Annales Univ. Sci. Budapest., Sect. Comp. 52 (2021) 57-72

EVALUATION OF PREDICATES IN THE C++
STANDARD TEMPLATE LIBRARY

Bence Babati and Norbert Pataki
(Budapest, Hungary)

Communicated by Andréds Benczur

(Received May 1, 2021; accepted July 17, 2021)

Abstract. C++ is widely used language nowadays, it provides many
high-level constructs. Its standard library tries to minimize classical pro-
gramming errors, however, it introduces new ones. One of the known STL
issues is related to algorithm predicates. Predicates make the algorithms
customizable and they sometime store states for their task. However, these
stored variables can introduce unexpected behavior. This issue can be de-
tected in many ways, but standard compilers cannot detect this problem.
We developed multiple techniques which are presented in this paper and
compared to each other. These approaches cover both static analysis and
dynamic analysis methods.

1. Introduction

C++ provides a standardized library with common functionalities which
is called Standard Template Library (STL). The library is part of the C++
standard [1]. It is a general software library with many well-known function-
alities for common problems. However, the library is based on the generic
programming paradigm, therefore it is a header-only library, most of the func-
tions and classes are template. It aims to reduce the classical programming
errors, however, it introduces others [2].

The library can be divided into different parts based on the provided func-
tionalities. Omne of them is the containers, for example, std::vector. The

Key words and phrases: C++, static analysis, dynamic analysis, STL algorithm, predicate.
2010 Mathematics Subject Classification: 68N15.

1998 CR Categories and Descriptors: D.2.4.

https://doi.org/10.71352/ac.52.057

https://doi.org/10.71352/ac.52.057

58 B. Babati and N. Pataki

most commonly used containers are available, for instance, lists, arrays, sets
and maps as well. All of them are templates that mean one can store any kind
of elements in them. However, these elements must fulfill some conditions,
for example, std: :set requires that the stored element must have operator<
defined.

Other important part is the algorithms. Many well-known algorithms are
already defined, so the users should not reimplement them all the times. For
example, sorting algorithms (std::sort, std::stable_sort) or minimum/-
maximum element search algorithms (std: :min_element, std: :max_element)
are already implemented. It is very useful from the users point of view that one
can simply use an algorithm which is surely implemented well and can focus
on higher level problems. These algorithms are templates as well because this
construct makes it possible to work on any kind of containers which fulfills the
conditions.

These containers and algorithms are implemented in a generic way and
intended for general usage [3]. That means any of the containers can work
with any algorithms almost. Also user defined containers can work with STL
algorithms as well. There minor limitations are specific for given algorithms,
for example, std: :sort can work on containers which provide random access
to elements, so it cannot work on std::1list.

The relation between the containers and algorithms is provided through the
iterators. The iterators are also part the STL, their purpose is to provide access
to the elements of a container without knowing anything specific about the
container [16]. Their interface is very similar to pointers, for example, they have
operator-> and operator* for element access. The iterator abstraction hides
the underlying container and abstracts the element access and puts behind
an interface. This abstraction connects the algorithms and containers. The
iterators can be categorized into multiple categories based on how they behave
with the underlying container. For instance, random access iterators must
provide operator[] to access the elements by index.

The containers can decide on their own which kind of iterator they provide.
For example, std: :1ist provides bidirectional iterator, so the elements cannot
be accessed by indexing. This constraint restricts the set of algorithms which
can work with this container.

These algorithms additionally to the iterators may accept an extra function
parameter which is a predicate. The predicate is function-like object which
can be used as a function. It can be a functor, function pointer or a lambda.
These predicates are used to make a modification or a decision on an element.
For example, the std::find_if algorithm takes a predicate parameter, this
predicate gets an element and returns true if it is the searched one.

