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Abstract. We investigate the Hardy—Littlewood maximal function. A
local condition for non-integrability is formulated. Moreover, a generaliza-
tion of the Hardy-Littlewood’s and Stein’s integrability theorem is given.
As special case, we get the classical statements.

1. Introduction

If [a,b] is a compact interval on the real line and f € L'[a,b] (i.e. the
real valuable function f is defined on [a,b] and it is integrable in Lebesgue’s
sense), then M f (the Hardy-Littlewood maximal function of f) is defined as
follows:

Mf(x) = sgpﬁ / Al (@elad),
I

where the supremum is taken over all x € I C [a,b] intervals (and |A| stands
for the Lebesgue measure of a set A C R). It is well-known [2] that for the
measurable function M f : [a,b] — [0,400] (in other words for the maximal
operator M) the next properties hold: there is an absolute constant C' > 0
such that

|{Mf>y}\§§-||f||1 (f € L'a,b), y > 0)
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(the operator M is of weak type (1,1)). Moreover, the ”strong” property

I{Mf>y}\§% / fl (e Ltab],y>0)
{IfI>y}

is also true. From this it is clear that
C
{Mf=+oo}| < {Mf >y} < v [flli =0  (y— +o0),

ie. {Mf = +o0}| =0 and thus the maximal function is finite a.e. Further-
more [2], for all 1 < p < +oo with a suitable constant Cj, > 0 (depending
only on p)

IMfllp < Co-liflly,  (f € LPla,b])

(the operator M is of type (p,p)). Since |f| < Mf a.e., we can say that for
these exponents p the equivalence

IMfllp < +oo <= [fllp < 400

holds. However, there is a function f € L[a,b] for which ||[M f||; = +oo (for
example see the function fy in the next section).

2. Non-integrability

If € L'a,b] is given then let

It is obvious that for all a < d <y <b

x

i@z o [z =T <o <)
d
Therefore
b b b J
Pafl = [ars = gz ) - Fa) [ -

= (F(y) = F(d))- (In(b — d) — In(y — d)).
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If we take into account that F(y) — F(d) — 0 (y — d), it follows
[M f[|x = limsup((F(y) — F(d))- | In(y — d)]).
y—d+0
So we get the next

Proposition 1. If f € La,b] and for some points a < d <y <b

lim sup(F(y) — F(d))- | In(y — d)]) = +oc,
y—d+0

then |[Mf||1 = +oo.
Analogously, if a < e <b, then

limsup((F(e) — F(y))- [ In(e - y)]) = +00 = M ]}, = +oc,

y—e—0
or with an arbitrary point z € [a,b] :

limsup(|F'(y) = F(2)]- | In(ly — 2[)]) = +00 = [[M 1 = +oc.

Yy—z

(We see later that in this connection the assumption limsup... > 0 is also
enough.)

Since

(P) = F(@) - [y = d)) = (= d)- |ty = D = [ 1] <

< Mf(d)-(y — d)- | In(y — d)|

and

(y—d)-In(y—d) =0 (y = d+0),
it follows (assumed M f(d) < 4+o00) that

lim (F(y) ~ F(d)-nfy - d)) =0,

A (F(e) = F(y))-In(e —y)) =0,
if Mf(e) < +oo. We know that M f is finite a.e., therefore

lim (F(y) — F(2) Iy — =) =0 (ae. 2 € [o,8]).

Yy—z
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In other words for such points z € [a,b] we have
(1) Jim |1 =0 = 1 (w(z.)- [ 1£) =0
In

with every sequence (I,,) of intervals z € I,, C [a,b] (n € N).

We recall that F' is differentiable a.e. and if this is true for a point z then

=22 L e~ el @)

and (1) follows.

For example, we consider the function
1
F(z) == folz) := 4 (@ —a) n?(z — a)
0 (z € [a,b]\ (a,d])

(a<z<c)

(where ¢ € (a,b) and ¢ —a < 1),. It is not hard to see that fo € L'[a,b] and

Fly-|my-a) =1  (y€ (a.c)).
On the other hand, if

1
(z—a) [In(x — a)"/2

0 (z € [a,0]\ (a,c]),

(a<z<c)

fx) =

then f € L'[a,b], but

F(y)-[In(y —a)] = 2-V/|In(y —a)| = +00  (y = a).

