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Abstract. We define some processes for barycentric interpolation based on
equidistant node-system which is convergent for any continuous function.
As far as we know this is the first process of this type. We also prove an
upper estimate for the rate of convergence. It turns out that the results
are very similar to the ones known for the process obtained Bernstein from
the classical Lagrange interpolation.

1. Classical Lagrange interpolation

1.1. Definitions

Let C = C(I) denote the space of continuous functions on the interval
I := [−1, 1], and let Pn denote the set of algebraic polynomials of degree at
most n, moreover � · � stands for the usual maximum norm on C. Let X be an
interpolatory matrix (array), i.e.

X =
{
xkn = cosϑkn : k = 1, 2, . . . , n; n = 1, 2, . . .

}
,
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with

(1.1) − 1 = xn+1,n ≤ xnn < xn−1,n < · · · < x2n < x1n ≤ x0n = 1

and 0 ≤ ϑkn ≤ π. For a function f ∈ C consider the corresponding Lagrange
interpolation polynomial

(1.2) Ln

(
f,X, x

)
:=

n∑
k=1

f(xkn)�kn(X,x), n ∈ N.

Here, for n ∈ N,

�kn
(
X,x

)
:=

ωn

(
X,x

)

ω�
n

(
X,xkn(x− xkn

) , 1 ≤ k ≤ n,

with

ωn

(
X,x

)
:=

n∏
k=1

(x− xkn),

are polynomials of exact degree n− 1. They are the fundamental polynomials,
obeying the relations �kn

(
X,xjn

)
= δkj , 1 ≤ k, j ≤ n, therefore the polynomial

Ln(f,X, x) of degree at most n− 1 interpolates the function f at n points:

Ln

(
f,X, xkn

)
= f

(
xkn

)
, k = 1, 2, . . . , n.

The main question is: For what choices of the the interpolatory array X can
we expect that (uniformly, pointwice, etc.) Ln(f,X, x) → f (n → +∞)?

It is well known that in studying these questions, the quantities

λn(X,x) :=

n∑
k=1

∣∣�kn(X,x)
∣∣, x ∈ [−1, 1], n ∈ N

(the Lebesgue function) and

Λn(X) := �λn(X,x)�, n ∈ N

(the Lebesgue constant of Lagrange interpolation) play major rules.

1.2. Divergence and convergence of Lagrange interpolation

G. Faber [6] proved in 1914, using his own estimation for any X

Λn(X) ≥ 1

12
log n, n ≥ 1

the following fundamental divergence-type result.
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Theorem A (G. Faber [6]). For any interpolatory matrix X there exists a
function f ∈ C[−1, 1] such that the sequence of the interpolation polynomials
Ln(f,X, x), n ∈ N does not converge uniformly to f on [−1, 1].

During the last about 100 years, there were proved many results concerning
the behaviour the Lebesgue function and Lebesgue constant and applied to
obtain divergence theorems the sequence Ln(f,X) (n ∈ N) (see e.g. the book
of J. Szabados and P. Vértesi [13] and P. Vértesi [19]).∗

At the same time let us remark that to every interpolatory matrix there
correspond a class of functions for which the interpolation process converges
uniformly. However this class is always substantially more restricted than the
class C[−1, 1] (see e.g. [12, Chapter III] or [13, Chapter II]).

1.3. Uniformly convergent interpolation processes

We can see that the Lagrange interpolatory polynomials do not define a
uniformly convergent approximating process for arbitrary continuous function.
However relaxing certain conditions we can define better tools. First we recall
the Fejér polynomials of degree 2n − 1 interpolating the function f on the
Chebyshev nodes which do converge for any f from C.

It is natural to look for a uniformly converging interpolation procedure in
which the degree of the nth polynomial and the number of nodes are close as
possible to the number one. This problem was posed by S. N. Bernstein to
whom is also due one of the possible solutions at the Chebyshev nodes (see [1],
[2], [12, Chapter IV, §4.]). Similar statement were proved for certain Jacobi
nodes in [17] and [15].

2. Barycentric interpolation

2.1. Let us introduce the notation

Ωn

(
X,x

)
:=

1
n∑

s=1

(−1)s

x−xsn

.