Evaluation of predicates in the C++ STL 59

The predicates are very useful for customizing the algorithms and can exe-
cute very complex tasks also. For their task, they need to store values in some
cases, for example, removing the element which is equal to the stored value. It
is completely valid use case. These stored values behave like a state sometimes,
which is read and/or written in the operator (). However, it can cause issues
when the return value depends on this state.

Let us see an example.
struct LastEven {
bool operator ()(const int value) {
const bool result = lastEven;
lastEven = value % 2 =— 0;
return result ;

}

bool lastEven = false;

}s

int main() {
std ::vector<int> v { 1, 2, 3, 5 };
std :: remove_if (std :: begin(v),std::end(v),LastEven{});

}

In this example, it is intended to remove every element which is after an
even number. The expected behavior is to remove value 3. If this predicate
is instantiated once and called on every element once, the result is the ex-
pected. However, it is possible that the previous preconditions do not met.
The remove_if may use another function which takes the predicate by value
so the original state is cleaned or the algorithm creates multiple copies of the
original predicate and use all of them.

This means that the predicates cannot rely on states surely, because there
are cases when it does not work as expected. The result depends on the STL
implementation as well. If it does not copy and use multiple copies of the
predicate then states safely can be used within predicates.

These STL related issues is a well-marked error, it is usually fixed in early
development or testing phase, however, it is hard to debug. There are a few
tools to detect various STL related issues [7], however, in this paper we con-
centrate on stateful predicates.

To detect this issue, we present our own different approaches, including
both static and dynamic analysis techniques. However, the main focus is on
the comparison of the presented methods. The methods are examined based on
different testcases. Through these examples, the differences of the presented
methods can be demonstrated. In Section 2, we discuss related work and

60 B. Babati and N. Pataki

later, in the further sections, these methods are detailed and the comparison is
revealed after. Finally, this paper concludes in Section 6.

2. Related work

The comprehensive description of the incorrect usage of STL are presented
[2]. The semantically verified usage of STL is substantial [7]. Compile-time and
runtime approaches are available, for instance, a runtime validation method for
iterator invalidation is presented [19]. However, in most of the cases, the com-
pile time methods are preferred. These methods typically use static analysis
or template metaprogramming. For example, a template metaprogramming
approach for detecting intricate instantions is realized [17]. A compile-time
solution that takes advantage of STL’s iterator traits type for safe coping and
searching algorithms is proposed [18]. Template metaprograms are not so so-
phisticated, therefore static analysis methods are preferred. STLIlint is the first
software artifact which aims at the validation of STL usage with static analysis
[9]. However, its support and availability is cancelled. On the other hand, a
modern, Clang-based approach is presented [10]. In this solution, predicates are
validated whether they are stateful in a naive way which results in unnecessary
false positive findings. Moreover, other runtime solutions are presented, as well.
Method based on aspect-oriented programming is known [7]. Debugger-based
STL implementation-dependent runtime validation is also available [7].

3. Static analysis methods

Static analysis is a kind of software analysis, the main idea is to analyze a
software without executing it, checking only the source of the software. The
source can be source code or byte code, both techniques are applied. The
advantage of this way is that, it is not necessary to recreate an execution
environment including the dependencies and data. It can be executed in a
build environment or it is not even necessary.

Many static analysis methods are evolved recently, from simple pattern
matching to abstract interpretation [8] or symbolic execution [12]. These tech-
niques could be different in implementation complexity and produced result as
well.

3.1. Abstract syntax tree visiting approach

The earlier presented STL usage issue may appear sometimes, however, it
has a very characteristic effect that means it cannot be hidden for a long time.
One of the applied techniques to detect this problem is Abstract Syntax Tree
(AST) visiting.

Evaluation of predicates in the C++ STL 61

It is a known static analysis method which makes it possible to analyze
source code on a high level representation with syntactical and semantical in-
formation [11].

A new static analysis tool has been developed to recognize this issue. This
tool is using Clang for the analysis. Clang is an open source compiler suite
for C/C++/Objective-C which is based on LLVM infrastructure [4]. It pro-
vides also a static analyzer. A lot of supporters contribute in its development,
including large firms.

