Annales Univ. Sci. Budapest., Sect. Comp. 52 (2021) 7 11

TO THE MEMORY OF

PROFESSOR LASZLO VARGA
(1 May 1931 — 19 September 2020)

Laszlo Kozma (Budapest, Hungary)

Laszlo Varga was born in Sarszentlérinc in Hungary, in 1931. He started his
higher education studies at E6tvos Lorand University in applied mathematics
and received a diploma in 1956. He started his scientific carrier in mathema-
tics at Central Research Institute for Physics in Budapest. He earned the so
called cadidate degree in Hungarian Academy of Sciences (HAS) in 1967 and
the doctor of science degree in mathematics in HAS in 1977. He continued
his scientific carrier and started his higher educational activities at Faculty of
Science at E6tvos Lorand University during seventies. He was a visiting pro-
fessor at Brown University Providence in USA for one year in 1978-79. He had
several so-called aspirants and PhD students who defended successfully their
theses. He was the first director of group of informatics departments at Fa-
culty of Science at E6tvos Lorand University and was the head of Department
of General Computer Science for four years, 1986-1989. Léaszl6 Varga was one
of the leaders of a team who elaborated the study programs of programming
mathematics profession and the program designer profession. He had several
high level lectures including theory of programming, software technology etc.
His research accomplishments in computer science and activity in informatics
education have been recognized by several merits including the Hungarian Or-
der of Merit Knight’s Cross (Civil) in 2001, the Hungarian Merit Officer’s Cross
(Civil) in 2009, the Eotvos Jozsef Prize in 2006, Kalmar Award by John von
Neumann Computer Society, Szent-Gyorgyi Award. Laszlo Varga was awarded
an honorary doctor of E6tvés Lorand University in 2010.

The results of Lasz16 Varga’s research work covering a wide field of theory
and practice of programming prove very useful and important. These results
range from clearing up the problems of machine coding, over analysing advan-
tages and limits of structured and object-oriented programming, to problems
of component oriented programming.

He was among the first Hungarian mathematicians who started to study the
problems of programming of the first Hungarian made computer M-3 during
end of fifties.
https://doi.org/10.71352/ac.52.007


https://doi.org/10.71352/ac.52.007

8 L. Kozma

One of the main problems of the software engineers is the rapid develop-
ment, of hardware. The development of software could not keep level up with
it. These facts press the software engineers for frequently developing new soft-
ware technologies and methods. It is well-known that one of the challenges
of a large-system development is the need to regularly evaluate the emerging
system from a number of different perspectives e.g. from manufacturability,
safety, performance, ergonomics, modifiability interoperability, competitive po-
sition production cost, maintainability, reliability etc. These needs make the
large-system development so difficult and risky. The constituents of a software
development process are: analysing a given problem, specifying a new system,
designing that system, building it and verifying that it was built as specified.

Lasz16 Varga published several papers, books and lectures notes on how to
increase reliability of a program developed by structured programming techno-
logy [Var-81, Var-89].

Beside the programs’ structures Laszlé Varga was carefully studying the
problems of data structures independently of their concrete representation. In
his paper [Var-76] an extension of Vienna Definition Language (VDL) was used
for defining the abstract syntax and semantics of data structures. The basic
VDL data structures were discussed from the viewpoint of practical conside-
rations, and the VDL graph, as a basic VDL data structure, and graph ma-
nipulation operators were introduced. The properties of the VDL graph were
summarized in theorems. In an other paper, his purpose was to create a de-
ductive technique for developing abstract programs systematically by stepwise
refinement from given specifications using VDL. The VDL graph was defined
as an abstraction of a class of data structures. The VDL graph specifies a con-
nected graph which has one entry node at least, but may have several terminal
nodes, and there must be a path from one entry node at least to a terminal
node through every node in the graph. The deductive technique was illustrated
by some examples e.g. by an abstract graph walk algorithm, by an application
of VDL-graph for specifying a linkage editor and an inverse assembler model,
respectively [Var-80].

Abstract data type is a fundamental concept of the specification of a soft-
ware system including object-oriented systems and component oriented system
as well. In his paper [Var-87] abstract data types are specified by algebraic
specification and the appropriate concrete implementations of abstract types
are defined by algebraic way, too. The notion of correct representation and the
notion of correct implementation are defined. For a concrete data type which is
a correct representation of the given abstract data type, it is shown that a cor-
rect implementation satisfies the semantic equations of the given abstract data
type. On the other hand, if an implementation satisfies the semantic equations



To the memory of L. Varga 9

of an abstract data type and the representation is correct then it is a correct
implementation.

To generalize the above results: for implementing an abstract data type,
we may choose an appropriate representation and give a concrete data type
specification, so a so-called double specification is given for a data type. In
this case a correctness of a concrete specification according to an abstract
specification can be formulated, and sufficient conditions for correctness of
three different double specifications can be presented [Var-87-88]. A double
specification has an abstract and a concrete specification part. An abstract
specification is to serve the user’s view, and a concrete specification is to serve
the implementer’s view. In the case a double specification, a verification of
the correctness of an implementation according to the concept which is in our
mind about the given data type can be carried out in two steps. First we show
that an abstract specification correctly reflects the concept [Var-83], and next
we verify the correctness of a concrete specification according to the abstract
one [Var-87, Var-87-88]. An abstract specification can be given by algebraic
way or by pre- and post-conditions. A concrete specification can be given by
algebraic way or by pre- and post-conditions or by procedures. The following
pairs are relevant from point of view of double specifications:

Abstract: Concrete:

algebraic algebraic

algebraic pre- and post-condition
pre- and post-condition pre- and post-condition
pre- and post-condition procedural

We can define an abstract data types with coarse granularity by algebra-
ic way independently from any programming language. Pre- and post-condition
specification and procedural one are language dependent specifications
[Var-87-88].

