
Annales Univ. Sci. Budapest., Sect. Comp. 52 (2021) 29–43

E.R. LOVE TYPE RIGHT SIDE FRACTIONAL

INTEGRAL INEQUALITIES

George A. Anastassiou (Memphis, U.S.A.)

Communicated by László Szili
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Abstract. Motivated for the work of E.R. Love ([4], 1985) on integral
inequalities we produce general right side direct and reverse integral in-
equalities. We apply these to ordinary and right side fractional integral
inequalities. The last involves ordinary derivatives, right side Riemann-
Liouville fractional integrals, right side Caputo fractional derivatives, and
right side generalized fractional derivatives. These inequalities are of Opial
type ([5]).

1. Introduction

This paper deals with ordinary and right side fractional integral inequalities.
We are motivated by the following left side results:

Theorem 1.1. (Hardy’s Inequality, integral version [3, Theorem 327].) If f is
a complex-valued function in Lr (0,∞), ‖·‖ is the Lr (0,∞) norm and r > 1,
then

(1)

∥∥∥∥∥∥
1

x

x∫

0

f (t) dt

∥∥∥∥∥∥
≤ r

r − 1
‖f‖ .

Key words and phrases: Direct and reverse Minkowski integral inequality, right Opial in-
equality, right Riemann-Liouville fractional integral, right fractional derivatives.
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Theorem 1.2. (E.R. Love, [4].) If s ≥ r ≥ 1, 0 ≤ a < b ≤ ∞, γ is real,
ω (x) is decreasing and positive in (a, b), f (x) and H (x, y) are measurable and
non-negative on (a, b), H (x, y) is homogeneous of degree −1,

(2) (Hf) (x) =

x∫

a

H (x, y) f (y) dy

and

(3) ‖f‖r =




b∫

a

f (x)
r
xγ−1ω (x) dx




1
r

,

then

(4) ‖Hf‖r ≤ C ‖f‖s ,

where

(5) C =

1∫

a
b

H (1, t) t−
γ
r




bt∫

a

xγ−1ω (x) dx




1
r−

1
s

dt.

Here a
b is to mean 0 if a = 0 or b = ∞ or both; and bt is to mean ∞ if b = ∞.

We present direct and reverse integral inequalities.

2. Main results

2.1. Part I

First we give direct right side results. We present the following direct general
right side result:

Theorem 2.1. If s≥ r ≥ 1, 0 ≤ a < b ≤ ∞, γ ∈ R, ω (x) is increasing and
positive in (a, b), f (x) and H (z, x) are measurable and non-negative on (a, b),

and (a, b)
2
, respectively, H (z, x) is homogeneous of degree −1,

(6) (Hf) (x) =

b∫

x

H (z, x) f (z) dz,
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and

(7) ‖f‖r =




b∫

a

fr (x)xγ−1ω (x) dx




1
r

,

then

(8) ‖Hf‖r ≤ C ‖f‖s ,

where

(9) C :=

b
a∫

1

H (t, 1) t−
γ
r




b∫

at

xγ−1ω (x) dx




1
r−

1
s

dt.

Here b
a is to mean ∞, if a = 0 or b = ∞ or both; and at is to mean 0 if a = 0.

Proof. (i) Let x ∈ (a, b) .

Here x ≤ z ≤ b and 1 ≤ z
x ≤ b

x . set t = z
x , that is z = tx, and 1 ≤ t ≤ b

x .

Infact 1 ≤ t < b
a . By degree −1 homogenity of H we have

(Hf) (x) =

b
x∫

1

H (tx, x) f (tx)xdt =

=

b
x∫

1

x−1H (t, 1) f (tx)xdt =

b
x∫

1

H (t, 1) f (tx) dt.

That is

(10) (Hf) (x) =

b
x∫

1

H (t, 1) f (tx) dt.