The modular architecture makes Clang very unique. In addition to the de-
livered compiler and static analyzer, Clang provides many APIs and libraries
which expose internal functions for public use. These provided APIs and li-
braries can be used to build various tools by third party developers [6]. It is
future proof in these days to use Clang as library in order to make analyzer
tools. It simplifies the third party developers business because they do not need
to take care of low level source code processing tasks and can focus primarily
on the high level tasks. For example, the C++ standard changes should not
necessarily be handled, just in case of the developed tool’s purpose requires it.

The developed tool takes advantage of Clang by using the parsing, tokeniz-
ing and other low level tasks. Including the abstract syntax tree building as
well. This tool relies on the AST and AST visiting interface of Clang.

The abstract syntax tree is a high level representation of the source code.
It contains syntactical information mostly, however, Clang’s AST has some
semantic information too. It is a tree structure which defines the relations of
different language elements from the sources. For example, the main function
is an AST node and its content is the subtree of its AST node.

Based on the abstract syntax tree, the developed tool can analyze the orig-
inal source code. It visits the AST in different ways to find suspicious patterns
and validate them. The first target is to find STL algorithm usages. These
points can be the starting points for the analysis.

When an STL usage is hit, the tool must validate the given usage. There
are two main conditions to check:

e Algorithm predicate copying must be detected, because it is the main
reason behind this problem. Also additionally, it is necessary to use mul-
tiple copies of the predicate in the algorithm. This constraint is difficult
to properly detect only from the source code, however, it is possible with
a high certainty.

e Predicate implementation should be checked as well, because state like
variables are necessary to be watched. These variables contribute to the
faulty behavior of the predicate when they are read and written in the
function call operator. Also it is necessary that the return value relies on
these variables too.

62 B. Babati and N. Pataki

By fulfilling these conditions, an STL algorithm usage place can be marked
as problematic. After the analysis, the tool can emit warnings, which indicate
where the original algorithm call happened.

However, these conditions are hard to analyze properly in practice. Dur-
ing the implementation there were many challenges which maybe obvious in
the description, however, difficult to formalize them. First of them is to find
algorithm usages. How can we know that a given function is an algorithm?
Multiple answers are possible.

The most simple answer is that its definition comes from algorithm header
file. However, the STL headers can be fragmented, which means that the
algorithm definition placed in an internal header [5].

They can be known by name because the Standard defines them very pre-
cisely. It works, but should be maintained continuously.

A heuristic can be defined to detect an algorithm, which is not hundred
percent sure, but in practice no false positive and negative cases have been
seen. The function should be placed in std namespace, it must be a function
template, the last template parameter is a type and has a function parameter
with this type. The advantage of this method, that it is not necessary to
maintain. The tool is using this method to detect algorithms.

Second challenge is to detect whether an algorithm copies a predicate. A
predicate copying can happen through parameter passing or explicitly in the
function body. A copy of an object can be made by calling copy constructor or
assignment operator. These functions appear in the AST and can be tracked.

However, the hard part is to decide whether the newly copied object is used
or not. It is necessary to judge the function, if it is actively using multiple
predicate objects. The usage is a function call operator call on the specific
objects. However, tracking these calls to given objects is difficult in the AST.
For example, function calls must be followed from the algorithms as well.

This last condition makes the analysis implementation dependent. It is
useful if we define two subtypes within this method:

e Implementation independent approach, where only the user code is under
analysis.

e Implementation dependent approach, when the source of the STL is
checked as well as it was described above.

The last topic is analyzing the predicate object whether it is using variables.
These variables can be members or global variables, also can be local variables
in case of lambda function with capture. A variable is used when both read
and write happen on it. Both reads and writes appear in the AST, however, for
different types different functions should be watched. For example, there are

Evaluation of predicates in the C++ STL 63

more possibilities for a user defined type to be modified, than a default type.
On the other hand, function calls must be followed from here as well because
it is possible that a helper function handles the variable reading and writing.