∗More than 20 years after Fabers’s result G. Grünwald [7] and J. Marcinkiewicz [10]
obtained a very strong pointwise divergence statement for the ”very good” Chebyshev matrix
C :=

{
cos 2k−1

2n
π; k = 1, 2, . . . , n;n = 1, 2, . . .

}
. They constructed a continuous function for

which the Lagrange interpolation process diverges everywhere on [−1, 1] based on the nodes
C.
In 1981, P. Erdős and P. Vértesi [5] proved that for arbitrary interpolatory matrix X one
can define a continuous f for which the Lagrange interpolatory polynomials diverge almost
everywhere on [−1, 1].
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Then we have

(2.1)

Ωn

(
X,x

)
:=

1
n∑

s=1

(−1)s

x−xsn

=
ωn

(
X,x

)

ωn

(
X,x

) ·
n∑

s=1

(−1)s

x−xsn

(
x ∈ [−1, 1], n ∈ N

)
.

Here the denominator

qn(x) = −ωn

(
X,x

)
x− x1n

+
ωn

(
X,x

)
x− x2n

+ · · ·+ (−1)n
ωn

(
X,x

)
x− xnn

is a polynomial of degree≤ n−1. J.-P. Berrut observed that (see [3, Lemma 2.1])
it has no real root, so it has a constant sign on the whole real line. Since
qn(x1n) = −ω�

n

(
X,x1n

)
< 0, thus qn(x) < 0 for all x ∈ R and n ∈ N. Con-

sequently Ωn is a rational function and it has no pole on the real line, so it is
defined on R.

From the definition of Ωn(x) := Ωn(X,x) it follows that

(2.2) Ωn

(
X,x

)
= 0 ⇐⇒ x = xkn, 1 ≤ k ≤ n.

Since

Ω�
n(xkn) = lim

�→0

Ωn(xkn + �)− Ωn(xkn)

�
= lim

�→0

Ωn(xkn + �)

�
=

= lim
�→0

1

�
· 1

(−1)k

� +
∑
s�=k

(−1)s

xkn+�−xsn

= (−1)k,

thus we obtain that

(2.3) Ω�
n(X,xkn) = (−1)k, 1 ≤ k ≤ n.

After certain considerations (see [20, p. 404]) we obtain the figure of Ωn(x)
if x ∈ (

xk+1,n, xkn

)
and k = odd, say. Namely, Ωn is concave on this interval

and it has unique local maximum at a certain point ukn ∈ (
xk+1,n, xkn

)
(see

Figure 1). This means that Ωn

(
X,x

)
is ”similar” to ωn

(
X,x

)
(cf. 1.1.).

Figure 1
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2.2. Barycentric interpolation. Now we define the classical barycentric
interpolation process for f ∈ C as follows

Bn

(
f,X, x

)
:=

n∑
k=1

f(xkn) bkn
(
X,x

)
, x ∈ R, n ∈ N,

where for n ∈ N

(2.4) bkn
(
X,x

)
=

Ωn

(
X,x

)

Ω�
n

(
X,xkn

)
(x− xkn)

=

(−1)k

x−xkn

n∑
s=1

(−1)s

x−xsn

, 1 ≤ k ≤ n

are the fundamental functions.

The considerations of 2.1. show that Bn

(
f,X, x

)
is a rational function

which has no pole on the real line.

Since (see (2.2))

(2.5) bkn
(
X,xjn

)
= δkj , 1 ≤ k, j ≤ n, n ∈ N,

thus we obtain that the process
{
Bn

}
has the interpolatory property, i.e.

Bn

(
f,X, xkn

)
= f

(
xkn

)
, 1 ≤ k ≤ n, n ∈ N.

Summarizing, the advantage of the introduction of Ωn(X,x) is the similar-
ity between the classical Lagrange- and the barycentric interpolation (namely,
Ωn(X,x) and bkn(X,x) are analogous to ωn(X,x) and �kn(X,x) (cf. 1.1.)).

2.3. Many papers deal with the barycentric interpolation (cf. [4] and its
references). These results are analogous to the convergence-divergence of the
classical Lagrange interpolation. For example a Faber-type statement is true
for arbitrary nodes.

