for message handling
at the endpoints of the connection. These classes can be found on Figure 4-5.
In grey for Java and JavaScript languages respectively. The main purpose of
the API is to convert the arrived message into an object, and forward it to the
corresponding user-implemented method. Also, the API converts the message
object to JSON format and then forwards it over the network during messaging.

For reasons of expediency, the control of incoming messages is divided into
three large groups (request, response, event), the processing of which differs
significantly from each other.

BaseWebSocketClient

AuthenticationListener

MessageDispatcher

BaseWebSocketServer

Credential

MessageTypeMessageInfo

Client

Authenticator

Server

Figure 5. Java related parts of the API.

Sending and receiving of requests and responses (see Figure 6):

� The client provides each request with a unique identifier prior to trans-
mission by assigning it to the JSON key named message-id of the message
object.

� The client stores its sent message until it receives a reply for it.

� The server-side code identifies the type of request received based on the
selector key-value pairs specified in the UML diagram. If the message
contains a selector key specified in a node at the first level of the request
tree, the value of the selector in this subtree clearly determines the type
of request received.

� The server creates an “empty” object with the appropriate response type
for the request specified in the diagram, and then passes it with the
request to the processing method implemented by the user (see Listing 2).

� The request processing method uses a logical value to indicate execution
success and, if successful, defines the properties of the response object.



UML based modeling 87

� The server also places in its response the message-id key-value pair re-
ceived in the request and the status of the response (successful / unsuc-
cessful, possible error description) and then transmits it in JSON format
to the client.

� The client checks to see if the received message contains a message-id key.
If so, a previous request will be answered. It retrieves the request sent
based on the key from its history and then infers the type of response
based on the type of the request. The client creates a response object
based on the information above and then passes it to the processing
method along with the previous request.

It is important to emphasize that it is essential for the operation of the system
that the message-id key can only occur in request and response type messages
and should not be used in other contexts.

Figure 6. The process of transmitting and processing messages.

Sending and receiving of events (see Figure 6):

� The user creates an object of an event type and determines the value of
its fields and then passes it to the server to forward to the client.

� The server converts the received event object to JSON format and then
transmits it as text data to the client.

� The client checks that the received message does not contain the message-
id key (otherwise it interprets the message as a response).

� The client identifies the type of event received based on the selector key-
value pairs specified in the UML diagram. If the message contains a
selector key specified in a node at the first level of the event tree, the
value of the selector in this subtree clearly determines the type of event
received.



88 M. Cserép and R. Szendrei

� Knowing the type of event, the client generates the event object, which
is passed to the user-implemented event handling method.

6. Future work

We aim to continue our research in two different directions in the future.
Our first goal is to ensure implementation in cooperation with existing stan-
dards and systems. One of these would be, for example, support for gRPC and
OpenAPI. We aim to do this in such a way that the visual design tool we create
will be able to generate code according to an already existing standard from
the created diagrams. In essence, we could replace the current text protocol
description methods with a simpler, graphical approach, which would allow for
faster review and development. The JSON data interchange format could also
be replaced with the more state of the art ProtoBuf12 format, which offers a
superior performance compared to binary XML [13] or binary JSON [23] and
already obtained remarkable programming language support.

Our second goal is related to the increasingly popular concept of smart cities
and smart homes today. Currently, the available devices have a dual task of
communicating with the user. On the one hand, embedded devices can easily
implement binary data processing and transmission due to limited resources.
At the same time, users can communicate in text with the central unit of devices
when, for example, they need to access their smart home via a web interface.
This raises the need to have a component of the system that performs the
necessary conversion in both directions between the two data representations.
Our idea is for developers to be able to create an API for their own concept.
On the one hand, it is able to support the generation of code skeletons and
communication codes from diagrams for both data representations. On the
other hand, it is capable of conversion between two data representations. Based
on the diagrams, we could then automatically create endpoints that hide the
way the data sent and received is described, i.e. the format in which the device
actually communicates with the other party.

12https://developers.google.com/protocol-buffers



UML based modeling 89

7. Conclusion

For a high-level description of the communication protocols used in client-
server architectures, a modified version of the UML class diagram has been
introduced. This new version has a number of advantages over implementing
protocols directly in a given programming language. First of all, it provides an
opportunity to easily review and understand the messages of the protocol, as
well as to define them in a language-independent way.

