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Abstract. We shall show that there is no odd perfect number of the form
2" +1orn™ +1.

1. Introduction

A positive integer N is called perfect if o(N) = 2N, where o(N) denotes the
sum of divisors of N. As is well known, an even integer N is perfect if and only
if N =2F"1(2k — 1) with 2¥ — 1 prime. In contrast, one of the oldest unsolved
problems is whether there exists an odd perfect number or not. Moreover, it
is also unknown whether there exists an odd m-perfect number for an integer
m > 2, i.e., an integer N with o(N) = mN or not.

Sinha [5] showed that 28 is the only even perfect number of the form z™ +y"
with ged(z,y) = 1 and n > 2 and also the only even perfect number of the
form a™ + 1 with n > 2. On the other hand, it is not even proved or disproved
that there exists no odd perfect number of the form 22 + 1 with = an integer.
Klurman [1] proved that if P(z) is a polynomial of degree > 3 without repeated
factors, then there exist only finitely many odd perfect numbers of the form
P(z) with « an integer. Luca [4] (cited in Theorem 9.8 of [2]) showed that no
Fermat number can be perfect.

In this article, we would like to prove that there exists no odd perfect
number of the form 2™ + 1 or n™ + 1.

Indeed, we prove a more general result.
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Theorem 1.1. Let m and U be nonnegative integers. We put

so = [2V1loga/(U + 1)log 2| and tg = 2so+1 if U = 0 and a+1 is square and
to = 2so otherwise. Let ¢ = 1.093--- = (log2)/2 + (log3)/3 — (log*3)/2 and
C =C(U) be the constant defined by

1 — loglog(2Y*+1m)
= Z 2U+1,y, '

2U+1(2m+1)<16,

If a™ + 1 is an odd (4m + 2)-perfect number and n = 2V, then

(1.1) loga > ((4m + 22)560)2 +1.

If a™ + 1 is an odd (4m + 2)-perfect number and n = 2Yv with v > 1 odd, then

(1.2) log(4m +2) - C <
exp (71J2rzljoflt°)
QU+1

log? ¢

Moreover, no integer of the form 2™ + 1 can be (4m + 2)-perfect.

For example, if a'?® 4+ 1 is odd (4m + 2)-perfect, then a > 10 and, if
a®%% + 1 is odd (4m + 2)-perfect, then a > 18. Furthermore, if a' + 1 is odd
(4m + 2)-perfect, then a > expexp 19.4 and, if a®? + 1 is odd (4m + 2)-perfect,
then a > expexp40.8. We note that C'(0) = 0.9807---, C(1) = 0.1758-- -,
C(2) =0.03348--- and C(U) =0 for U > 3.

We shall prove that an odd perfect number of the form n™ + 1 must be of
the form 2™ + 1 and deduce the following result from the above result.

Theorem 1.2. 28 is the only (4m + 2)-perfect number of the form n™+ 1 with
m,n > 0 an integer.

Thus, we conclude that 28 is the only perfect number of the form n™ + 1.
2. Proof of Theorem 1.1

Assume that ™ + 1 is an odd (4m + 2)-perfect number. By Euler’s result,
we must have a™ + 1 = pa? for a prime p and an integer z.

Write n = 2Up{'p5? ... p¢ with p; > p2 > -+ > p,. odd primes and let
P, = p§ fori = 1,2,...,r and s = w(a® +1). We put oy(x) to be the
multiplicative order of x modulo p.
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We can factor a™ + 1 = MoMj - - - M,, where My = a2 + 1 and

2V P Py P
a i+ 1
\/i’b =

a2V PiPPioy 4 ]
fori=1,2,...,r. Moreover, let
Li= MM, ... M; = a® PrP2Pi 4

and M; = EiYiQ,Li = DZ-Xi2 with D; and E; squarefree. Clearly, we have
a” + 1= L, = pz? and therefore D, = p

We begin by showing that p; = 1 (mod 2V*1) for every i. If ged((a™ +
+1)/(a™ P +1),a™ " 4 1) = 1, then

v "4+1
2.1 n/Pigq = x24T0y
(2.1) a™ "t + Py =P
or
. "+1
2.2 MPp = px? L TSy
( ) a + p ’an/Pi_f_]_

for some integers X and Y. If U = 0, then we clearly have p; = 1 (mod 2Y+1).
IfU > 0, then n/p;* is even and (2.1) is clearly impossible. The impossibility of
(2.2) follows from Ljunggren’s result [3] that (af +1)/(a+1) witha > 2, f > 3
cannot be square.