Theorem B (G. Halász [8]; see in P. Vértesi [20]). For arbitrary system of
nodes X

Λ̃n(X) >
log n

8
(n ≥ 3),

where

Λ̃n(X) :=

∥∥∥∥∥
n∑

k=1

∣∣bkn(X, ·)∣∣
∥∥∥∥∥.

Several convergence-divergence properties of barycentric operators were con-
sidered in [11].
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3. A Bernstein-type process

Hereinafter, we shall consider the equidistant nodes

(3.1) en =
{
ekn = 1− 2k − 1

n

∣∣∣ k = 1, 2, . . . , n
}
, n = 2, 3, . . .

and for the simplicity we shall suppose that n is even, n = 2m.

For a function f ∈ C[−1, 1] we define the barycentric Bernstein-type opera-
tors by

(3.2)
Bn(f, en, x) =

m∑
k=1

f(e2k−1,n)
{
b2k−1,n(en, x) + b2k,n(en, x)

}
,

x ∈ [−1, 1], n = 2, 4, . . . .

From (2.5) it follows that Bn(f, en) interpolates the function f at the points
e2k−1,n (k = 1, 2, . . . ,m):

Bn(f, en, e2k−1,n) = f(e2k−1,n),

k = 1, 2, . . . , n; n = 2, 4, . . . .

Theorem 1. For every function f ∈ C[−1, 1] we have

(3.3) lim
n→+∞

∥∥Bn(f, en, ·)− f(·)∥∥ = 0.

As far as we know the {Bn} process is the first barycentric interpolation
operator sequence which is uniformly convergent for arbitrary continuous func-
tion f .

Theorem 2. For every function f ∈ C[−1, 1] we have

(3.4)

∣∣f(x)− Bn(f, en, x)
∣∣ ≤ 8

n∑
i=1

ω

(
f,

i

n

)
· 1

i2

(
x ∈ [−1, 1], n = 2, 4, . . .

)
,

where ω(f, ·) is the modulus of continuity of f .

It is easy to get Theorem 1 using Theorem 2, too. Indeed, let εn := logn
n

(n = 2, 4, . . .). Then

n∑
i=1

ω

(
f,

i

n

)
· 1

i2
= O(1)ω(f, εn),

whence we obtain (3.3).
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4. Proofs

As before we shall suppose that n = 2m is an even natural number and
sometimes we use short notations, for example Ωn(x) = Ωn(en, x), bk(x) =
bkn(en, x), ek = ekn.

4.1. Lemmas

Lemma 1. Let n be an even natural number. Then the function Ωn(en, x),
x ∈ [−1, 1] (see (2.1) and (3.1)) is even and we have

(4.1)
∣∣Ωn(en, x)

∣∣ ≤ 2

n
, x ∈ [−1, 1].

Proof. The parity of Ωn(en) follows immediately from its definition (see (2.1))
using the symmetry property

es = −en−s+1, s = 1, 2, . . . , n.

For the proof of (4.1) (cf. [3]) we use the function

Sn(x) :=

n∑
s=1

(−1)s

x− es
, x ∈ [−1, 1] \ en.

Fix an index j = 1, 2, . . . , n− 1 and suppose that x ∈ (
ej+1, ej

)
. Then we have

Sn(x) = (−1)j+1

(
1

ej − x
− 1

ej−1 − x
+ · · ·+ (−1)j+1 1

e1 − x

)
+

+(−1)j+1

(
1

x− ej+1
− 1

x− ej+2
+ · · ·+ (−1)n−j−1 1

x− en

)
.

Observe that the sums are Leibniz type (cf. [3, p. 5], say) thus

∣∣Sn(x)
∣∣ =

∣∣∣∣∣
n∑

s=1

(−1)s

x− es

∣∣∣∣∣ ≤
1

ej − x
+

1

x− ej+1
=

2

n
· 1

(ej − x)(x− ej+1)
.