3.2. Type-traits-based approach

Standard type traits are available since C4++11. Type traits process user-
defined types at compilation time and one can analyze the basic characteristics
of own classes [17]. This approach supports compile-time solution, however, to
realize how many copies are constructed, we take advantage of type traits at
runtime. This solution makes the results exact.

First, we crate a template to detect if a type is stateless:

template <class T>
struct is_stateless

{

static const bool value =
std::is_class <I'>::value &
std ::is_empty<I'>::value;

}s
Some utilities to make the usage easier:

#define PREDICATE.COPY_CHECK (PRED)
copy-safe<PRED>::reset ()

struct too_many_copies

// information for exception handling

)

The heart of this approach is the copy_safe class template:

template <class Pred>
class copy_safe

{

static int cnt;
public:
copy_safe () = default;

copy-safe(const copy_safe<Pred>&)

64 B. Babati and N. Pataki

{
++cnt
it (lis_stateless <Pred >::value && cnt > 1)

{

throw too_many_copies ();

}

}

static void reset ()

{
}
}s

The copy_safe class template keeps track how many copies are constructed
and throws exception in case of a stateful predicate is copied more multiple
times. The template parameter is the type of the predicate. This approach can
be used in a non-intrusive way:

cnt = 0;

class Pred: public copy_safe<Pred>

{
//

bool operator ()(int a) const

{
//
}

}s

When an object of type Pred is copied, the copy constructor of copy_safe
is invoked, as well. This approach follows the actual copy constructor calls
inside the STL, therefore it perfectly works with every STL implementation.

4. Runtime approach

Other big group of analysis methods is dynamic analysis. It is a runtime
approach, where the compiled binary is executed in some way. It is usually
instrumented at compile time or at runtime. Many methods have been evolved
also. Advantage of this runtime approach is that real values are seen during exe-
cution, therefore the covered software parts can be evaluated more safely. How-

Evaluation of predicates in the C++ STL 65

ever, this runtime environment and data for covering the more code branches
in the execution must be prepared.

4.1. Aspect-oriented programming approach

The aspect-oriented programming is a programming paradigm [13], how-
ever, it can be used as a runtime analysis technique [15]. The main idea is to
add extra code on top of the original source code. It requires no modification
in the analyzed source code. Only an extra layer is added which is independent
from the original code. The extra code parts could be written using a language
extension or another language. Most of the time it requires an additional step
in the compilation process too.

Many aspect-oriented paradigm supporting libraries and tools exist for dif-
ferent programming languages. One of them is AspectC++ which is designed
for C++ programs [14]. It lets one waive C++ codes with custom code parts. It
extends the C++ language with new elements in order to enable the waiving.
The aspect related parts are using this language extension, however, within
these parts the standard C++ code can be written.

Let us see an example. In this example, the hello_world function calls are
caught and after the function calls, it inserts a function which will be executed.
In this inserted code, only a logging line is printed to the standard output. The
pointcut defines a pattern where the aspect matches, after the match is hit,
the body of the advice will be executed.

aspect Example {
pointcut hwpc() = "void hello_world ()”;

advice execution (hello_world()) : after() {
std :: cout << "hello_world () function called”
<< std::endl;
}

}s

The AspectC++ is using Clang for doing its task. This approach uses a two
phased compilation. In the first phase, it takes the aspect definitions and the
original source. It parses the original source code with Clang and commit
AST level changes according to the given aspect. When this transformation is
ready, it generates C++ code from the modified AST. In this second phase,
this generated source can be compiled with a standard compliant compiler to
get the binary. The resulted binary already contains the changes defined by
the aspect.