The first statement on the integrability of M f reads as follows [2]:
f € Llogt Lja,b] = ||[M f||; < oc.
This means by Proposition 1 that for all z € [a,b] the implication

(2) f € Llog™ La,b] = limsup(|F(y) — F(2)|- | In(Jy — 2])|) < +o0

Yy—z

is true. Moreover, it is easy to show
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Proposition 2. Let f € Llog™ Lla,b], then for all z € [a,b] we have
limsup(|F(y) — F(2)| [In(ly — 2])[) = 0.

Yy—z

Proof. For example, take the points a < 2 =d <y <b and y —d < 1. Then

Fly) - F(d) = / n= [ s [ s

d [dyln{|f1<1/Vy—=d} [d.y]n{|fI>1/y—d}

<Vy—d+ Ifl.
[dyln{f2>1/(y—d)}

Therefore

(F(y) = F(d))- [In(y — d)| <

<y —d Iy — d)] +2 / @) In(|f (2)]) do <

[d,y]n{f2>1/(y—d)}
Y
< Vy—d|n(y—d)|+2 / £ log* ol )
d

and here
Vy—d|In(y—d)| =0 (y = d+0).
If f € Llog™ La,b], then

y
/|f|-<log+o|f|> S0 (yodio),
d

which leads to
(F(y) = F(d) |In(y —d)] -0 (y—d+0). u

The function fy shows that the converse of (2) is not true, in contrast to
the above statement on the integrability of M f. Namely, Stein [3] proved that
for a function f € L'[a,b], we get

|Mflly < 400 = f € Llog™" L[a,b].

From this it follows immediately that for all f € L'[a,b] the next equivalence
is true:

(3) |Mf|l; < +00 <= f €& Llog" L[a,b]
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and (see Proposition 2)

IMflly < +oo = lim ((F(y) = F(2)) In(ly — 2[)) =0 (2 € [a,b]).

In other words the next consequence holds:
Proposition 3. If f € Lt[a,b] and there is a point z € [a,b] such that

limsup(|F(y) — F(2)[- [In(Jy — 2])[) > 0,

Y—z
then ||M f]l1 = +oc.

Now, we consider an example which shows that the assumption ||M f|; =
= +00 is not enough for

limsup(|F(y) — F(2)[- | In(ly — z[)]) > 0.

y—z
Proposition 4. There ezists f € L[a,b] such that |[Mf|j; = +oo, but

limsup(|F(y) — F(2)|- [In(Jy — 2])[) = 0

y—z
for all z € [a,b].
Proof. Indeed, let

Cn = Qp- 2" (n €eN),
where the numbers ¢, >0 (n € N) satisfy the conditions

o0 o0
Z qn < +oo and Z NnGn = +00
n=0 n=0

and
o0
n~an—>0 (n — 00).
k=n
For example the numbers

1
R copray N Y S G

fulfil these requirements. By means of ¢,’s we define the function
f=/11:10,1 = (0,400)

as follows:
fi(x) :==cp (xe[27"7 27", neN).
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Then
1 (o) 1 o0
[151= S e = 5 < +ox,
0 n=0 n=0

i.e. fi € L'[0,1]. However, with a suitable N € N it follows that

/|f1 1og olf]) = an log Cn) = an Inc, =

= % i gn(n-In2 — (2-ln(n + 1) + In(In(n + 2)).

n=N
Here we can assume also that
n-In2

2-In(n 4+ 1) + In(ln(n + 2)) < >

(N <neN).

So
/U11% olf]) > A%ijMn_+m.

This means that f; ¢ Llogt L[0,1], i.e. |[[Mf||; = 4+oco. Furthermore, let
n € N be given, then

o oo 1 o0

_ —k—1 _
/|f1|_zcn'2 —§'ZQk
0 k=n k=n

and we get

9—n
n n-ln2 o
w2} [ 15 = 70 (o)
0 =n

Finally, if 0 < z € [0,1], then f; is bounded on [z/2,1] and this implies

Lim |1, :o:nlgn;o(ln(lfnl)-/\fl) =0

for all intervals z € I,, C [0,1] (n € N). [ ]

Thus for the set

Sla,b] := {f € L'[a,b] : lim ((F(y) — F(2))-In(|ly — 2])) = 0 (2 € [a,8])}

Yy—=z
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the inclusions
Llog™ La,b] C S[a,b] C L'[a,b]

are strong:

f1 € S[a,b] \ Llog* L[a,b] and fo € L'[a,b]\ S[a,b].
3. Integrability

In connection of the equivalence (3) Stein [4, p. 23] says in his famous book
(without proof) that for all functions f € L'[a,b] and for all numbers p > 0

b b
/ M- (log™ o(Mf))P < +oo = / [FI- Qog* ol /)71 < +o0

holds. We remark, that a proof for <= can be found in the books of Weisz
and Bennet—Sharpley [5], [1], resp. Next we shall generalize this Stein’s equiv-
alence. As special case, a common proof for the (LP, LP) and (Llog™ L,L")-
boundedness follows as well.