Using elementary calculations show that

∣∣Sn(x)
∣∣ ≥

(
1

ej − x
− 1

ej−1 − x

)
+

(
1

x− ej+1
− 1

x− ej+2

)
=

=

(
1

ej − x
+

1

x− ej+1

)
−
(

1

ej−1 − x
+

1

x− ej+2

)
≥

≥ 1

2n
· 1

(ej − x)(x− ej+1)
.
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Consequently, we have

(4.2)
∣∣Ωn(x)

∣∣ = 1∣∣Sn(x)
∣∣ ≤ 2n · (ej − x)(x− ej+1) ≤ 2

n
,

if x ∈ (
en, e1

)
and n = 2, 4, . . . .

If x ∈ (e1, 1], then

∣∣Sn(x)
∣∣ = 1

x− e1
− 1

x− e2
+ · · · − 1

x− en
≥

≥ 1

x− e1
− 1

x− e2
=

2

n
· 1

(x− e1)(x− e2)
,

so

(4.3)
∣∣Ωn(x)

∣∣ = 1∣∣Sn(x)
∣∣ ≤

n

2
· (x− e1)(x− e2) ≤ 3

2n
.

Since Ωn(x) is even, thus

∣∣Ωn(x)
∣∣ ≤ 3

2n
, x ∈ [−1, en] ∪ [e1, 1].

Combining this with (4.2) we obtain (4.1). �

In the next statement we collect some formulas with respect to the funda-
mental functions bkn(en, ·) (see (2.4)).

Lemma 2. Let n be an even natural number. Then we have

(a)

m∑
k=1

(
b2k−1,n(en, x) + b2k,n(en, x)

)
= 1, x ∈ [−1, 1];

(b)
m∑

k=1

∣∣b2k−1,n(en, x) + b2k,n(en, x)
∣∣ ≤ 7, x ∈ [−1, 1].

(c) Let x ∈ [−1, 1], δ > 0 arbitrary and

�n(x) :=
{
k ∈ {1, 2, . . . ,m} ∣∣ |x− e2k−1,n| ≥ δ and |x− e2k,n| ≥ δ

}
.

Then

(4.4)
∑

k∈�n(x)

∣∣b2k−1,n(en, x) + b2k,n(en, x)
∣∣ ≤ 4

n δ2
.
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Proof. (a) The identity follows immediately from the definition of bkn(en, x)
(see (2.4)).

(b) Fix the index j = 1, 2, . . . , n− 1 and suppose that x ∈ (ej+1, ej). Then
using (2.4), (2.3), (3.1) and (4.2) we obtain that

m∑
k=1

∣∣b2k−1(x) + b2k(x)
∣∣ = 2

n

m∑
k=1

∣∣∣∣
Ωn(x)

(x− e2k−1)(x− e2k)

∣∣∣∣ =

=
2

n
·

m∑
k=1

∣∣∣∣
Ωn(x)

(ej − x)(x− ej+1)

∣∣∣∣ ·
∣∣∣∣
(ej − x)(x− ej+1)

(x− e2k−1)(x− e2k)

∣∣∣∣ ≤

≤ 4 ·
m∑

k=1

∣∣∣∣
(ej − x)(x− ej+1)

(x− e2k−1)(x− e2k)

∣∣∣∣ =: A.

Suppose that j = 2l − 1 is an odd index, say. Then

A = 4

(
l−1∑
k=1

. . .+ 1 +

m∑
k=l+1

. . .

)
.

Since both sums can be handled analogously, we consider only the first one:

4
l−1∑
k=1

∣∣∣∣
(ej − x)(x− ej+1)

(x− e2k−1)(x− e2k)

∣∣∣∣ ≤ 4

l−1∑
k=1

1
n2

(e2l−1 − e2k)2
=

= 4

l−1∑
k=1

1

4
(
2(l − k)− 1

)2 ≤
+∞∑
s=1

1

(2s− 1)2
=

π2

8
,

i.e. A ≤ 4 + 2 · π2

8 < 7.

Therefore, if x ∈ (
ej+1, ej

)
and j is odd, then we have

m∑
k=1

∣∣b2k−1(x) + b2k(x)
∣∣ ≤ 7.

The same upper bound holds for even j, too.

Consequently, we proved the statement (b) for x ∈ (en, e1).