Using Minkowski’s inequality at (11), and the increasing property of ω at (12),
we get

‖Hf‖r =




b∫

a




b
x∫

1

H (t, 1) f (tx) dt




r

xγ−1ω (x) dx




1
r

≤
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(11) ≤

b
a∫

1




b
t∫

a

H (t, 1)
r
f (tx)

r
xγ−1ω (x) dx




1
r

dt ≤

(12) ≤

b
a∫

1

H (t, 1) t−
γ
r




b
t∫

a

f (tx)
r
(tx)

γ−1
ω (xt) tdx




1
r

dt =

(13) =

b
a∫

1

H (t, 1) t−
γ
r




b∫

at

f (z)
r
zγ−1ω (z) dz




1
r

dt ≤

(14) ≤




b
a∫

1

H (t, 1) t−
γ
r dt







b∫

at

f (z)
r
zγ−1ω (z) dz




1
r

.

If s = r, this is the required inequality.

(ii) Assume that s > r. Applying Hölder’s inequality with indices s
r and(

s
s−r

)
in the inside integral of (13) we get

b∫

at

f (z)
r
zγ−1ω (z) dz =

b∫

at

f (z)
r (

zγ−1ω (z)
) r

s
(
zγ−1ω (z)

)1− r
s dz ≤

≤




b∫

at

f (z)
s
zγ−1ω (z) dz




r
s



b∫

at

zγ−1ω (z) dz




1− r
s

≤

(15)

≤




b∫

a

f (z)
s
zγ−1ω (z) dz




r
s



b∫

at

zγ−1ω (z) dz




1− r
s

=

= ‖f‖rs




b∫

at

zγ−1ω (z) dz




1− r
s

.



E.R. Love type right side fractional integral inequalities 33

So we have (by use of (14) and (15))

(16)

‖Hf‖r ≤

b
a∫

1

H (t, 1) t−
γ
r




b∫

at

f (z)
r
zγ−1ω (z) dz




1
r

dt ≤

≤ ‖f‖s

b
a∫

1

H (t, 1) t−
γ
r




b∫

at

zγ−1ω (z) dz




1
r−

1
s

dt = C ‖f‖s ,

proving the claim. �

Remark 2.1. If r = s, then (see (9))

(17) C :=

b
a∫

1

H (t, 1) t−
γ
r dt,

independent of ω.

We give

Corollary 2.1. Let r > 1 and f ∈ Lr (0,∞). Then

(18)

∥∥∥∥∥∥

∞∫

x

f (t)

t
dt

∥∥∥∥∥∥
r

≤ r ‖f‖r .

Proof. Apply (8), with a = 0, b = ∞, x ∈ R+, γ = 1, s = r > 1, ω (x) = 1,
and H (z, x) = 1

z . �

We continue with a right side fractional result.

Theorem 2.2. If p > 0, q > 0, p+ q = r ≥ 1, 0 < a < b < ∞, γ > 0, ω (x) is
increasing and positive in (a, b), f (x) is measurable and non-negative on (a, b) ,
Iαb− is the right Riemann-Liouville operator of fractional integration defined by

(19) Iαb−f (x) =

b∫

x

(z − x)
α−1

Γ (α)
f (z) dz,

where Γ is the gamma function, α > 0,

I0b−f (x) = f (x) ,
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and Iβb−f is defined similarly for β ≥ 0, then

(20)

b∫

a

(
Iαb−f (x)

)p (
Iβb−f (x)

)q

xγ−αp−βq−1ω (x) dx ≤

≤ C∗
b∫

a

fr (x)xγ−1ω (x) dx,

where

(21) C∗ =

(
b− a

a

)(αp+βq)
1

Γr (α+ 1)
.

Proof. Consider H (z, x) = (z−x)α−1

xαΓ(α) , a < x < z < b. Notice H (tz, tx) =

= t−1H (z, x), so that H is homogeneous of degree −1. Here we consider

(Hf) (x) =
1

xα

b∫

x

(z − x)
α−1

Γ (α)
f (z) dz = x−αIαb−f (x) ,

and by (8) we have

(22)
∥∥x−αIαb−f (x)

∥∥
r
≤ A ‖f‖r ,

where

A =
1

Γ (α)

b
a∫

1

(t− 1)
α−1

t−
γ
r dt.

We notice that

(23)

b
a∫

1

(t− 1)
α−1

t−
γ
r dt ≤

b
a∫

1

(t− 1)
α−1

dt =
(b− a)

α

aαα
.

That is

(24) A ≤ (b− a)
α

aαΓ (α+ 1)
.