To this end let the functions
¥, A :[0,400] — [0, +00]

be given and assume that the next properties hold: %, A are absolute contin-
uous on all compact intervals I C [0, +00), are nondecreasing,

lim ¢(z) = lim A(z) =+o0

r—r+00 Tr—r+o0

and 1(0) = A(0) = 0. We consider the functions

O(y) =yv(y) (y=0)
and
O(y) ==y Ay)  (y=0).
It will be assumed also that there are numbers r,¢ > 0 such that

Y

cy-Y'(y) < /t‘l- V() dt < Ay) +y-'(y)  (aey>r)

0

and

0'(y) = /t_l- P'(t)dt  (a.e.y>0).
0
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Theorem. For all f € L'[a,b] we have
b b

/(bo(Mf)<+oo — /®o|f|<+oo.

a a

It is clear that in the case ©® < & the part = follows simple from
1< Mf ae

Proof of Theorem. First of all, we remark that by the assumptions there
is @ > r such that ¢¥(a) > 0 and A(a) > 0. If g : [0,400] — [0, +00] is
Lebesgue-measurable and a.e. finite, then

/bg-wog) [ swea+ [ gwo)

{9<a} {g>a}
where
/ g (Wog) < (b—a)a(a) < +oo.
{g9<a}
Furthermore
b 400
g (og)= /((I) ©9) X{g>a} = / H{(®0g) X(g>a} >y}t dy =
{g>a} a 0
&(a) +oo
= / {(®09) X(g5a1 >y}l dy + / {(®09) X{g>a) >y} dy =2 A+ B.

0 ®(a)

Here

@ ()
A= [ @09 xipma) >}l dy < (- ) B(a) <+
0
and (taking into account that ® is increasing on [«,400) and absolute con-

tinuous on [a, z] for all z > «)
+o0o
B= [ H@og)xipma) > v}l dy =
(o)
+o00 +0o0o
— [ M@0 9 xipoa) > 2V = [ 19> }l-2/(0)

e}
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Therefore

b

—+o0
[oweg<+o = [lg>nl ¥y <+
a «
Now we assume that

b b
[eelfi=[ 1ol < +x.

Then

+oo +oo
[rr=mvwa<e [y ([ in)ewa-

{1f1>y}

+o0 b
= [t ([ 11 o) @) d =

—+oo

+oo
—c [y /|{\f|~x{|f\>y}>t}|dt)-@'<y>dy=

+oo

-c (/ . /I{\f|>y}\dt+/|{|f|>t}|dt) <>dy>:
+o0
=C-</|{|f|>y}-<1>’<y>dy+/y-l- /|{|f>t}|dt)-<1>’(y)dy>.
We obtain
+oo o0
[t ([ 1> ode): @'y =
+oo

+o0
- / = / 1> 81 Xy (8 ) @) dy =

/|{|f|>t}| / v) dy) dt = /I{\f|>t}\ o'(t)dt
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So by our previous remark (with |f| and ¢ instead of g and 1, resp.) the
boundedness

b
/m-(Ao F) < +oo

implies
“+o0
/ {|f| > t}]-©'(t) dt < +o0.
By
e @' (y) = c (P(y) +y¥'(y)) < O'(y) =
= [ 2719 (2)dz = | (W'(2) + 271 (2)) dz =
/ /
=y + [ 271 (2)dz (a.e.y > )
/
we get

+00 +oo
/|{|f\>y}|'q"(y)dyﬁcfl'/|{|f\>y}|'@’(y)dy<+00-

Summarizing the above facts it follows that

b

Jeon - /b M- (4o (M) < +0.

a

Next we assume the last boundedness. Then

IN

b
/Ifl'(AOIfD: / I (Aol f]) + / I (Aol f])
a {IfILa} {lfI>a}

<G-wad@+ [ I7F@Kelf)=C+D,
{If>a}
Since C < 400, it is anough to investigate the second expression:

[f ()]
p= [ it@eld= [ @l ( [ o)

{lf1>a} {If1>a} 0
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where the function ¢ is defined by means of the equality

Y

Aly) = / p(x)dz  (y>0).