Now suppose that x ∈ (e1, 1]. Then using (4.3) we obtain that

m∑
k=1

∣∣b2k−1(x) + b2k(x)
∣∣ = 2

n

m∑
k=1

∣∣∣∣
Ωn(x)

(x− e2k−1)(x− e2k)

∣∣∣∣ ≤

≤ 1 +
m∑

k=2

∣∣∣∣
(x− e1)(x− e2)

(x− e2k−1)(x− e2k)

∣∣∣∣ ≤ 1 +
m∑

k=2

3
n2

(e1n − e2k−1,n)2
≤

≤ 1 +
3

42

+∞∑
k=2

1

(k − 1)2
< 2.
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Since the same upper bound is true for x ∈ [−1, en), too, thus the proof of (b)
is complete.

(c) For k ∈ �n(x), it follows that
∣∣(x− e2k−1)(x− e2k)

∣∣ ≥ δ2, i.e.

∣∣(x− e2k−1)(x− e2k)
∣∣

δ2
≥ 1,

whence using (4.1) we obtain that

∑
k∈�n(x)

∣∣b2k−1(x) + b2k(x)
∣∣ = 2

n

∑
k∈�n(x)

∣∣∣∣
Ωn(x)

(x− e2k−1)(x− e2k)

∣∣∣∣ ≤

≤ 2

n

∑
k∈�n(x)

∣∣(x− e2k−1)(x− e2k)
∣∣

δ2
·
∣∣∣∣

Ωn(x)

(x− e2k−1)(x− e2k)

∣∣∣∣ ≤
4

n δ2
,

which proves (4.4). �

4.2. Proof of Theorem 1. If ε > 0 is arbitrary, a number δ > 0 can be
found such that for |x�� − x�| < δ implies

∣∣f(x��)− f
(
x�)∣∣ < ε.

Now let x ∈ [−1, 1] be arbitrary. Using Lemma 2 (a) we have

f(x) =

m∑
k=1

f(x)
(
b2k−1(x) + b2k(x)

)
,

so that

Bn

(
f, en, x

)− f(x) =

m∑
k=1

(
f(e2k−1)− f(x)

)(
b2k−1(x) + b2k(x)

)
.

We split this sum into two parts

∣∣Bn

(
f, en, x

)− f(x)
∣∣ =

∣∣∣
∑

k∈Γn(x)

. . .+
∑

k∈�n(x)

. . .
∣∣∣ ,

where Γn(x) :=
{
1, 2, . . . ,m

} \ �n(x). The first sum is ≤ 7ε by Lemma 2 (b),
the second is, by (4.4), ≤ 8M/(nδ2), where |f(x)| ≤ M (x ∈ [−1, 1]). Therefore

∣∣Bn

(
f, en, x

)− f(x)
∣∣ ≤ 7ε+ ε = 8ε

(
x ∈ [−1, 1]

)
,

if n is sufficiently large. This completes the proof. �

4.3. Proof of Theorem 2. Using (3.2) and Lemma 2 (a) we obtain

∣∣f(x)− Bn(f, en, x)
∣∣ ≤

m∑
k=1

∣∣f(x)− f(e2k−1)
∣∣ · ∣∣b2k−1(x) + b2k(x)

∣∣.
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We consider two cases.

Case 1. Let x ∈ (ej+1, ej), where j = 1, 2, . . . , n− 1 and first we suppose that
j = 2l − 1 is an odd index, i.e. x ∈ (e2l, e2l−1) (l = 1, 2, . . . ,m). We split the
above sum into three parts

(4.5)
∑
k<l

+
∑
k=l

+
∑
k>l

.

Consider first the second term. Here, using (2.4), (2.3), (3.1) and (4.2) we
obtain that

∑
k=l

=
∣∣f(x)− f(e2l−1)

∣∣ · ∣∣b2l−1(x) + b2l(x)
∣∣≤

≤ 2ω
(
f, 1

n

) · 2
n
· 2n

∣∣(x− e2l−1)(x− e2l)
∣∣∣∣(x− e2l−1)(x− e2l)

∣∣ =

= 8ω
(
f, 1

n

)
.

The first term in (4.5) is empty if l = 1, so we can suppose that l ≥ 2. Since

∣∣x− e2k−1

∣∣ ≤ e2k−1 − e2l ≤ 6
l − k

n
,

we have

∣∣f(x)− f(e2k−1)
∣∣ ≤ ω

(
f, |x− e2k−1|

) ≤ 6ω

(
f,

l − k

n

)
.