Therefore it holds

(25)
∥∥x−αIαb−f (x)

∥∥
r
≤ (b− a)

α

aαΓ (α+ 1)
‖f‖r ,
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and

(26)
∥∥∥x−βIβb−f (x)

∥∥∥
r
≤ (b− a)

β

aβΓ (β + 1)
‖f‖r .

Using Hölder’s inequality with indices r
p and r

q , we get

b∫

a

(
x−αIαb−f (x)

)p (
x−βIβb−f (x)

)q

xγ−1ω (x) dx ≤

≤




b∫

a

(
x−αIαb−f (x)

)r
xγ−1ω (x) dx




p
r



b∫

a

(
x−βIβb−f (x)

)r

xγ−1ω (x) dx




q
r

=

=
∥∥x−αIαb−f (x)

∥∥p
r

∥∥∥x−βIβb−f (x)
∥∥∥
q

r
≤

≤
(

(b− a)
α

aαΓ (α+ 1)

)p
(

(b− a)
β

aβΓ (β + 1)

)q

‖f‖pr ‖f‖
q
r =

(27) =
(b− a)

αp+βq

aαp+βqΓ (α+ 1)
r ‖f‖rr ,

proving the claim. �

We continue with

Corollary 2.2. If p > 0, q > 0, p + q = r ≥ 1, 0 < a < b < ∞, γ > 0,
ω (x) is increasing and positive in (a, b), f (x) is measurable and non-negative
on (a, b) , Iαb− is the right Riemann-Liouville fractional integral, α > 0, then

(28)

b∫

a

(
Iαb−f (x)

)p
f (x)

q
xγ−αp−1ω (x) dx ≤

≤
(
b− a

a

)αp
1

Γr (α+ 1)

b∫

a

fr (x)xγ−1ω (x) dx.

Proof. By Theorem 2.2 for β = 0. �

We also give

Corollary 2.3. Here p, q > 0, p + q = r ≥ 1, 0 < a < b < ∞, γ > 0, ω (x)
is increasing and positive in (a, b). Let f ∈ ACn ([a, b]) (i.e. f (n−1) is abso-
lutely continuous), n is even and f (n) ≥ 0. Assume further that f (k) (b) = 0,
k = 0, 1, ..., n− 1. Then
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(29)

b∫

a

fp (x)
(
f (n) (x)

)q

xγ−np−1ω (x) dx ≤

≤
(
b− a

a

)np
1

(n!)
r

b∫

a

(
f (n) (x)

)r

xγ−1ω (x) dx.

If γ = 1, ω (x) = 1, we have

(30)

b∫

a

fp (x)
(
f (n) (x)

)q

x−npdx ≤
(
b− a

a

)np
1

(n!)
r

b∫

a

(
f (n) (x)

)r

dx.

Proof. Since f ∈ ACn ([a, b]), x ∈ [a, b], we have that (Taylor’s formula)

(31) f (x) =

n−1∑
k=0

f (k) (b)

k!
(x− b)

k
+

1

(n− 1)!

x∫

b

(x− t)
n−1

f (n) (t) dt.

By the assumptions we get that

(32) f (x) =
1

(n− 1)!

b∫

x

(t− x)
n−1

f (n) (t) dt = Inb−f
(n) (x) .

Here we have that there exists f (n) almost everywhere and f (n) ∈ L1 ([a, b]).
Direct application of (28) produces (29). �

Remark 2.2. Since a ≤ x ≤ b, by (30) we easily get that

(33)

b∫

a

fp (x)
(
f (n) (x)

)q

dx ≤
(
b (b− a)

a

)np
1

(n!)
r

b∫

a

(
f (n) (x)

)r

dx.

Setting p = q = 1, we have

(34)

b∫

a

f (x) f (n) (x) dx ≤
(
b (b− a)

a

)n
1

(n!)
2

b∫

a

(
f (n) (x)

)2

dx,

which is a ride side Opial’s type inequality.

We would like to formalize the last result.
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Corollary 2.4. Let 0 < a < b < ∞, f ∈ ACn ([a, b]), n is even and f (n) ≥ 0.
Assume that f (k) (b) = 0, k = 0, 1, ..., n− 1. Then

(35)

b∫

a

f (x) f (n) (x) dx ≤
(
b (b− a)

a

)n
1

(n!)
2

b∫

a

(
f (n) (x)

)2

dx.