0

Thus

“+oo

- (Aolf]) = / @)
{IfI>a} {IfI>a} 0
+oo

= / o(y) ( / ‘f($)|'X[0,|f(w)|)(y) dz) dy =
0 {1f/>a}

«a “+o0

:/@@).( / \fl)dy+/<p(y).< / 1) dy <

0 {1f[>a} . {If1>y}

“+o0

<l / cwdy+ [ ([ 1)
0

a {If1>y}

where
(e}

T / o) dy = {11 Ala) < +oc.

0

We recall [3] that with a suitable yo > 0
fl<2y-{Mf >y}l (¥ =)
{151>y}
Let 8 :=max{yo, o}, then

B

(/‘P(?/>'X[07\f<x)\>(y)dy) de =

B
Jew ([ 1)y <l [ oy =151 (36) - Ae) < +oc

{lf1>y} o

and
—+00

+oo
[ew ([ in)av<e [ 101> 0l e
B

B {IfI>y}
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From assumptions on %, A it follows that

Yy

v oy) =y N(y) = 0'(y) — Ay) = / L@ () dt — Aly) =
0

=Y(y) + /t’l- Y(t)dt — Ay) <vly) +y-'(y) =" (y)  (ae.y > a).
0

Therefore

+o0 +oo
/I{Mf>y}|~y-sa(y)dy§ / (M >y} @ (y) dy <
B @

b
< [Mpwo ) < +oc,

which proves the boundedness

b b
Jeclfi=[ifl-aolf) < +x. 0

4. Special cases

a) First let p > 0 and
() = (log" z)" (2 20).

Then
0 0<y<1)
V'(y) =
py ' (Iny)P~t (y>1)
and
Y {0 0<y<1)
/t_1~w(t) dt =
0 (p+1)7" (Iny)*™t  (y>1).

p ) = p (g < [ i = )T (),
1



212 P. Simon

It can be simply veryfied that with the function

Ay) = - (o™ )™ (52 0)
we get
0 (0<y<1)
0'(y) =
(p+ 1)~ (Iny)P* + (Iny)?  (y > 1)
and )
/t’l-d/(t) dt =
0
Y 0 0<y<1)
= /t”w(t) dt +(y) =
0 (p+ 1)1 (Iny)P™ + (Iny)?  (y>1).

Since

/t—l-w(w it <Ay (y>0),
0

the second assumption for v is also fulfilled. Therefore for all f € L'[a,b] the
equivalence

b b
/ M- (log* o(Mf))P < +o0 = / |£I- Qog* ol f)"*! < oo

holds, which is the above mentioned Stein‘s equivalence.

b) Now, let s > 0 be given and define the function 1 as follows:

() =2’ (x >0).

Then
®(z) = 25t (x >0)
and
y'(y)=sy* (y=0)
Furthermore
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and
i 1
oW =+ [ela="T1y 20
0
In other words
ys+1
Oy) = = (y > 0)
and
yS
A=L =0
and our assumptions for v (with the constant ¢ := 1/s%) are true.

Theorem gives the next equivalence for all 1 < p < 400 :
IMfllp < oo == |[fllp < +o0,
which is the Hardy—Littlewood‘s (LP, LP)-boundedness.
c) Finally, we take s >0 and
P(z) == 2% log" x (z >0).
Then

Yy
cy- ' (y) = ¢ (sy® Iny +y°) < /t‘1~w(t) dt =
1

Lo 1,1
=syhy -yt 50 (y2r)
with ¢:=1/(2s?) and with a suitable r > 1. Furthermore

s+1 1, 1
O'(y) = Yy - St (2 ),

Therefore let

0 (0<y<1)
Oy) ==
Loyt lmy - S%ys“ + S%y (y=>1),

and the second assumtion on 1 is automatically fulfiled. Thus

b b
/‘I)O(Mf)<—|—oo = /@o|f|<+oo.

Thus



214 P. Simon

It is easy to see that

b b
/ O0|f] < +oo = / 17 (log* ol £]) < 4o,

which implies the next equivalence for all 1 < p < +00:

b

b
/ (M) (log* o(M)) < +00 = / 1P (log* ol fI) < +o.

(where = follows from |f| < Mf a.e. as well also for p = +00).

We remark that the last equivalence does not hold in the case p = 1. To
this end we consider the function f € L'[0,1] such that

271

m (77/ c N7 2_n_1 <z S 2_n)

fla) =
Then

1 oo
[ 1o el < 32 <+
J =

Since for x € (2771, 27") the inequality
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