This technique can be used in many cases, for example for analysis too.
Many aspects were developed to find STL related issues [7]. Including an aspect

66 B. Babati and N. Pataki

which is able to find the stateful predicate usage issue. The implementation is
fully different from other techniques. The idea behind validation is to analyze
the behavior and not the content of the predicate. Analyzing the content of
the predicate is much harder at runtime and the behavior defines the predicate.
Let us see a part of the defined aspect:

aspect StatefulPredicate {
pointcut removeifpe() =
"% std::remove_if<%s, %s>(...)";

advice call(removeifpc()) : before() {

PredT origPred = xtjp-—>arg<2>();
std:: vector<ResultT> firstResults =
applyPredicate (xtjp—>arg <0>(), *tjp-—>arg<l1>(),
origPred);

PredT copiedPred = origPred;
std:: vector<ResultT> secondResults =
applyPredicate (xtjp—>arg <0>(), *tjp-—>arg<l>(),
copiedPred);

if (firstResults != secondResults) {
std :: cout << ”"std::remove_if is used ”
<< 7with stateful predicate at ”
<< tjp—>filename () << 77
<< tjp—>line () << std::endl;
¥
¥
}s

First of all, a pointcut is defined which matches on given STL algorithms,
std: :remove_if in this example. After an algorithm call is found, the proposed
approach extracts the iterators and the predicate object from the call. The
behavior analysis uses these parameters, so it iterates over the given iterator
range and calls the predicate on every element. The original predicate will be
copied after and this newly created predicate is used to test the elements of the
iterator range again. From both runs, the results of each predicate is stored,
so if the predicate depends on some kind state, the results of the two runs are
not the same. In case it happens, a warning can be emitted at runtime. The
drawback of this method is that only the executed parts are covered, but this
limitation comes from the runtime behavior.

Evaluation of predicates in the C++ STL 67

5. Evaluation

Multiple analysis methods have been presented to catch the same STL re-
lated issue [7]. These methods approach otherwise, trying to grab the problems
from different angles. In this section, these methods are compared to each other.

There are multiple properties for the comparison: outcome, sophistication,
performance.

The performance cannot be judged reliably, since there are compile time
and runtime methods as well.

Another point is sophistication, which depends on the behavior of the anal-
ysis method. The advantage of runtime methods is that they can see real data
and make decisions based on them. However, the static analysis methods see
only the source code and can make assumptions based on them. Static analysis
methods do not require runtime environment which is an advantage in most of
the cases.

The outcome of each analysis methods can be measured through comparison
test cases which cover the general use cases and the corner cases as well. These
examples are the base points of the comparison. Both false positive and false
negative cases are covered. They decide how many issues can be detected with
each analysis method. The testcases are defined in this section, they help to
explore the differentiations of the solutions.

5.1. Comparison cases

5.1.1. Functor with member variable

A classic example, which is using a member to track the algorithm state.
For example, counting how many times the predicate was called and behave
based on this counter.

struct CallCounter {
bool operator() (const int x) {
return ++times =— 42;

}
std::size_t times = 0;
b

Using this predicate, may lead erroneous behavior, however, this fact is not
fully clear at this point.

5.1.2. Algorithm implementation dependency

One step ahead is to improve the first example and take the algorithm im-
plementation into account. Most of the cases, the previously sampled predicate

68 B. Babati and N. Pataki

just works fine. That is because of the algorithm implementation.

Each algorithm implementation is not strictly regulated by the standard,
so the implementations may vary between STL libraries. Let us see two imple-
mentations of the std: :remove_if. Both of them do the same, however, they
work a bit differently.

template<typename Fwdlt, typename UnaryPred>
FwdIlt remove_if (Fwdlt begin, Fwdlt end, UnaryPred p) {
begin = find_if (begin, end, p);
if (begin = end) {
return begin;
1 oelse {
FwdIt next = begin;
return remove_copy_if(++next, end, begin, p);

The second implementation, which is not using helper functions:

template<class Fwdlt, class UnaryPred>
Fwdlt remove_if (Fwdlt begin, Fwdlt end, UnaryPred p) {
for (FwdIt it = begin; it != end; ++it) {
if (Ip(xit)) {
xbegin = *it;
++begin ;
}
}

return begin;

}

As it can be seen, the behavior of each function is the same, however, the
outcome may be different. Let us combine them with the previous predicate
which returns true for the third element. With the first std: :remove_if imple-
mentation, it removes the third and sixth elements as well if the find_if takes
the predicate by value. While with the second one, only the third element will
be removed.