We specialize (35) as follows:

Corollary 2.5. Let f ∈ AC2 ([1, 2]), with f (2) ≥ 0. Assume that f (2) =
= f ′ (2) = 0. Then

(36)

2∫

1

f (x) f (2) (x) dx ≤
2∫

1

(
f (2) (x)

)2

dx.

We need

Definition 2.1. ([1], p. 336.) Let f ∈ ACm ([a, b]), m ∈ N, where m =
= �α�, α > 0 (�·� the ceiling of number). We define the right Caputo fractional
derivative of order α, by

(37) Dα
b−f (x) := (−1)

m
Im−α
b− f (m) (x) , ∀ x ∈ [a, b] ,

that is

(38) Dα
b−f (x) =

(−1)
m

Γ (m− α)

b∫

x

(z − x)
m−α−1

f (m) (z) dz.

We mention the right Caputo fractional Taylor formula:

Theorem 2.3. ([1], p. 341.) Let f ∈ ACm ([a, b]), x ∈ [a, b], α > 0, m = �α�.
Then

1)

(39) f (x) =

m−1∑
k=0

f (k) (b)

k!
(x− b)

k
+

1

Γ (α)

b∫

x

(z − x)
α−1

Dα
b−f (z) dz,

2) in case of f (k) (b) = 0, k = 0, 1, ...,m− 1, we have

(40) f (x) =
1

Γ (α)

b∫

x

(z − x)
α−1

Dα
b−f (z) dz =

(
Iαb−

(
Dα

b−f
))

(x) ,

∀ x ∈ [a, b] .
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We present

Corollary 2.6. Let p, q > 0, p + q = r ≥ 1, 0 < a < b < ∞, γ > 0, ω (x) is
increasing and positive in (a, b), α > 0, m = �α�. Assume that f ∈ ACm ([a, b])
such that f (k) (b) = 0, k = 0, 1, ...,m− 1 and Dα

b−f ≥ 0 over (a, b). Then

(41)

b∫

a

(f (x))
p ((

Dα
b−f

)
(x)

)q
xγ−αp−1ω (x) dx ≤

≤
(
b− a

a

)αp
1

Γr (α+ 1)

b∫

a

((
Dα

b−f
)
(x)

)r
xγ−1ω (x) dx.

Proof. Apply (28) and (40). �

We continue with

Definition 2.2. ([1], p. 345.) Let ν > 0, n := [ν] ([·] integral part), α = ν−n,
0 < α < 1, f ∈ C ([a, b]) . Consider the subspace of functions

(42) Cν
b− ([a, b]) :=

{
f ∈ Cn ([a, b]) : I1−α

b− f (n) ∈ C1 ([a, b])
}
.

We define the right generalized ν-fractional derivative of f over [a, b] as

(43) D
ν

b−f = (−1)
n−1

(
I1−α
b− f (n)

)′
.

That is

(44)
(
D

ν

b−f
)
(x) =

(−1)
n−1

Γ (n− ν + 1)

d

dx

b∫

x

(z − x)
n−ν

f (n) (z) dz,

∀ x ∈ [a, b] .

We need the following right fractional Taylor formula.

Theorem 2.4. ([1], p. 348.) Let f ∈ Cν
b− ([a, b]), ν > 0, n = [ν] .

1) If ν ≥ 1, then

(45) f (x) =

n−1∑
k=0

f (k) (b)

k!
(x− b)

k
+

(
Iνb−D

ν

b−f
)
(x) ,

∀ x ∈ [a, b] .

2) If 0 < ν < 1, then

(46) f (x) = Iνb−D
ν

b−f (x) ,

∀ x ∈ [a, b] .
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We make

Remark 2.3. By Theorem 16 we have: for f ∈ Cν
b− ([a, b]), ν > 0, n = [ν], we

get that f (x) = Iνb−D
ν

b−f (x) , ∀ x ∈ [a, b], given that 0 < ν < 1, or ν ≥ 1 and

f (k) (b) = 0, k = 0, 1, ..., n− 1.

