A NOTE ON THE MAXIMAL FUNCTION

Péter Simon (Budapest, Hungary)

Dedicated to Professor Antal Járai on his 70th birthday

Communicated by Ferenc Weisz (Received February 15, 2020; accepted April 27, 2020)

Abstract. We investigate the Hardy–Littlewood maximal function. A local condition for non-integrability is formulated. Moreover, a generalization of the Hardy–Littlewood's and Stein's integrability theorem is given. As special case, we get the classical statements.

1. Introduction

If [a, b] is a compact interval on the real line and $f \in L^1[a, b]$ (i.e. the real valuable function f is defined on [a, b] and it is integrable in Lebesgue's sense), then Mf (the Hardy-Littlewood maximal function of f) is defined as follows:

$$Mf(x) := \sup_{I} \frac{1}{|I|} \cdot \int_{I} |f| \qquad (x \in [a, b]),$$

where the supremum is taken over all $x \in I \subset [a, b]$ intervals (and |A| stands for the Lebesgue measure of a set $A \subset \mathbb{R}$). It is well-known [2] that for the measurable function $Mf : [a, b] \to [0, +\infty]$ (in other words for the maximal operator M) the next properties hold: there is an absolute constant C > 0such that

$$|\{Mf > y\}| \le \frac{C}{y} \cdot ||f||_1 \qquad (f \in L^1[a, b], \, y > 0)$$

Key words and phrases: Maximal function, weak type, Zygmund class. 2010 Mathematics Subject Classification: 26D. https://doi.org/10.71352/ac.51.199

(the operator M is of weak type (1,1)). Moreover, the "strong" property

$$|\{Mf > y\}| \le \frac{C}{y} \cdot \int_{\{|f| > y\}} |f| \qquad (f \in L^1[a, b], \, y > 0)$$

is also true. From this it is clear that

$$|\{Mf = +\infty\}| \le |\{Mf > y\}| \le \frac{C}{y} \cdot ||f||_1 \to 0 \qquad (y \to +\infty),$$

i.e. $|\{Mf = +\infty\}| = 0$ and thus the maximal function is finite a.e. Furthermore [2], for all $1 with a suitable constant <math>C_p > 0$ (depending only on p)

$$||Mf||_p \le C_p \cdot ||f||_p \qquad (f \in L^p[a, b])$$

(the operator M is of type (p, p)). Since $|f| \leq Mf$ a.e., we can say that for these exponents p the equivalence

$$\|Mf\|_p < +\infty \iff \|f\|_p < +\infty$$

holds. However, there is a function $f \in L^1[a, b]$ for which $||Mf||_1 = +\infty$ (for example see the function f_0 in the next section).

2. Non-integrability

If $f \in L^1[a, b]$ is given then let

$$F(t) := \int_{a}^{t} |f| \qquad (t \in [a, b]).$$

It is obvious that for all $a \le d < y < b$

$$Mf(x) \ge \frac{1}{x-d} \cdot \int_{d}^{x} |f| \ge \frac{F(y) - F(d)}{x-d} \qquad (y \le x \le b).$$

Therefore

$$||Mf||_1 = \int_a^b Mf \ge \int_y^b Mf \ge (F(y) - F(d)) \cdot \int_y^b \frac{dx}{x - d} = (F(y) - F(d)) \cdot (\ln(b - d) - \ln(y - d)).$$

If we take into account that $F(y) - F(d) \to 0 \ (y \to d)$, it follows

$$||Mf||_1 \ge \limsup_{y \to d+0} ((F(y) - F(d)) \cdot |\ln(y - d)|).$$

So we get the next

Proposition 1. If $f \in L^1[a, b]$ and for some points $a \le d < y < b$

$$\limsup_{y \to d+0} ((F(y) - F(d)) \cdot |\ln(y - d)|) = +\infty,$$

then $||Mf||_1 = +\infty$.

Analogously, if $a < e \leq b$, then

$$\limsup_{y \to e-0} ((F(e) - F(y)) \cdot |\ln(e - y)|) = +\infty \Longrightarrow ||Mf||_1 = +\infty,$$

or with an arbitrary point $z \in [a, b]$:

$$\limsup_{y \to z} (|F(y) - F(z)| \cdot |\ln(|y - z|)|) = +\infty \Longrightarrow ||Mf||_1 = +\infty.$$

(We see later that in this connection the assumption $\limsup \dots > 0$ is also enough.)

