ON SINHA'S NOTE ON PERFECT NUMBERS

Tomohiro Yamada (Osaka, Japan)

Communicated by Gábor Farkas

(Received June 16, 2020; accepted August 8, 2020)

Abstract. We shall show that there is no odd perfect number of the form $2^n + 1$ or $n^n + 1$.

1. Introduction

A positive integer N is called perfect if $\sigma(N)=2N$, where $\sigma(N)$ denotes the sum of divisors of N. As is well known, an even integer N is perfect if and only if $N=2^{k-1}(2^k-1)$ with 2^k-1 prime. In contrast, one of the oldest unsolved problems is whether there exists an odd perfect number or not. Moreover, it is also unknown whether there exists an odd m-perfect number for an integer $m \geq 2$, i.e., an integer N with $\sigma(N)=mN$ or not.

Sinha [5] showed that 28 is the only even perfect number of the form $x^n + y^n$ with gcd(x,y) = 1 and $n \ge 2$ and also the only even perfect number of the form $a^n + 1$ with $n \ge 2$. On the other hand, it is not even proved or disproved that there exists no odd perfect number of the form $x^2 + 1$ with x an integer. Klurman [1] proved that if P(x) is a polynomial of degree ≥ 3 without repeated factors, then there exist only finitely many odd perfect numbers of the form P(x) with x an integer. Luca [4] (cited in Theorem 9.8 of [2]) showed that no Fermat number can be perfect.

In this article, we would like to prove that there exists no odd perfect number of the form $2^n + 1$ or $n^n + 1$.

Indeed, we prove a more general result.

Key words and phrases: Key words and phrases: Odd perfect numbers, sum of divisors, arithmetic functions.

²⁰¹⁰ Mathematics Subject Classification: 11A05, 11A25.

Theorem 1.1. Let m and U be nonnegative integers. We put $s_0 = \lfloor 2^U \log a/(U+1) \log 2 \rfloor$ and $t_0 = 2s_0 + 1$ if U = 0 and a+1 is square and $t_0 = 2s_0$ otherwise. Let $c = 1.093 \cdots = (\log 2)/2 + (\log 3)/3 - (\log^2 3)/2$ and C = C(U) be the constant defined by

$$C = \sum_{2^{U+1}(2m+1)<16,} \frac{1 - \log\log(2^{U+1}m)}{2^{U+1}m}.$$

If $a^n + 1$ is an odd (4m + 2)-perfect number and $n = 2^U$, then

(1.1)
$$\log a > \frac{((4m+2)/e^C)^{2^{U+1}}}{2^U}.$$

If $a^n + 1$ is an odd (4m + 2)-perfect number and $n = 2^U v$ with v > 1 odd, then

$$(1.2) \qquad \log(4m+2) - C <$$

$$<\frac{\exp\left(\frac{1+\log t_0}{2^{U+1}}\right)}{2^{U+1}}\left(\log(2^U\log a)+(U+1)(1+\log t_0)\log 2+\frac{\log^2 t_0}{2}+c\right).$$

Moreover, no integer of the form $2^n + 1$ can be (4m + 2)-perfect.

For example, if $a^{128s}+1$ is odd (4m+2)-perfect, then $a\geq 10$ and, if $a^{256s}+1$ is odd (4m+2)-perfect, then $a\geq 18$. Furthermore, if $a^{16}+1$ is odd (4m+2)-perfect, then $a>\exp\exp 19.4$ and, if $a^{32}+1$ is odd (4m+2)-perfect, then $a>\exp\exp 40.8$. We note that $C(0)=0.9807\cdots$, $C(1)=0.1758\cdots$, $C(2)=0.03348\cdots$ and C(U)=0 for $U\geq 3$.

We shall prove that an odd perfect number of the form $n^n + 1$ must be of the form $2^m + 1$ and deduce the following result from the above result.

Theorem 1.2. 28 is the only (4m+2)-perfect number of the form $n^n + 1$ with $m, n \ge 0$ an integer.

Thus, we conclude that 28 is the only perfect number of the form $n^n + 1$.

2. Proof of Theorem 1.1

Assume that $a^n + 1$ is an odd (4m + 2)-perfect number. By Euler's result, we must have $a^n + 1 = px^2$ for a prime p and an integer x.

Write $n=2^Up_1^{e_1}p_2^{e_2}\dots p_r^{e_r}$ with $p_1>p_2>\dots>p_r$ odd primes and let $P_i=p_i^{e_i}$ for $i=1,2,\dots,r$ and $s=\omega(a^{2^U}+1)$. We put $o_p(x)$ to be the multiplicative order of x modulo p.