Hence, we must have ged((a™ + 1)/(a™/ P +1),a™/" +1) > 1. Observing
that

Pi—1
a" 41 . (/P — /P,
TP 1 Z =P, (moda +1),
p; must divide a”/7 + 1. Thus, proceeding as in the proof of Theorem 4.12

of [2], we see that 2U*1 divides opi( a) and oy, (a) divides 2n/P;. In particular,
pi =1 (mod 2Y*1) for every i.
Nextly, we show that for each ¢ = 1,2,...,r, we have either
(1) ged(Li—1,M;) =1 and w(D;_1) < w(D;) or
(ii) p; is the only prime dividing ged(L;—1, M;) and p; divides a?’ +1.
If ged(Li—1,M;) = 1, then we must have D; = D; 1F;_1 and X; =
= X,;_1Y;_;. It follows from Ljunggren’s result mentioned above that F; 1 # 1.
Since D; is squarefree, we have w(D;_1) < w(D;).
Assume that ged(L;—1, M;) > 1. Since

M, = Z 1)722" P2 Picii = P (mod L;_1),

we see that p; is the only prime dividing both L;_; and M;.



304 T. Yamada

Now p; must divide L;_;1 and therefore, proceeding as above, we see that
2UF1 divides oy, (a) and op,(a) divides 2V P Py--- P;_1. Hence, op,(a) =
= 2U+1d and therefore p; = 1 (mod 2U*+d) for some d dividing P, Py --- P;_1.
But, since p; > --+ > p;_1 > p;, we must have o,,(a) = 2V*! and therefore p;
must divide a2” + 1.

It is clear that (ii) occurs at most s times. Moreover, we observe that in the
case (ii), p; is the only possible prime which divides D;_; but not D;. Hence,
we must have w(D;_1) < w(D;) + 1 for each i. Now we see that (i) also occurs
at most s times.

We can easily see that w(Dg) = 0 if and only if U = 0 and a + 1 is a square.
Thus we conclude that r < 2s 4+ 1 if Dy = a + 1 with U = 0 is square and
r < 2s otherwise.

If a prime p divides a2”¢ + 1 but a2 ¢ + 1 for any e < d, then the multi-
plicative order of 2 (mod p) is equal to 2Y+1d and therefore p = 2V kd + 1

for some integer k. Moreover, the number of such primes is at most ko(d) =
= [2Ydloga/log(2V'd)| and therefore s < sq.

Hence, for each d,

D ko (d)
11 p_1 P > p—1 _ZQU“kd_
(2.3) op(a)=2V+1d op(a)=2U+1d
1 U U+1
< exp + log(2¥dloga/log(2”*1d))
2U+1( ’
so that
oa"+1) P log(2Yd log a)
(2.4) ot H pi— | <exp | C+ Z — ot
op(a)=2""d, d|PyPs...P,
d|P1P2.‘.P,.
If » = 0, then we immediately see that
log(2Ydloga)  Ulog?2 + logloga
(2:5) Z U+14 = oU+1

d|PyPs...P,

If r > 0, then, observing that

(26) ;E ]_z_:mzj:l? ;qﬂq—l (¢—1)%
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we have

log(2Yd log a)
Z 2U+14
d|PPy...P,
< Z log(2¥loga) + filogpy + falogps + - + frlogp,
QU+1 fi fo o fr -
P1 P2 Pbr

f17f2, S fr20
log(2Y log a ¢ lo
_H g( g )+Z g Pk _
L Pi — 1 2U+1 Pt 2U+1(pk- _ 1)
log(2Y log a) " log pk
<2U+1Hp-1>< pree g

Since each p; = 1 (mod 2YV*!), we have

(2.7)

(2.8)

< exp

i oUAE 1] 1+logr
I1 QU] U1

and observing that 22:1 logk/k < (logt)?/2 + ¢ for t > 1,

"1 “logk+ (U +1)log 2
Zngk<ZOg + (U + 1) log -

_ U+1

(2.9) pl L 277k
log®r
<gv+t (U+1)(1+logr)log2+ 5 tel
Thus, we obtain
log(2Yd log a)
d|PP,...P,
exp (?&igf

<

) log?® r
U
9U+1 (10g<2 loga) + (U + 1)(1 +logr)log2 + 5 + C) )

We see that r < tg, where we recall that s < s = LQU loga/(U + 1) log 2J.
Hence, we conclude that

_ U(an + 1) Ulog2 +logloga
(2.11) log(4dm + 2) = log 1 <O+ —
ifr =0 and
1+log tg
eXP( oU+1 ) Io 2t
< ——pr— | loa(2"loga) + (U +1)(1 + log o) log 2 + gQ : +c)

otherwise. Thus (1.1) and (1.2) follows.
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Now we consider the case a = 2. If U > 4, then the right-hand side of (1.1)
and (1.2) is < 0.53 < log 2 and therefore a™ + 1 cannot be (4m + 2)-perfect.

If U < 3, then 22" 4 1is prime and therefore s = 1. Clearly, for n = 2V
with U < 3,2" +1 = 22” 1 1 is not (4m + 2)-perfect. Hence, we must have
r <2 and n=2Yp{ or 2Up{ ps2.