Since

$$(F(y) - F(d)) \cdot |\ln(y - d)| = (y - d) \cdot |\ln(y - d)| \cdot \frac{1}{y - d} \cdot \int_{d}^{y} |f| \le Mf(d) \cdot (y - d) \cdot |\ln(y - d)|$$

and

$$(y-d) \cdot \ln(y-d) \to 0 \qquad (y \to d+0),$$

it follows (assumed $Mf(d) < +\infty$) that

$$\lim_{y \to d+0} ((F(y) - F(d)) \cdot \ln(y - d)) = 0,$$

or

$$\lim_{y \to e^{-0}} ((F(e) - F(y)) \cdot \ln(e - y)) = 0,$$

if $Mf(e) < +\infty$. We know that Mf is finite a.e., therefore

$$\lim_{y \to z} ((F(y) - F(z)) \cdot \ln(|y - z|)) = 0 \quad (a.e. \ z \in [a, b]).$$

In other words for such points $z \in [a, b]$ we have

(1)
$$\lim_{n \to \infty} |I_n| = 0 \Longrightarrow \lim_{n \to \infty} \left(\ln(|I_n|) \cdot \int_{I_n} |f| \right) = 0$$

with every sequence (I_n) of intervals $z \in I_n \subset [a, b]$ $(n \in \mathbb{N})$.

We recall that F is differentiable a.e. and if this is true for a point z then

$$\frac{1}{y-z} \cdot \int_{z}^{y} |f| = \frac{F(y) - F(z)}{y-z} \to F'(z) = |f(z)| \qquad (y \to z)$$

and (1) follows.

For example, we consider the function

$$f(x) := f_0(x) := \begin{cases} \frac{1}{(x-a) \cdot \ln^2(x-a)} & (a < x \le c) \\ 0 & (x \in [a,b] \setminus (a,c]) \end{cases}$$

(where $c \in (a, b)$ and c - a < 1), It is not hard to see that $f_0 \in L^1[a, b]$ and

$$F(y) \cdot |\ln(y-a)| = 1$$
 $(y \in (a,c)).$

On the other hand, if

$$f(x) := \begin{cases} \frac{1}{(x-a) \cdot |\ln(x-a)|^{3/2}} & (a < x \le c) \\ 0 & (x \in [a,b] \setminus (a,c]), \end{cases}$$

then $f \in L^1[a, b]$, but

$$F(y) \cdot |\ln(y-a)| = 2 \cdot \sqrt{|\ln(y-a)|} \to +\infty \qquad (y \to a)$$

The first statement on the integrability of Mf reads as follows [2]:

$$f \in L \log^+ L[a, b] \Longrightarrow ||Mf||_1 < \infty.$$

This means by Proposition 1 that for all $z \in [a, b]$ the implication

(2)
$$f \in L \log^+ L[a, b] \Longrightarrow \limsup_{y \to z} (|F(y) - F(z)| \cdot |\ln(|y - z|)|) < +\infty$$

is true. Moreover, it is easy to show

Proposition 2. Let $f \in L \log^+ L[a, b]$, then for all $z \in [a, b]$ we have

$$\limsup_{y \to z} (|F(y) - F(z)| \cdot |\ln(|y - z|)|) = 0.$$

Proof. For example, take the points a < z = d < y < b and y - d < 1. Then

$$F(y) - F(d) = \int_{d}^{y} |f| = \int_{[d,y] \cap \{|f| < 1/\sqrt{y-d}\}} |f| + \int_{[d,y] \cap \{|f| \ge 1/\sqrt{y-d}\}} |f| \le \sqrt{y-d} + \int_{[d,y] \cap \{f^2 \ge 1/(y-d)\}} |f|.$$