Using (2.4), (2.3), (3.1) and (4.2) we obtain

∣∣b2k−1(x) + b2k(x)
∣∣ = 2

n

∣∣∣∣
Ωn(x)

(x− e2k−1)(x− e2k)

∣∣∣∣ ≤

≤ 2

n
· 2n

∣∣(x− ej+1)(x− ej)
∣∣∣∣(x− e2k−1)(x− e2k)
∣∣ ≤ 4 ·

1
n2(

e2k − e2l−1

)2 ≤

≤ 1

(l − k)2
.

Consequently we have
∑
k<l

=
∑
k<l

∣∣f(x)− f(e2k−1)
∣∣ · ∣∣b2k−1(x) + b2k(x)

∣∣≤

≤ 6
∑
k<1

ω
(
f, l−k

n

) · 1

(l − k)2
≤

≤ 6
n∑

i=1

ω
(
f, i

n

) · 1

i2
.
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Similarly we get
∑
k>l

≤ 4

n∑
i=1

ω
(
f, i

n

) · 1

i2
.

Collecting the above estimates we obtain

∣∣f(x)− Bn(f, en, x)
∣∣ ≤ 8

n∑
i=1

ω
(
f, i

n

) · 1

i2
,

if x ∈ (ej+1, ej) (j = 1, 2, . . . , n− 1), moreover j is odd.

The case j = even is analogous.

Thus we proved that

(4.6)
∣∣f(x)− Bn(f, en, x)

∣∣ ≤ 8

n∑
i=1

ω

(
f,

i

n

)
· 1

i2
,

if x ∈ (en, e1) and n = 2, 4, . . . .

Case 2. Let x ∈ [−1, en] ∪ [e1, 1]. First we suppose that x ∈ [e1, 1]. Then we
get

∣∣f(x)− Bn(f, en, x)
∣∣ ≤

m∑
k=1

∣∣f(x)− f(e2k−1)
∣∣ · ∣∣b2k−1(x) + b2k(x)

∣∣≤

≤
m∑

k=1

4ω
(
f, k

n

) · 2
n
·
∣∣∣∣

Ωn(x)

(x− e2k−1)(x− e2k)

∣∣∣∣ ≤

≤ 4
m∑

k=1

ω
(
f, k

n

) · 2
n
· n
2
·

∣∣(x− e1)(x− e2)
∣∣∣∣(x− e2k−1)(x− e2k)
∣∣ ≤

≤ 4
m∑

k=1

ω
(
f, k

n

) ·
3
n2(
4 k
n

)2 ≤ 3

4

n∑
i=1

ω
(
f, i

n

) · 1

i2
.

If x ∈ [−1, en] we obtain

∣∣f(x)− Bn(f, en, x)
∣∣ ≤ 3

n∑
i=1

ω
(
f, i

n

) · 1

i2
.

Thus for x ∈ [−1, en] ∪ [e1, 1] we proved that

(4.7)
∣∣f(x)− Bn(f, en, x)

∣∣ ≤ 3

n∑
i=1

ω

(
f,

i

n

)
· 1

i2
,

From (4.6) and (4.7) we get (3.4). This completes the proof of Theorem 2. �
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5. Remarks

5.1. The papers L. Szili – P. Vértesi [18] and G. Mastroianni – J. Szabados [11]
closely connected the theorems of the present paper.

5.2. Our results can be proved for the generalization of the operator (3.2).
The proof gives only technical difficulties. We omit the details.

5.3. One can prove our theorems for the so called ”well spaced nodes” (for
the definition see J. Sidon [14, (7)–(9)]). Again, we have to consider some
technicalities.

5.4. We can define the barycentric Hermite–Fejér type interpolation using
(bkn)

s, where s ≥ 2, integer. Estimations analogous to the formulas (3.3) and
(3.4) can obtained. We omit the details.

5.5. The problem of the saturation is open. We conjecture that the order is
1/n; but to get the saturation class seems to be quite difficult. We intend to
deal with this problem in the near future.
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