It has been shown in previous chapters that the concept allows the auto-
matic generation of code skeletons for specific languages based on the protocol
given in the diagram. By preparing the code generator program to support
multiple programming languages, we can get a cross-platform solution.

Because network communication programming requires deeper knowledge
and error detection is more difficult, the generated message delivery and pro-
cessing codes reduce the amount of errors that a programmer can make. A
further advantage is that on cross-platform systems, programmers have so far
had to rhapsodically perform the generator-induced work over and over again
for each platform separately. The method presented avoids that messages are
defined differently in different programming languages if a well-designed API
and code template store is provided.

It is worth noting that programmers unfamiliar with network communica-
tion can easily and quickly implement a reliable client-server connection with
the tool. To do this, it is sufficient to define the types of messages and to “fill
in” the message objects with the appropriate values in the methods declared
to them.

Last but not least, the work done algorithmically by programmers so far
has been automated. This not only effectively reduces the time it takes to build
programs and the amount of potential errors, but also helps the programmer
focus on the essence of the problem.

References

[1] Bai, X., W. Dong, W.-T. Tsai and Y. Chen, WSDL-based automatic
test case generation for web services testing, in: IEEE International Work-
shop on Service-Oriented System Engineering (SOSE’05), IEEE, 2005,
pp. 207–212.



90 M. Cserép and R. Szendrei

[2] Bartolini, C., A. Bertolino, E. Marchetti and A. Polini, Towards
automated WSDL-based testing of web services, in: International Confer-
ence on Service-Oriented Computing, Springer, 2008, pp. 524–529.

[3] Bauer, B., J.P. Müller and J. Odell, Agent UML: A formalism for
specifying multiagent software systems, International Journal of Software
Engineering and Knowledge Engineering, 11(3) (2001), 207–230.

[4] Christensen, E., F. Curbera, G. Meredith and S. Weerawarana,
Web services description language (WSDL) 1.1, tech. rep., World Wide
Web Consortium (W3C), 2001.

[5] Ciccozzi, F., I. Malavolta and B. Selic, Execution of UML models: a
systematic review of research and practice, Software & Systems Modeling,
18(3) (2019), 2313–2360.

[6] Cremaschi, M. and F. De Paoli, Toward automatic semantic API
descriptions to support services composition, in: European Conference on
Service-Oriented and Cloud Computing, Springer, 2017, pp. 159–167.

[7] de Castro, V., E. Marcos and B. Vela, Representing WSDL with
extended UML, Revista Colombiana de Computación, 5(1) (2004), 1–15.

[8] De, B., API documentation, in: API Management: An Architect’s Guide
to Developing and Managing APIs for Your Organization, Springer, 2017,
pp. 59–80.

[9] Dévai, G., T. Gregorics, B. Németh, B., B. Gregorics, D. Né-
meth, G. Kovács, Z. Gera and A. Dobreff, Novel architecture for
executable UML tooling, 2018.

[10] Ed-Douibi, H., Izquierdo, J. L. C. and Cabot, J., Automatic gen-
eration of test cases for REST APIs: a specification-based approach, in
2018 IEEE 22nd International Enterprise Distributed Object Computing
Conference (EDOC), pp. 181–190, IEEE, 2018.

[11] Ed-Douibi, H., J.L.C. Izquierdo and J. Cabot, OpenAPItoUML: a
tool to generate UML models from OpenAPI definitions, in: International
Conference on Web Engineering, Springer, 2018, pp. 487–491.

[12] Ed-Douibi, H., J.L.C. Izquierdo, F. Bordeleau and J. Cabot,
WAPIml: towards a modeling infrastructure for web APIs, in: 2019
ACM/IEEE 22nd International Conference on Model Driven Engineer-
ing Languages and Systems Companion (MODELS-C), IEEE, 2019,
pp. 748–752.

[13] Gligorić, N., I. Dejanović, and S. Krčo, Performance evaluation of
compact binary xml representation for constrained devices, in: 2011 inter-
national conference on distributed computing in sensor systems and work-
shops (DCOSS), IEEE, 2011, pp. 1–5.

[14] Hadley, M.J., Web application description language (WADL), tech. rep.,
Sun Microsystems, Inc., 2006.