We can factor $a^n + 1 = M_0 M_1 \cdots M_r$, where $M_0 = a^{2^U} + 1$ and

$$M_i = \frac{a^{2^U P_1 P_2 \cdots P_i} + 1}{a^{2^U P_1 P_2 \cdots P_{i-1}} + 1}$$

for $i = 1, 2, \ldots, r$. Moreover, let

$$L_i = M_0 M_1 \dots M_i = a^{2^U P_1 P_2 \dots P_i} + 1$$

and $M_i = E_i Y_i^2$, $L_i = D_i X_i^2$ with D_i and E_i squarefree. Clearly, we have $a^n + 1 = L_r = px^2$ and therefore $D_r = p$.

We begin by showing that $p_i \equiv 1 \pmod{2^{U+1}}$ for every i. If $\gcd((a^n + 1)/(a^{n/P_i} + 1), a^{n/P_i} + 1) = 1$, then

(2.1)
$$a^{n/P_i} + 1 = X^2, \frac{a^n + 1}{a^{n/P_i} + 1} = pY^2$$

or

(2.2)
$$a^{n/P_i} + 1 = pX^2, \frac{a^n + 1}{a^{n/P_i} + 1} = Y^2$$

for some integers X and Y. If U=0, then we clearly have $p_i\equiv 1\pmod{2^{U+1}}$. If U>0, then $n/p_i^{e_i}$ is even and (2.1) is clearly impossible. The impossibility of (2.2) follows from Ljunggren's result [3] that $(a^f+1)/(a+1)$ with $a\geq 2, f\geq 3$ cannot be square.

Hence, we must have $gcd((a^n+1)/(a^{n/P_i}+1), a^{n/P_i}+1) > 1$. Observing that

$$\frac{a^n + 1}{a^{n/P_i} + 1} = \sum_{i=0}^{P_i - 1} (-1)^j a^{j(n/P_i)} \equiv P_i \pmod{a^{n/P_i} + 1},$$

 p_i must divide $a^{n/P_i} + 1$. Thus, proceeding as in the proof of Theorem 4.12 of [2], we see that 2^{U+1} divides $o_{p_i}(a)$ and $o_{p_i}(a)$ divides $2n/P_i$. In particular, $p_i \equiv 1 \pmod{2^{U+1}}$ for every i.

Nextly, we show that for each i = 1, 2, ..., r, we have either

- (i) $gcd(L_{i-1}, M_i) = 1$ and $\omega(D_{i-1}) < \omega(D_i)$ or
- (ii) p_i is the only prime dividing $gcd(L_{i-1}, M_i)$ and p_i divides $a^{2^U} + 1$.

If $\gcd(L_{i-1}, M_i) = 1$, then we must have $D_i = D_{i-1}E_{i-1}$ and $X_i = X_{i-1}Y_{i-1}$. It follows from Ljunggren's result mentioned above that $E_{i-1} \neq 1$. Since D_i is squarefree, we have $\omega(D_{i-1}) < \omega(D_i)$.

Assume that $gcd(L_{i-1}, M_i) > 1$. Since

$$M_i = \sum_{i=0}^{P_i - 1} (-1)^j 2^{2^U P_1 P_2 \dots P_{i-1} j} \equiv P_i \pmod{L_{i-1}},$$

we see that p_i is the only prime dividing both L_{i-1} and M_i .

Now p_i must divide L_{i-1} and therefore, proceeding as above, we see that 2^{U+1} divides $o_{p_i}(a)$ and $o_{p_i}(a)$ divides $2^{U+1}P_1P_2\cdots P_{i-1}$. Hence, $o_{p_i}(a)=2^{U+1}d$ and therefore $p_i\equiv 1\pmod{2^{U+1}d}$ for some d dividing $P_1P_2\cdots P_{i-1}$. But, since $p_1>\cdots>p_{i-1}>p_i$, we must have $o_{p_i}(a)=2^{U+1}$ and therefore p_i must divide $a^{2^U}+1$.

It is clear that (ii) occurs at most s times. Moreover, we observe that in the case (ii), p_i is the only possible prime which divides D_{i-1} but not D_i . Hence, we must have $\omega(D_{i-1}) \leq \omega(D_i) + 1$ for each i. Now we see that (i) also occurs at most s times.