If n = 2Up{', then, iterating the argument given before, we must have
p1 =227 + 1. Thus, n = 3°1, 2 x 51, 22 x 17°1 or 23 x 257°1,

However, for n = 3°* with e; > 3, we see that both primes 19 and 87211
divide 2" + 1 exactly once since 19 and 87211 divide 227 + 1 exactly once and
the only prime dividing both (2" +1)/(227 4+ 1) and 227 + 1 is 3. This implies
that 2" + 1 cannot be of the form px? and therefore 2" + 1 cannot be (4m + 2)-
perfect if n = 3°* with e; > 3. Similarly, 41 and 101 divide 2™ + 1 exactly
once if n = 2 x 5° and e; > 2. Clearly, none of 23 + 1,29 + 1,219 + 1 is
(4m + 2)-perfect. Thus 2™ + 1 cannot be (4m + 2)-perfect if n = 3°* or 2 x 5°1.
Similarly, 2" 4+ 1 cannot be (4m + 2)-perfect if n = 22 x 17 or 23 x 257¢1.

If n = 2Up{'p5?, then, iterating the argument given before, p; > py =
=22" 41
If U =1 and n = 10p]*, then we must have

2" +1

2041 =52%x41, ——
* T

= 41py®

since (2" 4+ 1)/(2'° + 1) cannot be square by Ljunggren’s result. Thus, we
must have p; = 41. However, this implies that 2" 4+ 1 must be divisible by 821
and 10169 exactly once, which contradicts to the fact that 2" + 1 = pz?. If
U=1andn =2 x5%“p{" with es > 2, then, since three primes 41,101, 8101
divide 2°° + 1 exactly once, at least two of these primes divide 2" + 1. Thus
2" + 1 cannot be (4m + 2)-perfect if n = 2p{*p5?. Similarly, 2" + 1 cannot be
(4m + 2)-perfect for n = 2Vp{'ps? with U = 2, 3.

Now we assume that n = 3°2p*.

If n = 3°2p{* with e > 4, then, at least two of three primes 19, 163, 87211
divide 2™ + 1 exactly once and therefore 2" + 1 cannot be (4m + 2)-perfect for
such n. If n = 27p{', then we must have p; = 19 or 87211. We cannot have
p1 = 19 since 571 and 87211 divide 2™ + 1 exactly once for n = 27 x 19°.
Assume that p; = 87211. We observe that, for d = 32872117 with f; > 0, we
have

1 + log(dlog 2/ log(2d log d
I P o + log(dlog 2/ log( ))<exp og

(2.13) p—1 2d 2d
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and, proceeding as in (2.7),

Z logd 87211 ( log 3 +log87211) 1

9.14 .
(2.14) 2d " 116280 \ 174422 T 87210 ) < 9000

d=3128721171,
f1>0,f2>0

Thus, o(2" +1)/(2" +1) < €'/9904(227 1 1) /(227 4+ 1) < 2 and therefore 2" + 1
cannot be (4m + 2)-perfect.

If n = 9p]', then we must have p; = 19 and therefore two primes 571 and
174763 divide 2™ + 1 exactly once, which is a contradiction.

Finally, assume that n = 3p7*. If p; > 11, then, like (2.14),

logd 3p1 <log3 log p1 )
2.15 E < + < 0.24
(2.15) 2d  2pi—-1)\2p1 p1—1
d:3‘fzp{1’
f1>0,f2>0

and o(2" +1)/(2" + 1) < (13/9)e%2* < 2, which is a contradiction.

The only remaining case is n = 3p{* with py = 5 or 7. We observe that
215 +1 =3% x 11 x 331 and 22! + 1 = 3% x 43 x 5419. Thus 2" + 1 must be
divisible by at least two distinct primes exactly once, which is a contradiction
again. Now we conclude that 2" + 1 can never be (4m + 2)-perfect. |

3. Proof of Theorem 1.2

Sinha’s result clearly implies that 28 is the only even perfect number of the
form n™ + 1. Thus, we may assume that n"™ 4+ 1 is an odd (4m + 2)-perfect
number. Clearly n must be even and we can write n = 2%s with v > 0 and s
odd.

As before, we must have n™ + 1 = pz? for some prime p and integer z.
Assume that s > 1. Then we must have

u
qu n2's4+1

(3.1) = (07 1) X e = N1,

say.

If Ny and N> have a common prime factor p, then p divides ds and therefore
p divides 2*s = n. This is impossible since ged(n™+1,n) = 1. Thus, we see that
gcd(Ny, Na) = 1 and therefore Ny = X2, Ny = pY? or N; = pX?2 Ny = Y2

2

We can easily see that n?" + 1 cannot be square since u > 0 and therefore

n2”s 41
2 - =72
(3:2) L

However, this is also impossible from Ljunggren’s result.
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Now we must have s = 1 and n” + 1 = 2%2" 4 1, which we have just proved
not to be (4m + 2)-perfect in Theorem 1.1. This proves Theorem 1.2. [ |
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