5.1.3. Using global variables

Another interesting example, when a predicate does not explicitly define
a member or a locally used variable to store information. Despite they use
globally available variables, which can be used exactly in the same way as a
member variable.

Evaluation of predicates in the C++ STL 69

int GlobalX = 0;

struct Foobar {
bool operator () (const int x) const {
return ++GlobalX = 42;

}
}s

In this example, the function call counter is tracked in global variable. It is
the same issue as it is seen in the first example, however, it is much harder to
catch. This is mostly a theoretical case, it would appear in real code base very
rarely.

5.1.4. Lambda functions with state

Lambda functions can be used as algorithm predicates since C++11. A
lambda can have state by capturing a variable by value. In this case, the
behavior is the same as in case of functors with member variable. When it is
copied, the state within is copied as well.

int main() {
int count = 0;
auto cfn = [count] (const int x)
{ return 4++count = 42 };

}

5.1.5. Read-only and unused state

The most frequently used pattern is using constant variables in predicates.
However, it does not cause any issue since it is not a state. Almost the same
behavior, when only writing a variable, however, the value is not used related
to the return value or at all.

struct Found {
explicit Found(const int x) : x(x) { }

bool operator () (const int y) const {

)
return x =— y;

¥
int x = 0;
b

These are negative cases which do not cause any issue, but they are potential
false positive hits.

70 B. Babati and N. Pataki

5.2. Evaluation with real-world examples

So far, we have not evaluated our methods with real-world examples because
these are quite different and take advantage of STL implementation in order
to reduce the false positive findings. Runtime approaches hard to drive in real-
world examples because it should cover all potential execution or an analysis is
required how to use the examined software to reach specific points in the source
code that takes too much effort. Moreover, released software artifacts typically
do not specify which version of which STL implementation take advantage of.
Our findings could not be reproduced with a different library implementation
and we cannot extract the library information from the source or the compiled
code. However, our previous experiences show that the proposed solutions
can be applied with real-world examples [5]. Additionally, a Clang-based STL
usage validation is utilized by industrial partner [10].

5.3. Comparison summary

From the previously presented cases and methods, the comparison can be
seen in the Table 1. In this table, TT stands for type traits and refers to the
corresponding method, AST is for abstract syntax tree visiting based approach
and the AOP is for aspect-oriented programming.

Validation TT | AST | AOP

Functor with member + +
STL implementation dependency | -
Global variables +
Lambdas -
Read-only state -
Unused state -

|+ ||+
||+ +

Table 1. Comparison of approaches by testcases

Each method has advantages and drawbacks and approaching the issue
differently.

The AST based approach can cover all the presented cases in general, how-
ever, there could corner cases where the evaluation may fail, for example a
function call cannot be properly followed in the AST may lead false negative
cases.

The aspect oriented approach can insert validation code parts to the code,
but it requires the execution of the program. Most of the cases can properly be
analyzed at runtime, however, it is hard to insert validation code and properly
follow calls in the STL implementation.

Evaluation of predicates in the C++ STL 71

The type trait based approach require to user interaction to derive the
predicates from the copy_safe class which can track the safe usage at runtime.
Consequently, only the user defined code parts can be validated. It means
that the STL dependency cannot be verified and the pattern of the state usage
cannot be validated. Therefore the lambdas cannot be checked too, because
they cannot be derived from the given copy_safe class.