Therefore

$$(F(y) - F(d)) \cdot |\ln(y - d)| \leq \leq \sqrt{y - d} \cdot |\ln(y - d)| + 2 \cdot \int_{[d,y] \cap \{f^2 \geq 1/(y - d)\}} |f(x)| \cdot \ln(|f(x)|) \, dx \leq \leq \sqrt{y - d} \cdot |\ln(y - d)| + 2 \cdot \int_{d}^{y} |f| \cdot (\log^+ \circ |f|)$$

and here

$$\sqrt{y-d} \cdot |\ln(y-d)| \to 0 \qquad (y \to d+0).$$

If $f \in L \log^+ L[a, b]$, then

$$\int_{d}^{y} |f| \cdot (\log^{+} \circ |f|) \to 0 \qquad (y \to d+0).$$

which leads to

$$(F(y) - F(d)) \cdot |\ln(y - d)| \to 0 \qquad (y \to d + 0).$$

The function f_0 shows that the converse of (2) is not true, in contrast to the above statement on the integrability of Mf. Namely, Stein [3] proved that for a function $f \in L^1[a, b]$, we get

$$||Mf||_1 < +\infty \Longrightarrow f \in L \log^+ L[a, b].$$

From this it follows immediately that for all $f \in L^1[a, b]$ the next equivalence is true:

(3) $\|Mf\|_1 < +\infty \iff f \in L\log^+ L[a,b]$

and (see Proposition 2)

$$\|Mf\|_1 < +\infty \Longrightarrow \lim_{y \to z} ((F(y) - F(z)) \cdot \ln(|y - z|)) = 0 \qquad (z \in [a, b]).$$

In other words the next consequence holds:

Proposition 3. If $f \in L^1[a, b]$ and there is a point $z \in [a, b]$ such that

$$\limsup_{y \to z} (|F(y) - F(z)| \cdot |\ln(|y - z|)|) > 0,$$

then $||Mf||_1 = +\infty$.

Now, we consider an example which shows that the assumption $||Mf||_1 = +\infty$ is not enough for

$$\limsup_{y \to z} (|F(y) - F(z)| \cdot |\ln(|y - z|)|) > 0.$$

Proposition 4. There exists $f \in L^1[a,b]$ such that $||Mf||_1 = +\infty$, but

$$\limsup_{y \to z} (|F(y) - F(z)| \cdot |\ln(|y - z|)|) = 0$$

for all $z \in [a, b]$.

Proof. Indeed, let

$$c_n := q_n \cdot 2^n \qquad (n \in \mathbb{N}),$$

where the numbers $q_n > 0$ $(n \in \mathbb{N})$ satisfy the conditions

$$\sum_{n=0}^{\infty} q_n < +\infty \quad \text{and} \quad \sum_{n=0}^{\infty} nq_n = +\infty$$

and

$$n \cdot \sum_{k=n}^{\infty} q_n \to 0 \qquad (n \to \infty).$$

For example the numbers

$$q_n := \frac{1}{(n+1)^2 \cdot \ln(n+2)} \qquad (n \in \mathbb{N})$$

fulfil these requirements. By means of c_n 's we define the function

$$f = f_1 : [0, 1] \to (0, +\infty)$$

as follows:

$$f_1(x) := c_n$$
 $(x \in [2^{-n-1}, 2^{-n}], n \in \mathbb{N}).$

Then

$$\int_{0}^{1} |f_{1}| = \sum_{n=0}^{\infty} c_{n} \cdot 2^{-n-1} = \frac{1}{2} \cdot \sum_{n=0}^{\infty} q_{n} < +\infty,$$

i.e. $f_1 \in L^1[0,1]$. However, with a suitable $N \in \mathbb{N}$ it follows that

$$\int_{0}^{1} |f_{1}| \cdot (\log^{+} \circ |f|) = \frac{1}{2} \cdot \sum_{n=0}^{\infty} q_{n} \cdot \log^{+}(c_{n}) = \frac{1}{2} \cdot \sum_{n=N}^{\infty} q_{n} \cdot \ln c_{n} =$$
$$= \frac{1}{2} \cdot \sum_{n=N}^{\infty} q_{n} (n \cdot \ln 2 - (2 \cdot \ln(n+1) + \ln(\ln(n+2))).$$

Here we can assume also that

$$2 \cdot \ln(n+1) + \ln(\ln(n+2)) < \frac{n \cdot \ln 2}{2} \qquad (N \le n \in \mathbb{N}).$$

 So

$$\int_{0}^{1} |f_1| \cdot (\log^+ \circ |f|) \ge \frac{\ln 2}{4} \cdot \sum_{n=N}^{\infty} nq_n = +\infty.$$