We can easily see that $\omega(D_0)=0$ if and only if U=0 and a+1 is a square. Thus we conclude that $r\leq 2s+1$ if $D_0=a+1$ with U=0 is square and $r\leq 2s$ otherwise.

If a prime p divides $a^{2^Ud} + 1$ but $a^{2^Ue} + 1$ for any e < d, then the multiplicative order of 2 (mod p) is equal to $2^{U+1}d$ and therefore $p = 2^{U+1}kd + 1$ for some integer k. Moreover, the number of such primes is at most $k_0(d) = |2^Ud\log a/\log(2^{U+1}d)|$ and therefore $s \le s_0$.

Hence, for each d,

(2.3)
$$\prod_{o_p(a)=2^{U+1}d} \frac{p}{p-1} < \exp \sum_{o_p(a)=2^{U+1}d} \frac{1}{p-1} \le \sum_{k=1}^{k_0(d)} \frac{1}{2^{U+1}kd} \le \exp \frac{1 + \log(2^U d \log a / \log(2^{U+1}d))}{2^{U+1}d},$$

so that

$$(2.4) \frac{\sigma(a^n+1)}{a^n+1} = \prod_{\substack{o_p(a)=2^{U+1}d,\\d|P_1P_2...P_r}} \frac{p}{p-1} < \exp\left(C + \sum_{\substack{d|P_1P_2...P_r}} \frac{\log(2^U d\log a)}{2^{U+1} d}\right).$$

If r = 0, then we immediately see that

(2.5)
$$\sum_{\substack{d \mid P_1 P_2 \dots P_n \\ 2U+1d}} \frac{\log(2^U d \log a)}{2^{U+1} d} = \frac{U \log 2 + \log \log a}{2^{U+1}}.$$

If r > 0, then, observing that

(2.6)
$$\sum_{i=0}^{\infty} \frac{i}{q^i} = \sum_{i=0}^{\infty} \sum_{i=i+1}^{\infty} \frac{1}{q^i} = \sum_{i=0}^{\infty} \frac{1}{q^j(q-1)} = \frac{q}{(q-1)^2},$$

we have

$$\sum_{d|P_{1}P_{2}\dots P_{r}} \frac{\log(2^{U} \log a)}{2^{U+1} d} <$$

$$< \sum_{f_{1},f_{2},\dots,f_{r}\geq 0} \frac{\log(2^{U} \log a) + f_{1} \log p_{1} + f_{2} \log p_{2} + \dots + f_{r} \log p_{r}}{2^{U+1} p_{1}^{f_{1}} p_{2}^{f_{2}} \cdots p_{r}^{f_{r}}} =$$

$$= \prod_{i=1}^{t} \frac{p_{i}}{p_{i} - 1} \left(\frac{\log(2^{U} \log a)}{2^{U+1}} + \sum_{k=1}^{t} \frac{\log p_{k}}{2^{U+1} (p_{k} - 1)} \right) =$$

$$= \left(\frac{1}{2^{U+1}} \prod_{i=1}^{r} \frac{p_{i}}{p_{i} - 1} \right) \left(\frac{\log(2^{U} \log a)}{2^{U+1}} + \sum_{k=1}^{r} \frac{\log p_{k}}{p_{k} - 1} \right).$$

Since each $p_i \equiv 1 \pmod{2^{U+1}}$, we have

(2.8)
$$\prod_{i=1}^{r} \frac{p_i}{p_i - 1} < \prod_{k=1}^{r} \frac{2^{U+1}k + 1}{2^{U+1}k} < \exp \frac{1 + \log r}{2^{U+1}}$$

and observing that $\sum_{k=1}^{t} \log k/k \le (\log t)^2/2 + c$ for $t \ge 1$,

(2.9)
$$\sum_{k=1}^{r} \frac{\log p_k}{p_k - 1} < \sum_{k=1}^{r} \frac{\log k + (U+1)\log 2}{2^{U+1}k} < \frac{1}{2^{U+1}} \left((U+1)(1+\log r)\log 2 + \frac{\log^2 r}{2} + c \right).$$

Thus, we obtain

$$(2.10) \sum_{\substack{d \mid P_1 P_2 \dots P_r \\ < \frac{\exp\left(\frac{1 + \log r}{2^{U+1}}\right)}{2^{U+1}}} \frac{\log(2^U \log a)}{2^{U+1} d} < \frac{\exp\left(\frac{1 + \log r}{2^{U+1}}\right)}{2^{U+1}} \left(\log(2^U \log a) + (U+1)(1 + \log r)\log 2 + \frac{\log^2 r}{2} + c\right).$$