We present

Corollary 2.7. Let p, q > 0, p + q = r ≥ 1, 0 < a < b < ∞, γ > 0, ω (x) is
increasing and positive in (a, b), ν > 0, n = [ν]. Assume that f ∈ Cν

b− ([a, b]) ,

in case of ν ≥ 1 we have that f (k) (b) = 0, k = 0, 1, ..., n − 1 and D
ν

b−f ≥ 0
over (a, b). Then

(47)

b∫

a

(f (x))
p
((

D
ν

b−f
)
(x)

)q

xγ−νp−1ω (x) dx ≤

≤
(
b− a

a

)νp
1

Γr (ν + 1)

b∫

a

((
D

ν

b−f
)
(x)

)r

xγ−1ω (x) dx.

Proof. Apply (28) and Remark 2.3. �

2.2 Part II

Next we get reverse right side results.

We present

Theorem 2.5. Let 0 < r < 1, 0 < a < b < ∞, f (x) and H (z, x) are measur-

able and non-negative on (a, b), (a, b)
2
, respectively, H (z, x) is homogeneous of

degree −1,

(48) (Hf) (x) =

b∫

x

H (z, x) f (z) dz,

and

(49) ‖f‖r,[a,b] =




b∫

a

fr (x) dx




1
r

.

We suppose that ‖Hf‖r,[a,b] < ∞ and H (t, 1) f (tx) > 0, for almost all t ∈
∈
[
1, b

x

]
, for almost all x ∈ [a, b], and H(t,1)

t
1
r

‖f‖r,[at,b] < ∞, for almost all t ∈
∈
[
1, b

a

]
.
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Then

(50) ‖Hf‖r,[a,b] ≥

b
a∫

1

H (t, 1)

t
1
r

‖f‖r,[at,b] dt.

Proof. For a < x < b, the homogeneity of degree −1 of H gives

(Hf) (x) =

b
x∫

1

H (t, 1) f (tx) dt,

where x ≤ z ≤ b, 1 ≤ z
x ≤ b

x , setting t := z
x then z = tx and 1 ≤ t ≤ b

x . Infact

1 ≤ t < b
a . Using the reverse Minkowski integral inequality ([2]) we obtain

(51)

‖Hf‖r,[a,b] =




b∫

a




b
x∫

1

H (t, 1) f (tx) dt




r

dx




1
r

≥

≥

b
a∫

1




b
t∫

a

H (t, 1)
r
f (tx)

r
dx




1
r

dt =

b
a∫

1

H (t, 1)

t
1
r




b
t∫

a

f (tx)
r
tdx




1
r

dt =

=

b
a∫

1

H (t, 1)

t
1
r


=

b∫

at

f (y)
r
dy




1
r

dt =

b
a∫

1

H (t, 1)

t
1
r

‖f‖r,[at,b] dt,

proving (50). �

Next we apply Theorem 2.5.

We give

Proposition 2.6. Let 0 < r < 1, 0 < a < b < ∞, α > 0, f (x) is mea-
surable and non-negative on (a, b). Assume that

∥∥x−αIαb−f (x)
∥∥
r,[a,b]

< ∞;

(t− 1)
α−1

f (tx) > 0, for almost all t ∈
[
1, b

x

]
, for almost all x ∈ [a, b] and

(t−1)α−1

t
1
r

‖f‖r,[at,b] < ∞, for almost all t ∈
[
1, b

a

]
. Then

(52)
∥∥x−αIαb−f (x)

∥∥
r,[a,b]

≥ 1

Γ (α)

b
a∫

1

(t− 1)
α−1

t
1
r

‖f‖r,[at,b] dt.



E.R. Love type right side fractional integral inequalities 41

Proof. Consider here H (z, x) = (z−x)α−1

xαΓ(α) , a < x < z < b, then (Hf) (x) =

= x−αIαb−f (x). Finally we apply Theorem 2.5. �

We give a reverse right side fractional integral inequality.

Theorem 2.7. Let 0 < r < p, with r < 1, 0 < a < b < ∞, f is measurable
and non-negative on (a, b) such that f (x) > 0 almost everywhere on [a, b],
α > 0. Assume that

∥∥x−αIαb−f (x)
∥∥
r,[a,b]

< ∞, and ‖f‖r,[at,b] < ∞, for almost

all t ∈
[
1, b

a

]
. Then

(53)

b∫

a

(
Iαb−f (x)

)p
(f (x))

r−p
x−αpdx ≥

≥ 1

Γp (α)




b
a∫

1

(t− 1)
α−1

t
1
r

‖f‖r,[at,b] dt




p

‖f‖r−p
r,[a,b] .