In accordance with the above results, the designer of a software system can
define a technology for creating correct implementation of an abstract data
type step by step [K-V-2003]:

First the designer can specify a data type by algebraic specification with
coarse granularity, and then he can show that the selected abstract specification
correctly reflects the user’s concept [Var-83]. Then the concrete implementation
is specified by algebraic way or by pre- and post-conditions. The designer can
verify the correctness of the concrete specification according to the abstract
one [Var-87, Var-87-88].

Second step: The designer now selects the above concrete specification as
the new abstract one, and selects a new concrete specification with finer gra-



10 L. Kozma

nularity. The designer can prove the correctness of the new implementation
[Var-87, Var-87-88|.

This step can be repeated by as many times as it is necessary.

Finally, during the last step, the designer or the programmer can select
the last concrete specification with pre- and post-conditions as the abstract
one, and the concrete implementation can be specified by procedures with
finest granularity. He can prove the correctness of the implementation [Var-87,
Var-87-88].

Object-oriented programming is a methodology for describing modules, ob-
jects and classes of objects. Its essence is the subdivision of a system into
objects which are integrated units of data and procedures [S-V-2001]. These
units usually are concurrent objects. Concurrent objects can be instants of
shared types. These shared types must also be specified, represented and imp-
lemented. The paper [K-V-93] presents a methodology with some examples for
developing shared types to support intra-object concurrency. This means that
an object can generate its answers for the other objects concurrently.

For developing large software systems, the compositional approach is ge-
nerally used. A possible way of ensuring the correctness of independently
developed components in this technology is the use of contracts which are
formal agreements expressing each party’s rights and obligations. Defining a
pre-condition and a post-condition, or an invariant for a routine is a way to
define a contract that binds the routine to its caller. This concept was later
extended to component-based world. Component-based applications are ge-
nerally distributed systems, and the verification of such systems is extremely
complicated, usually done on two levels. In paper [D-K-V-2006] the behavio-
ural inheritance contract driven environment was formally defined in the base
of the Substitution Principle given by B. H. Liskov and J. M. Wing. A single
method was given for proving the correctness of a subtype with respect to its
super type in the case of two kinds of data type specification methods. The
method is illustrated by some examples. Using type inheritance and contracts
together not only increases the reliability of a program or a system, but also
simplifies its verification procedure.

The central questions of the research work and the educational activities of
Laszlo Varga were the conceptual understanding of software. He became one
of the best-known researchers and professors in Hungarian informatics commu-
nities.



To the memory of L. Varga 11

List of selected publications

Books and Lecture Notes

[Var-81] L. Varga, Analysis and Synthesis of Programs (Hungarian), Aka-
démiai Kiad6, Budapest, 1981.

[Var-89| L. Varga, Theory of Programming Methods, I.-1I. (Hungarian)
Tankonyvkiado, Budapest, 1989.

[S-V-2001] S. Sike and L. Varga, Object-oriented Modeling in UML —
Ezercises Library with Definitions (Hungarian), E6tvos Lorand University,
Faculty of Science, Budapest, 2001.

[K-V-2001] L. Kozma and L. Varga, Data Type Classes — Definitions,
Analysis, Examples (Hungarian), E6tvos Lorand University, Faculty of Science,
Budapest, 2001.

[K-V-2003] L. Kozma and L. Varga, Theoretical Issues of Software Tech-
nology (Hungarian), ELTE Eotvos Kiado, Budapest, 2003.

Y

Papers

[Var-76] L. Varga, Abstract syntax and semantics of data structures (Hunga-
rian), Alkalmazott Matematikai Lapok, 2(1-2) (1976), 41 55.

[Var-80] L. Varga, Synthesis of abstract algorithms, Acta Cybernetica, Szeged,
5(1) (1980), 59-76.

[Var-83] L. Varga, On the verification of abstract data types, Acta Cybernetica,
Szeged, 6(1) (1983), 7-12.

[Var-87] L. Varga, Implementation of abstract data types with correctness
proof, Annales Univ. Sci. Budapest., Sect. Comp., 8 (1987), 109-118.

ar-87- . Varga, Study of the correctness of data type specifications
Var-87-88| L. V: Study of th f d ificati
(Hungarian), Alkalmazott Matematikai Lapok, 13(1-2) (1987/88), 57-68.

[K-V-93] L. Kozma and L. Varga, A methodology for the development of
shared object classes, International Conference on Applied Informatics, Eger,
Hungary, 23-26 August 1993.

[D-K-V-2006] A. David, L. Kozma and L. Varga, On the correctness of
data type classes based on contracts, PU.M.A., 17(3-4) (2006), 251-261.

L. Kozma

Faculty of Informatics
E6tvos Lorand University
H-1117 Budapest
Pazmany Péter sétany 1/C
Hungary
kozmaQik.elte.hu