We see that $r \leq t_0$, where we recall that $s \leq s_0 = \lfloor 2^U \log a / (U+1) \log 2 \rfloor$. Hence, we conclude that

(2.11)
$$\log(4m+2) = \log \frac{\sigma(a^n+1)}{a^n+1} < C + \frac{U\log 2 + \log\log a}{2^{U+1}}$$

if r = 0 and

(2.12)
$$\log(4m+2) - C < \frac{\exp\left(\frac{1+\log t_0}{2^{U+1}}\right)}{2^{U+1}} \left(\log(2^{U}\log a) + (U+1)(1+\log t_0)\log 2 + \frac{\log^2 t_0}{2} + c\right)$$
 otherwise. Thus (1.1) and (1.2) follows.

Now we consider the case a=2. If $U \ge 4$, then the right-hand side of (1.1) and (1.2) is $< 0.53 < \log 2$ and therefore a^n+1 cannot be (4m+2)-perfect.

If $U \leq 3$, then $2^{2^U}+1$ is prime and therefore s=1. Clearly, for $n=2^U$ with $U \leq 3$, $2^n+1=2^{2^U}+1$ is not (4m+2)-perfect. Hence, we must have $r \leq 2$ and $n=2^U p_1^{e_1}$ or $2^U p_1^{e_1} p_2^{e_2}$.

If $n=2^Up_1^{e_1}$, then, iterating the argument given before, we must have $p_1=2^{2^U}+1$. Thus, $n=3^{e_1},\,2\times 5^{e_1},\,2^2\times 17^{e_1}$ or $2^3\times 257^{e_1}$.

However, for $n=3^{e_1}$ with $e_1 \geq 3$, we see that both primes 19 and 87211 divide 2^n+1 exactly once since 19 and 87211 divide $2^{27}+1$ exactly once and the only prime dividing both $(2^n+1)/(2^{27}+1)$ and $2^{27}+1$ is 3. This implies that 2^n+1 cannot be of the form px^2 and therefore 2^n+1 cannot be (4m+2)-perfect if $n=3^{e_1}$ with $e_1 \geq 3$. Similarly, 41 and 101 divide 2^n+1 exactly once if $n=2\times 5^{e_1}$ and $e_1 \geq 2$. Clearly, none of $2^3+1, 2^9+1, 2^{10}+1$ is (4m+2)-perfect. Thus 2^n+1 cannot be (4m+2)-perfect if $n=3^{e_1}$ or 2×5^{e_1} . Similarly, 2^n+1 cannot be (4m+2)-perfect if $n=2^2\times 17^{e_1}$ or $2^3\times 257^{e_1}$.

If $n=2^Up_1^{e_1}p_2^{e_2}$, then, iterating the argument given before, $p_1>p_2=2^{2^U}+1$.

If U = 1 and $n = 10p_1^{e_1}$, then we must have

$$2^{10} + 1 = 5^2 \times 41, \frac{2^n + 1}{2^{10} + 1} = 41py^2$$

since $(2^n+1)/(2^{10}+1)$ cannot be square by Ljunggren's result. Thus, we must have $p_1=41$. However, this implies that 2^n+1 must be divisible by 821 and 10169 exactly once, which contradicts to the fact that $2^n+1=px^2$. If U=1 and $n=2\times 5^{e_2}p_1^{e_1}$ with $e_2\geq 2$, then, since three primes 41,101,8101 divide $2^{50}+1$ exactly once, at least two of these primes divide 2^n+1 . Thus 2^n+1 cannot be (4m+2)-perfect if $n=2p_1^{e_1}p_2^{e_2}$. Similarly, 2^n+1 cannot be (4m+2)-perfect for $n=2^Up_1^{e_1}p_2^{e_2}$ with U=2,3.

Now we assume that $n = 3^{e_2} p_1^{e_1}$.