This means that $f_1 \notin L \log^+ L[0,1]$, i.e. $||Mf||_1 = +\infty$. Furthermore, let $n \in \mathbb{N}$ be given, then

$$\int_{0}^{2^{-n}} |f_1| = \sum_{k=n}^{\infty} c_n \cdot 2^{-k-1} = \frac{1}{2} \cdot \sum_{k=n}^{\infty} q_k$$

and we get

$$|\ln 2^{-n}| \cdot \int_{0}^{2^{-n}} |f_1| = \frac{n \cdot \ln 2}{2} \cdot \sum_{k=n}^{\infty} q_k \to 0 \qquad (n \to \infty).$$

Finally, if $0 < z \in [0, 1]$, then f_1 is bounded on [z/2, 1] and this implies

$$\lim_{n \to \infty} |I_n| = 0 \Longrightarrow \lim_{n \to \infty} \left(\ln(|I_n|) \cdot \int_{I_n} |f| \right) = 0$$

for all intervals $z \in I_n \subset [0,1]$ $(n \in \mathbb{N})$.

Thus for the set

$$S[a,b] := \{ f \in L^1[a,b] : \lim_{y \to z} ((F(y) - F(z)) \cdot \ln(|y - z|)) = 0 \ (z \in [a,b]) \}$$

the inclusions

$$L\log^+ L[a,b] \subset S[a,b] \subset L^1[a,b]$$

are strong:

$$f_1 \in S[a,b] \setminus L \log^+ L[a,b]$$
 and $f_0 \in L^1[a,b] \setminus S[a,b]$.

3. Integrability

In connection of the equivalence (3) Stein [4, p. 23] says in his famous book (without proof) that for all functions $f \in L^1[a, b]$ and for all numbers $\rho > 0$

$$\int_{a}^{b} Mf \cdot (\log^{+} \circ (Mf))^{\rho} < +\infty \iff \int_{a}^{b} |f| \cdot (\log^{+} \circ |f|)^{\rho+1} < +\infty$$

holds. We remark, that a proof for \Leftarrow can be found in the books of Weisz and Bennet–Sharpley [5], [1], resp. Next we shall generalize this Stein's equivalence. As special case, a common proof for the (L^p, L^p) and $(L \log^+ L, L^1)$ boundedness follows as well.

To this end let the functions

$$\psi, \Lambda : [0, +\infty] \to [0, +\infty]$$

be given and assume that the next properties hold: ψ , Λ are absolute continuous on all compact intervals $I \subset [0, +\infty)$, are nondecreasing,

$$\lim_{x \to +\infty} \psi(x) = \lim_{x \to +\infty} \Lambda(x) = +\infty$$

and $\psi(0) = \Lambda(0) = 0$. We consider the functions

$$\Phi(y) := y \cdot \psi(y) \qquad (y \ge 0)$$

and

$$\Theta(y) := y \cdot \Lambda(y) \qquad (y \ge 0).$$

It will be assumed also that there are numbers r, c > 0 such that

$$c \cdot y \cdot \psi'(y) \le \int_{0}^{y} t^{-1} \cdot \psi(t) dt \le \Lambda(y) + y \cdot \psi'(y)$$
 (a.e. $y > r$)

and

$$\Theta'(y) = \int_{0}^{y} t^{-1} \cdot \Phi'(t) dt$$
 (a.e. $y > 0$).

Theorem. For all $f \in L^1[a, b]$ we have

$$\int_{a}^{b} \Phi \circ (Mf) < +\infty \iff \int_{a}^{b} \Theta \circ |f| < +\infty.$$

It is clear that in the case $\Theta \leq \Phi$ the part \implies follows simple from $|f| \leq Mf$ a.e.

Proof of Theorem. First of all, we remark that by the assumptions there is $\alpha > r$ such that $\psi(\alpha) > 0$ and $\Lambda(\alpha) > 0$. If $g : [0, +\infty] \to [0, +\infty]$ is Lebesgue-measurable and a.e. finite, then

$$\int\limits_a^b g \cdot (\psi \circ g) = \int\limits_{\{g \leq \alpha\}} g \cdot (\psi \circ g) + \int\limits_{\{g > \alpha\}} g \cdot (\psi \circ g),$$

where

$$\int_{\{g \le \alpha\}} g \cdot (\psi \circ g) \le (b-a) \cdot \alpha \cdot \psi(\alpha) < +\infty.$$