6. Conclusion

C++ STL is most well-known and widely-used library based on the generic
programming paradigm. In this paper, an STL usage issue is presented which is
related to the algorithm predicates. It is covered with detailed description and
examples. We developed and presented analysis techniques which aim at the
detection of this exact issue. Our approaches involve both static and dynamic
analysis methods.

The depicted methods are detailed on how they can detect the algorithm
predicate issue. Since this issue is very complex, the analysis methods grasp
the essence of this issue from different sides. Both advantages and drawbacks
are covered for every analysis method by collecting and analyzing the most
frequent testcases of this issue. At the end, a comparison is demonstrated
including multiple viewpoints.

References

[1] Stroustrup, B., The C++ Programming Language (special edition),
Addison-Wesley, 2000.

[2] Meyers, S., Effective STL, Addison-Wesley, 2001.

[3] Stepanov, A.A. and D.E. Rose, From Mathematics to Generic Pro-
gramming, Addison-Wesley Professional, 2014.

[4] Lattner, C., LLVM and Clang: Next generation compiler technology, The
BSD conference. Vol. 5, 2008.

[5] Babati, B. and N. Pataki, Analysis of include dependencies in C++
source code, in: Annals of Computer Science and Information Systems,
Vol 18, pp. 149-156, 2017.

[6] Babati, B., G. Horvath, V. Majer and N. Pataki, Static analysis
toolset with Clang, in: Proceedings of the 10th International Conference
on Applied Informatics, 2017, pp. 23-29.

72

B. Babati and N. Pataki

7]

Babati, B., G. Horvath, N. Pataki and A. Pater-Részeg, On the
validated usage of the C++ Standard Template Library, in: Proc. of the
9th Balkan Conference on Informatics, 2019, 23(1)-23(8).

Cousot, P., Abstract interpretation, ACM Computing Surveys (CSUR),
28(2) (1996), 324-328.

Gregor, D. and S. Schupp, STLlint: lifting static checking from
languages to libraries, Software: Practive and Experience, 36(3) 2006,
225-254.

Horvath, G. and N. Pataki, Clang matchers for verified usage of the
C++ Standard Template Library, Ann. Math. Inform., 44 2015, 99-109.
Jones, J., Abstract syntax tree implementation idioms, in: Proceedings
of the 10th conference on pattern languages of programs (plop2003), 2003,
p- 26.

King, J.C., Symbolic execution and program testing, Communications
of the ACM, 19 (1976), 385-394.

Kiczales, G., Aspect-oriented programming, Furopean conference on
object-oriented programming, Springer, Berlin, Heidelberg, 1997.
Spinczyk, O. and D. Lohmann, The design and implementation of
AspectC++, Knowledge-Based Systems, 20('7) (2007), 636-651.

Shin, H., Y. Endoh and Y. Kataoka, Arve: aspect-oriented runtime
verification environment, International Workshop on Runtime Verifica-
tion, 2007, 87-96.

Pataki, N., Safe iterator framework for the C++ Standard Template
Library, Acta Electrotechnica et Informatica, 12(1) (2012), 17-24.
Pataki, N., Compile-time advances of the C++ Standard Template Li-
brary, Annales Univ. Sci. Budapest., Sect. Comp., 36 (2012), 341-352.
Pataki, N. and Z. Porkolab, Extension of iterator traits in the C++
Standard Template Library, in: Federated Conference on Computer Sci-
ence and Information Systems, 2011, 911-914.

Pataki, N., Z. Sziligyi and G. Dévai, Measuring the overhead of C++
Standard Template Library Safe Variants, Flectron. Notes Theor. Comput.
Seci., 264(5) (2011), 71-83.

B. Babati and N. Pataki

Department of Programming Languages and Compilers
Faculty of Informatics

Eo6tvos Lorand University

Budapest

Hungary

babati@caesar.elte.hu

patakino@elte.hu