Proof. We will use Proposition 2.6.

Here 0 < r < p, hence 0 < r
p < 1, also r

r−p < 0, and f (x) > 0 almost

everywhere in [a, b]. Next we apply the reverse Hölder’s inequality:

(54)

b∫

a

(
x−α

(
Iαb−f

)
(x)

)p
(f (x))

r−p
dx ≥

≥




b∫

a

(
x−α

(
Iαb−f

)
(x)

)r
dx




p
r



b∫

a

(f (x))
r
dx




r−p
r

=

=
∥∥x−α

(
Iαb−f

)
(x)

∥∥p
r,[a,b]

‖f‖r−p
r,[a,b] ≥

≥ 1

Γp (α)




b
a∫

1

(t− 1)
α−1

t
1
r

‖f‖r,[at,b] dt




p

‖f‖r−p
r,[a,b] ,

proving the claim. �

Next we give some reverse right side Opial type inequalities.

We start with an ordinary derivatives result.

Corollary 2.8. Let 0 < r < p, with r < 1, 0 < a < b < ∞, f ∈ ACn ([a, b]) ,
n is even and f (n) ≥ 0 on (a, b) with f (n) > 0 almost everywhere on [a, b].
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Assume that f (k) (b) = 0, k = 0, 1, ..., n − 1, and ‖x−αf (x)‖r,[a,b] < ∞, and∥∥f (n)
∥∥
r,[at,b]

< ∞, for almost all t ∈
[
1, b

a

]
. Then

(55)

b∫

a

(f (x))
p
(
f (n) (x)

)r−p

x−npdx ≥

≥ 1

((n− 1)!)
p




b
a∫

1

(t− 1)
α−1

t
1
r

∥∥∥f (n)
∥∥∥
r,[at,b]

dt




p

∥∥∥f (n)
∥∥∥
r−p

r,[a,b]
.

Proof. Apply Theorem 2.7 and see the proof Corollary 2.3. �

We continue with fractional reverse results.

Corollary 2.9. Let 0 < r < p, with r < 1, 0 < a < b < ∞, α > 0,
m = �α�, f ∈ ACm ([a, b]) , such that f (k) (b) = 0, k = 0, 1, ...,m − 1, and
Dα

b−f ≥ 0 over (a, b) with Dα
b−f > 0 almost everywhere on [a, b]. Assume that

‖x−αf (x)‖r,[a,b] < ∞, and
∥∥Dα

b−f
∥∥
r,[at,b]

< ∞, for almost all t ∈
[
1, b

a

]
. Then

(56)

b∫

a

(f (x))
p (

Dα
b−f (x)

)r−p
x−αpdx ≥

≥ 1

Γp (α)




b
a∫

1

(t− 1)
α−1

t
1
r

∥∥Dα
b−f

∥∥
r,[at,b]

dt




p

∥∥Dα
b−f

∥∥r−p

r,[a,b]
.

Proof. Use of Theorem 2.3 and Theorem 2.7. �

We finish with

Corollary 2.10. Let 0 < r < p, with r < 1, 0 < a < b < ∞, ν > 0,
n = [ν], f ∈ Cν

b− ([a, b]) , for either 0 < ν < 1, or ν ≥ 1 and f (k) (b) = 0,

k = 0, 1, ..., n − 1. Suppose that D
ν

b−f ≥ 0 over (a, b) with D
ν

b−f > 0 al-
most everywhere on [a, b]. Assume further that ‖x−νf (x)‖r,[a,b] < ∞, and∥∥∥Dν

b−f
∥∥∥
r,[at,b]

< ∞, for almost all t ∈
[
1, b

a

]
. Then

(57)

b∫

a

(f (x))
p
(
D

ν

b−f (x)
)r−p

x−νpdx ≥

≥ 1

Γp (ν)




b
a∫

1

(t− 1)
ν−1

t
1
r

∥∥∥Dν

b−f
∥∥∥
r,[at,b]

dt




p

∥∥∥Dν

b−f
∥∥∥
r−p

r,[a,b]
.
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Proof. Use of Remark 2.3 and Theorem 2.7. �
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