Furthermore

$$\int_{\{g>\alpha\}} g \cdot (\psi \circ g) = \int_{a}^{b} (\Phi \circ g) \cdot \chi_{\{g>\alpha\}} = \int_{0}^{+\infty} |\{(\Phi \circ g) \cdot \chi_{\{g>\alpha\}} > y\}| \, dy =$$
$$= \int_{0}^{\Phi(\alpha)} |\{(\Phi \circ g) \cdot \chi_{\{g>\alpha\}} > y\}| \, dy + \int_{\Phi(\alpha)}^{+\infty} |\{(\Phi \circ g) \cdot \chi_{\{g>\alpha\}} > y\}| \, dy =: A + B.$$

Here

$$A = \int_{0}^{\Phi(\alpha)} \left| \{ (\Phi \circ g) \cdot \chi_{\{g > \alpha\}} > y \} \right| dy \le (b-a) \cdot \Phi(\alpha) < +\infty$$

and (taking into account that Φ is increasing on $[\alpha, +\infty)$ and absolute continuous on $[\alpha, z]$ for all $z > \alpha$)

$$B = \int_{\Phi(\alpha)}^{+\infty} |\{(\Phi \circ g) \cdot \chi_{\{g > \alpha\}} > y\}| \, dy =$$
$$= \int_{\alpha}^{+\infty} |\{(\Phi \circ g) \cdot \chi_{\{g > \alpha\}} > \Phi(y)\}| \cdot \Phi'(y) \, dy = \int_{\alpha}^{+\infty} |\{g > y\}| \cdot \Phi'(y) \, dy.$$

Therefore

$$\int_{a}^{b} g \cdot (\psi \circ g) < +\infty \iff \int_{\alpha}^{+\infty} |\{g > y\}| \cdot \Phi'(y) \, dy < +\infty.$$

Now we assume that

$$\int_{a}^{b} \Theta \circ |f| = \int_{a}^{b} |f| \cdot (\Lambda \circ |f|) < +\infty.$$

Then

$$\begin{split} & \int_{\alpha}^{+\infty} |\{Mf > y\}| \cdot \Phi'(y) \, dy \leq C \cdot \int_{\alpha}^{+\infty} y^{-1} \cdot \left(\int_{\{|f| > y\}} |f|\right) \cdot \Phi'(y) \, dy = \\ & = C \cdot \int_{\alpha}^{+\infty} y^{-1} \cdot \left(\int_{a}^{b} |f| \cdot \chi_{\{|f| > y\}}\right) \cdot \Phi'(y) \, dy = \\ & = C \cdot \int_{\alpha}^{+\infty} y^{-1} \cdot \left(\int_{0}^{+\infty} |\{|f| > y\}| \, dt + \int_{y}^{+\infty} |\{|f| > t\}| \, dt\right) \cdot \Phi'(y) \, dy = \\ & = C \cdot \left(\int_{\alpha}^{+\infty} y^{-1} \cdot \left(\int_{0}^{y} |\{|f| > y\}| \, dt + \int_{y}^{+\infty} |\{|f| > t\}| \, dt\right) \cdot \Phi'(y) \, dy\right) = \\ & = C \cdot \left(\int_{\alpha}^{+\infty} |\{|f| > y\}| \cdot \Phi'(y) \, dy + \int_{\alpha}^{+\infty} y^{-1} \cdot \left(\int_{y}^{+\infty} |\{|f| > t\}| \, dt\right) \cdot \Phi'(y) \, dy\right). \end{split}$$

We obtain

$$\int_{\alpha}^{+\infty} y^{-1} \cdot \left(\int_{y}^{+\infty} |\{|f| > t\}| \, dt \right) \cdot \Phi'(y) \, dy =$$
$$= \int_{\alpha}^{+\infty} y^{-1} \cdot \left(\int_{\alpha}^{+\infty} |\{|f| > t\}| \cdot \chi_{[y,+\infty)}(t) \, dt \right) \cdot \Phi'(y) \, dy =$$
$$= \int_{\alpha}^{+\infty} |\{|f| > t\}| \cdot \left(\int_{\alpha}^{t} y^{-1} \cdot \Phi'(y) \, dy \right) dt = \int_{\alpha}^{+\infty} |\{|f| > t\}| \cdot \Theta'(t) \, dt.$$