UML based modeling 91

[15] Hallé, S., G. Hughes, T. Bultan and M. Alkhalaf, Generating in-
terface grammars from WSDL for automated verification of web services,
in: Service-Oriented Computing, Springer, 2009, pp. 516–530.

[16] Ivanchikj, A., C. Pautasso and S. Schreier, Visual modeling of restful
conversations with restalk, Software & Systems Modeling, 17(3) (2018),
1031–1051.

[17] Jiang, J. and T. Systa, UML-based modeling and validity checking
of web service descriptions, in: IEEE International Conference on Web
Services (ICWS’05), IEEE, 2005.

[18] Koren, I. and R. Klamma, The exploitation of OpenAPI documenta-
tion for the generation of web frontends, in: Companion Proceedings of
the The Web Conference 2018, 2018, pp. 781–787.

[19] Kumar, B. and J. Jasperneite, UML profiles for modeling real-time
communication protocols., J. Object Technol., 9(2) (2010), 178–198.

[20] Martin, D., M. Burstein, J. Hobbs, O. Lassila, D. McDermott,
S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia and T. Payne,
OWL-S: Semantic markup for web services, W3C member submission,
22(4) (2004).

[21] Parssinen, J., N. von Knorring, J. Heinonen and M. Turunen,
UML for protocol engineering-extensions and experiences, in: Proceed-
ings 33rd International Conference on Technology of Object-Oriented Lan-
guages and Systems TOOLS 33, IEEE, 2000, pp. 82–93.

[22] Peng, Y.-Y., S.-P. Ma and J. Lee, REST2SOAP: A framework to in-
tegrate SOAP services and RESTful services, in: 2009 IEEE international
conference on service-oriented computing and applications (SOCA), IEEE,
2009, pp. 1–4.

[23] Popić, S., D. Pezer, B. Mrazovac, and N. Teslić, Performance evalu-
ation of using protocol buffers in the internet of things communication, in:
2016 International Conference on Smart Systems and Technologies (SST),
IEEE, 2016, pp. 261–265.

[24] Roman, D., J. Kopeckỳ, T. Vitvar, J. Domingue and D. Fensel,
WSMO-Lite and hRESTS: Lightweight semantic annotations for web ser-
vices and RESTful APIs, Journal of Web Semantics, 31 (2015), 39–58.

[25] Sferruzza, D., J. Rocheteau, C. Attiogbé and A. Lanoix, A model-
driven method for fast building consistent web services from OpenAPI-
compatible models, in: International Conference on Model-Driven Engi-
neering and Software Development, Springer, 2018, pp. 9–33.

[26] Simpkins, N. Block 3 part 1 activity 5: Implementing a simple web
service, in T320 E-business technologies: foundations and practice, Open
University, 2008.



92 M. Cserép and R. Szendrei

[27] Simpkins, N., Block 3 part 2 activity 2: Generating a client from WSDL,
in: T320 E-business technologies: foundations and practice, Open Univer-
sity, 2008.

[28] Skogan, D., R. Grønmo and I. Solheim, Web service composition in
UML, in: Proceedings. Eighth IEEE International Enterprise Distributed
Object Computing Conference, 2004. EDOC 2004., IEEE, 2004, pp. 47–57.

[29] Thramboulidis, K. and A. Mikroyannidis, Using UML for the design
of communication protocols: The TCP case study, in: International Con-
ference on Software, Telecommunications and Computer Networks, Soft-
COM. Januari, 2003.

[30] Troelsen, A. and P. Japikse, Pro C# 7 with .NET and .NET Core.
Apress, 2017.

[31] Vanderveen, P., M. Janzen and A.F. Tappenden, A web service test
generator, in: 2014 IEEE International Conference on Software Mainte-
nance and Evolution, IEEE, 2014, pp. 516–520.

[32] Vara, J.M., V. De Castro and E. Marcos, Wsdl automatic generation
from UML models in a MDA framework, in: International Conference
on Next Generation Web Services Practices (NWeSP’05), IEEE, 2005,
Volume 1, pp. 319–324.

M. Cserép and R. Szendrei
Eötvös Loránd University
Faculty of Informatics
Budapest
Hungary
mcserep@inf.elte.hu

swap@inf.elte.hu