If $n=3^{e_2}p_1^{e_1}$ with $e_2\geq 4$, then, at least two of three primes 19,163,87211 divide 2^n+1 exactly once and therefore 2^n+1 cannot be (4m+2)-perfect for such n. If $n=27p_1^{e_1}$, then we must have $p_1=19$ or 87211. We cannot have $p_1=19$ since 571 and 87211 divide 2^n+1 exactly once for $n=27\times 19^{e_1}$. Assume that $p_1=87211$. We observe that, for $d=3^{f_2}87211^{f_1}$ with $f_1>0$, we have

(2.13)
$$\prod_{o_p(a)=2d} \frac{p}{p-1} < \exp \frac{1 + \log(d \log 2/\log(2d))}{2d} < \exp \frac{\log d}{2d}$$

and, proceeding as in (2.7),

(2.14)
$$\sum_{\substack{d=3^{f_2}87211^{f_1},\\f_1>0,f_2\geq 0}} \frac{\log d}{2d} < \frac{87211}{116280} \left(\frac{\log 3}{174422} + \frac{\log 87211}{87210} \right) < \frac{1}{9000}.$$

Thus, $\sigma(2^n+1)/(2^n+1) < e^{1/9000}\sigma(2^{27}+1)/(2^{27}+1) < 2$ and therefore 2^n+1 cannot be (4m+2)-perfect.

If $n = 9p_1^{e_1}$, then we must have $p_1 = 19$ and therefore two primes 571 and 174763 divide $2^n + 1$ exactly once, which is a contradiction.

Finally, assume that $n = 3p_1^{e_1}$. If $p_1 \ge 11$, then, like (2.14),

(2.15)
$$\sum_{\substack{d=3^{f_2}p_1^{f_1}, \\ f_1>0, f_2\geq 0}} \frac{\log d}{2d} < \frac{3p_1}{2(p_1-1)} \left(\frac{\log 3}{2p_1} + \frac{\log p_1}{p_1-1}\right) < 0.24$$

and $\sigma(2^n + 1)/(2^n + 1) < (13/9)e^{0.24} < 2$, which is a contradiction.

The only remaining case is $n = 3p_1^{e_1}$ with $p_1 = 5$ or 7. We observe that $2^{15} + 1 = 3^2 \times 11 \times 331$ and $2^{21} + 1 = 3^2 \times 43 \times 5419$. Thus $2^n + 1$ must be divisible by at least two distinct primes exactly once, which is a contradiction again. Now we conclude that $2^n + 1$ can never be (4m + 2)-perfect.

3. Proof of Theorem 1.2

Sinha's result clearly implies that 28 is the only even perfect number of the form $n^n + 1$. Thus, we may assume that $n^n + 1$ is an odd (4m + 2)-perfect number. Clearly n must be even and we can write $n = 2^u s$ with u > 0 and s odd.

As before, we must have $n^n + 1 = px^2$ for some prime p and integer x.

Assume that s > 1. Then we must have

(3.1)
$$n^{n} + 1 = (n^{2^{u}} + 1) \times \frac{n^{2^{u}s} + 1}{n^{2^{u}} + 1} = N_{1}N_{2},$$

say.

If N_1 and N_2 have a common prime factor p, then p divides d_2 and therefore p divides $2^u s = n$. This is impossible since $\gcd(n^n + 1, n) = 1$. Thus, we see that $\gcd(N_1, N_2) = 1$ and therefore $N_1 = X^2, N_2 = pY^2$ or $N_1 = pX^2, N_2 = Y^2$.

We can easily see that $n^{2^u} + 1$ cannot be square since u > 0 and therefore

$$\frac{n^{2^u s} + 1}{n^{2^u} + 1} = Z^2.$$

However, this is also impossible from Ljunggren's result.

Now we must have s = 1 and $n^n + 1 = 2^{u2^u} + 1$, which we have just proved not to be (4m + 2)-perfect in Theorem 1.1. This proves Theorem 1.2.

References

- [1] Klurman, O., Radical of perfect numbers and perfect numbers among polynomial values, *Int. J. Number Theory*, **12** (2016), 585–591.
- [2] Krizek, M., F. Luca and L. Somer, 17 lectures on Fermat numbers: From number theory to geometry, Springer-Verlag, New York, 2000.
- [3] **Ljunggren, W.,** Noen setninger om ubestemte likninger av forman $(x^n 1)/(x-1) = y^q$, Norsk. Mat. Tidsskr., **25** (1943), 17–20.
- [4] Luca, F., The anti-social Fermat number, *Amer. Math. Monthly*, **107** (2000), 171–173.
- [5] Sinha, T.N., Note on perfect numbers, Math. Student, 42 (1974), 336.

T. Yamada

Center for Japanese language and culture Osaka University 562-8558, 8-1-1, Aomatanihigashi, Minoo Osaka Japan tyamada1093@gmail.com