So by our previous remark (with |f| and φ instead of g and $\psi,$ resp.) the boundedness

$$\int\limits_a^b |f| \cdot \left(\Lambda \circ |f|\right) < +\infty$$

implies

$$\int_{\alpha}^{+\infty} |\{|f| > t\}| \cdot \Theta'(t) \, dt < +\infty.$$

By

$$\begin{split} c \cdot \Phi'(y) &= c \cdot (\psi(y) + y\psi'(y)) \leq \Theta'(y) = \\ &= \int_0^y z^{-1} \cdot \Phi'(z) \, dz = \int_0^y (\psi'(z) + z^{-1} \cdot \psi(z)) \, dz = \\ &= \psi(y) + \int_0^y z^{-1} \cdot \psi(z) \, dz \qquad (\text{a.e. } y > \alpha) \end{split}$$

we get

$$\int_{\alpha}^{+\infty} |\{|f| > y\}| \cdot \Phi'(y) \, dy \le c^{-1} \cdot \int_{\alpha}^{+\infty} |\{|f| > y\}| \cdot \Theta'(y) \, dy < +\infty.$$

Summarizing the above facts it follows that

$$\int_{a}^{b} \Phi \circ (Mf) = \int_{a}^{b} Mf \cdot (\psi \circ (Mf)) < +\infty.$$

Next we assume the last boundedness. Then

$$\begin{split} \int_{a}^{b} |f| \cdot (\Lambda \circ |f|) &= \int_{\{|f| \le \alpha\}} |f| \cdot (\Lambda \circ |f|) + \int_{\{|f| > \alpha\}} |f| \cdot (\Lambda \circ |f|) \le \\ &\le (b-a) \cdot \alpha \cdot \Lambda(\alpha) + \int_{\{|f| > \alpha\}} |f| \cdot (\Lambda \circ |f|) =: C + D. \end{split}$$

Since $C < +\infty$, it is anough to investigate the second expression:

$$D = \int_{\{|f| > \alpha\}} |f| \cdot (\Lambda \circ |f|) = \int_{\{|f| > \alpha\}} |f(x)| \cdot \Big(\int_{0}^{|f(x)|} \varphi(y) \, dy\Big),$$

where the function φ is defined by means of the equality

$$\Lambda(y) = \int_{0}^{y} \varphi(z) \, dz \qquad (y \ge 0).$$

Thus

$$\begin{split} \int_{\{|f|>\alpha\}} |f| \cdot (\Lambda \circ |f|) &= \int_{\{|f|>\alpha\}} |f(x)| \cdot \Big(\int_{0}^{+\infty} \varphi(y) \cdot \chi_{[0,|f(x)|)}(y) \, dy\Big) \, dx = \\ &= \int_{0}^{+\infty} \varphi(y) \cdot \Big(\int_{\{|f|>\alpha\}} |f(x)| \cdot \chi_{[0,|f(x)|)}(y) \, dx\Big) \, dy = \\ &= \int_{0}^{\alpha} \varphi(y) \cdot \Big(\int_{\{|f|>\alpha\}} |f|\Big) \, dy + \int_{\alpha}^{+\infty} \varphi(y) \cdot \Big(\int_{\{|f|>y\}} |f|\Big) \, dy \leq \\ &\leq \|f\|_{1} \cdot \int_{0}^{\alpha} \varphi(y) \, dy + \int_{\alpha}^{+\infty} \varphi(y) \cdot \Big(\int_{\{|f|>y\}} |f|\Big) \, dy, \end{split}$$

where

$$\|f\|_1 \cdot \int_0^\alpha \varphi(y) \, dy = \|f\|_1 \cdot \Lambda(\alpha) < +\infty.$$

We recall [3] that with a suitable $y_0 > 0$

{

$$\int_{|f| > y\}} |f| \le 2y \cdot |\{Mf > y\}| \qquad (y \ge y_0).$$

Let $\beta := \max\{y_0, \alpha\}$, then

$$\int\limits_{\alpha}^{\beta} \varphi(y) \cdot \left(\int\limits_{\{|f| > y\}} |f| \right) dy \leq \|f\|_1 \cdot \int\limits_{\alpha}^{\beta} \varphi(y) \, dy = \|f\|_1 \cdot \left(\Lambda(\beta) - \Lambda(\alpha) \right) < +\infty$$

and

$$\int_{\beta}^{+\infty} \varphi(y) \cdot \Big(\int_{\{|f| > y\}} |f|\Big) \, dy \leq 2 \cdot \int_{\beta}^{+\infty} |\{Mf > y\}| \cdot y \cdot \varphi(y) \, dy.$$

From assumptions on $\,\psi,\Lambda\,$ it follows that

$$y \cdot \varphi(y) = y \cdot \Lambda'(y) = \Theta'(y) - \Lambda(y) = \int_{0}^{y} t^{-1} \cdot \Phi'(t) dt - \Lambda(y) =$$
$$= \psi(y) + \int_{0}^{y} t^{-1} \cdot \psi(t) dt - \Lambda(y) \le \psi(y) + y \cdot \psi'(y) = \Phi'(y) \qquad (\text{a.e. } y > \alpha).$$

Therefore

$$\begin{split} & \int_{\beta}^{+\infty} |\{Mf > y\}| \cdot y \cdot \varphi(y) \, dy \leq \int_{\alpha}^{+\infty} |\{Mf > y\}| \cdot \Phi'(y) \, dy \leq \\ & \leq \int_{a}^{b} Mf \cdot (\psi \circ (Mf)) < +\infty, \end{split}$$

which proves the boundedness

$$\int\limits_a^b\Theta\circ |f|=\int\limits_a^b|f|\cdot (\Lambda\circ |f|)<+\infty.$$

4. Special cases

a) First let $\rho > 0$ and

$$\psi(x) := (\log^+ x)^{\rho} \qquad (x \ge 0).$$

Then

$$\psi'(y) = \begin{cases} 0 & (0 \le y < 1) \\ \rho \cdot y^{-1} \cdot (\ln y)^{\rho - 1} & (y > 1) \end{cases}$$

and

$$\int_{0}^{y} t^{-1} \cdot \psi(t) \, dt = \begin{cases} 0 & (0 \le y < 1) \\ (\rho + 1)^{-1} \cdot (\ln y)^{\rho + 1} & (y > 1). \end{cases}$$

If $r := e^{\sqrt{\rho(\rho+1)}}$, then

$$y \cdot \psi'(y) = \rho \cdot (\ln y)^{\rho - 1} \le \int_{1}^{y} t^{-1} \cdot \psi(t) \, dt = \frac{1}{\rho + 1} \cdot (\ln y)^{\rho + 1} \qquad (y \ge r).$$

It can be simply veryfied that with the function

$$\Lambda(y) := \frac{1}{\rho + 1} \cdot (\log^+ y)^{\rho + 1} \qquad (y \ge 0),$$

we get

$$\Theta'(y) = \begin{cases} 0 & (0 \le y < 1) \\ (\rho + 1)^{-1} \cdot (\ln y)^{\rho + 1} + (\ln y)^{\rho} & (y > 1) \end{cases}$$

and

$$\int_{0}^{y} t^{-1} \cdot \psi'(t) dt =$$

$$= \int_{0}^{y} t^{-1} \cdot \psi(t) dt + \psi(y) = \begin{cases} 0 & (0 \le y < 1) \\ (\rho + 1)^{-1} \cdot (\ln y)^{\rho + 1} + (\ln y)^{\rho} & (y > 1). \end{cases}$$

Since

$$\int_{0}^{y} t^{-1} \cdot \psi(t) \, dt \le \Lambda(y) \qquad (y \ge 0),$$

the second assumption for $\,\psi\,$ is also fulfilled. Therefore for all $\,f\in L^1[a,b]\,$ the equivalence

$$\int_{a}^{b} Mf \cdot (\log^{+} \circ (Mf))^{\rho} < +\infty \iff \int_{a}^{b} |f| \cdot (\log^{+} \circ |f|)^{\rho+1} < +\infty$$

holds, which is the above mentioned Stein's equivalence.

b) Now, let s > 0 be given and define the function ψ as follows:

$$\psi(x) := x^s \qquad (x \ge 0).$$

Then

$$\Phi(x) := x^{s+1} \qquad (x \ge 0)$$

and

$$y \cdot \psi'(y) = s \cdot y^s \qquad (y \ge 0).$$

Furthermore

$$\int_{0}^{y} t^{-1} \cdot \psi(t) \, dt = \frac{y^s}{s} \qquad (y \ge 0)$$

and

$$\Theta'(y) = (s+1) \cdot \int_{0}^{y} t^{s-1} dt = \frac{s+1}{s} \cdot y^{s} \qquad (y \ge 0).$$

In other words

$$\Theta(y) = \frac{y^{s+1}}{s} \qquad (y \ge 0)$$

and

$$\Lambda(y) = \frac{y^s}{s} \qquad (y \ge 0)$$

and our assumptions for ψ (with the constant $c := 1/s^2$) are true. Thus Theorem gives the next equivalence for all 1 :

$$\|Mf\|_p < +\infty \iff \|f\|_p < +\infty,$$

which is the Hardy–Littlewood's (L^p, L^p) -boundedness.

c) Finally, we take s > 0 and

$$\psi(x) := x^s \cdot \log^+ x \qquad (x \ge 0).$$

Then

$$cy \cdot \psi'(y) = c \cdot (sy^s \cdot \ln y + y^s) \le \int_1^y t^{-1} \cdot \psi(t) dt =$$
$$= \frac{1}{s} \cdot y^s \cdot \ln y - \frac{1}{s^2} \cdot y^s + \frac{1}{s^2} \qquad (y \ge r)$$

with $c := 1/(2s^2)$ and with a suitable r > 1. Furthermore

$$\Theta'(y) = \frac{s+1}{s} \cdot y^s \cdot \ln y - \frac{1}{s^2} \cdot y^s + \frac{1}{s^2} \qquad (y \ge 1).$$

Therefore let

$$\Theta(y) := \begin{cases} 0 & (0 \le y < 1) \\ \frac{1}{s} \cdot y^{s+1} \cdot \ln y - \frac{1}{s^2} \cdot y^{s+1} + \frac{1}{s^2} \cdot y & (y \ge 1), \end{cases}$$

and the second assumption on ψ is automatically fulfiled. Thus

$$\int\limits_{a}^{b}\Phi\circ(Mf)<+\infty\iff \int\limits_{a}^{b}\Theta\circ|f|<+\infty.$$

It is easy to see that

$$\int_{a}^{b} \Theta \circ |f| < +\infty \iff \int_{a}^{b} |f|^{s+1} \cdot (\log^{+} \circ |f|) < +\infty,$$

which implies the next equivalence for all 1 :

$$\int_{a}^{b} (Mf)^{p} \cdot (\log^{+} \circ (Mf)) < +\infty \iff \int_{a}^{b} |f|^{p} \cdot (\log^{+} \circ |f|) < +\infty.$$

(where \implies follows from $|f| \le Mf$ a.e. as well also for $p = +\infty$).

We remark that the last equivalence does not hold in the case p = 1. To this end we consider the function $f \in L^1[0,1]$ such that

$$f(x) := \frac{2^n}{(n+1)^3} \qquad (n \in \mathbb{N}, \, 2^{-n-1} < x \le 2^{-n}).$$

Then

$$\int_{0}^{1} |f| \cdot (\log^{+} \circ |f|) < \sum_{n=1}^{\infty} \frac{1}{n^{2}} < +\infty.$$

Since for $x \in (2^{-n-1}, 2^{-n})$ the inequality

$$Mf(x) \ge 2^n \cdot \int_{0}^{2^{-n}} f = 2^{n-1} \cdot \sum_{k=n}^{\infty} \frac{1}{(k+1)^3} > \frac{2^{n-2}}{(n+1)^2} \qquad (11 \le n \in \mathbb{N})$$

is true, so we get

$$\int_{0}^{1} Mf \cdot (\log^{+} \circ (Mf) \ge \sum_{n=10}^{\infty} \int_{2^{-n-1}}^{2^{-n}} Mf \cdot (\log^{+} \circ (Mf) \ge \frac{1}{16} \cdot \sum_{n=11}^{\infty} \frac{1}{n+1} = +\infty.$$

References

 Bennett, C. and R. Sharpley, Interpolation of Operators, Academic Press, London, 1988.

- [2] Hardy, G.H. and J.E. Littlewood, A maximal theorem with functiontheoretic applications, *Acta Math.*, 54 (1930), 81–116.
- [3] Stein, E.M., Note on the class $L \log L$, Studia Math., **32** (1969), 305–310.
- [4] Stein, E.M., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.
- [5] Weisz, F., Convergence and Summability of Fourier Transforms and Hardy Spaces, Birkhäuser, 2017.

P. Simon

Department of Numerical Analysis Eötvös Loránd University Pázmány Péter sétány 1/C. H-1117 Budapest Hungary simon@ludens.elte.hu