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Abstract. We investigate the Hardy–Littlewood maximal function. A
local condition for non-integrability is formulated. Moreover, a generaliza-
tion of the Hardy–Littlewood’s and Stein’s integrability theorem is given.
As special case, we get the classical statements.

1. Introduction

If [a, b] is a compact interval on the real line and f ∈ L1[a, b] (i.e. the
real valuable function f is defined on [a, b] and it is integrable in Lebesgue’s
sense), then Mf (the Hardy–Littlewood maximal function of f) is defined as
follows:

Mf(x) := sup
I

1

|I| ·
∫

I

|f | (x ∈ [a, b]),

where the supremum is taken over all x ∈ I ⊂ [a, b] intervals (and |A| stands
for the Lebesgue measure of a set A ⊂ R). It is well-known [2] that for the
measurable function Mf : [a, b] → [0,+∞] (in other words for the maximal
operator M) the next properties hold: there is an absolute constant C > 0
such that

|{Mf > y}| ≤ C

y
· �f�1 (f ∈ L1[a, b], y > 0)
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(the operator M is of weak type (1, 1)). Moreover, the ”strong” property

|{Mf > y}| ≤ C

y
·

∫

{|f |>y}

|f | (f ∈ L1[a, b], y > 0)

is also true. From this it is clear that

|{Mf = +∞}| ≤ |{Mf > y}| ≤ C

y
· �f�1 → 0 (y → +∞),

i.e. |{Mf = +∞}| = 0 and thus the maximal function is finite a.e. Further-
more [2], for all 1 < p ≤ +∞ with a suitable constant Cp > 0 (depending
only on p)

�Mf�p ≤ Cp· �f�p (f ∈ Lp[a, b])

(the operator M is of type (p, p)). Since |f | ≤ Mf a.e., we can say that for
these exponents p the equivalence

�Mf�p < +∞ ⇐⇒ �f�p < +∞

holds. However, there is a function f ∈ L1[a, b] for which �Mf�1 = +∞ (for
example see the function f0 in the next section).

2. Non-integrability

If f ∈ L1[a, b] is given then let

F (t) :=

t∫

a

|f | (t ∈ [a, b]).

It is obvious that for all a ≤ d < y < b

Mf(x) ≥ 1

x− d
·

x∫

d

|f | ≥ F (y)− F (d)

x− d
(y ≤ x ≤ b).

Therefore

�Mf�1 =

b∫

a

Mf ≥
b∫

y

Mf ≥ (F (y)− F (d))·
b∫

y

dx

x− d
=

= (F (y)− F (d))· (ln(b− d)− ln(y − d)).
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If we take into account that F (y)− F (d) → 0 (y → d), it follows

�Mf�1 ≥ lim sup
y→d+0

((F (y)− F (d))· | ln(y − d)|).

So we get the next

Proposition 1. If f ∈ L1[a, b] and for some points a ≤ d < y < b

lim sup
y→d+0

((F (y)− F (d))· | ln(y − d)|) = +∞,

then �Mf�1 = +∞.

Analogously, if a < e ≤ b, then

lim sup
y→e−0

((F (e)− F (y))· | ln(e− y)|) = +∞ =⇒ �Mf�1 = +∞,

or with an arbitrary point z ∈ [a, b] :

lim sup
y→z

(|F (y)− F (z)|· | ln(|y − z|)|) = +∞ =⇒ �Mf�1 = +∞.

(We see later that in this connection the assumption lim sup ... > 0 is also
enough.)

Since

(F (y)− F (d)) · | ln(y − d)| = (y − d)· | ln(y − d)|· 1

y − d
·

y∫

d

|f | ≤

≤ Mf(d)· (y − d)· | ln(y − d)|
and

(y − d)· ln(y − d) → 0 (y → d+ 0),

it follows (assumed Mf(d) < +∞) that

lim
y→d+0

((F (y)− F (d))· ln(y − d)) = 0,

or
lim

y→e−0
((F (e)− F (y))· ln(e− y)) = 0,

if Mf(e) < +∞. We know that Mf is finite a.e., therefore

lim
y→z

((F (y)− F (z))· ln(|y − z|)) = 0 (a.e. z ∈ [a, b]).
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In other words for such points z ∈ [a, b] we have

(1) lim
n→∞ |In| = 0 =⇒ lim

n→∞

�
ln(|In|)·

�

In

|f |
�
= 0

with every sequence (In) of intervals z ∈ In ⊂ [a, b] (n ∈ N).

We recall that F is differentiable a.e. and if this is true for a point z then

1

y − z
·

y�

z

|f | = F (y)− F (z)

y − z
→ F �(z) = |f(z)| (y → z)

and (1) follows.

For example, we consider the function

f(x) := f0(x) :=

⎧⎪⎨
⎪⎩

1

(x− a)· ln2(x− a)
(a < x ≤ c)

0 (x ∈ [a, b] \ (a, c])

(where c ∈ (a, b) and c− a < 1), . It is not hard to see that f0 ∈ L1[a, b] and

F (y)· | ln(y − a)| = 1 (y ∈ (a, c)).

On the other hand, if

f(x) :=

⎧⎪⎨
⎪⎩

1

(x− a)· | ln(x− a)|3/2 (a < x ≤ c)

0 (x ∈ [a, b] \ (a, c]),

then f ∈ L1[a, b], but

F (y)· | ln(y − a)| = 2·
�
| ln(y − a)| → +∞ (y → a).

The first statement on the integrability of Mf reads as follows [2]:

f ∈ L log+ L[a, b] =⇒ �Mf�1 < ∞.

This means by Proposition 1 that for all z ∈ [a, b] the implication

(2) f ∈ L log+ L[a, b] =⇒ lim sup
y→z

(|F (y)− F (z)|· | ln(|y − z|)|) < +∞

is true. Moreover, it is easy to show
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Proposition 2. Let f ∈ L log+ L[a, b], then for all z ∈ [a, b] we have

lim sup
y→z

(|F (y)− F (z)|· | ln(|y − z|)|) = 0.

Proof. For example, take the points a < z = d < y < b and y − d < 1. Then

F (y)− F (d) =

y∫

d

|f | =
∫

[d,y]∩{|f |<1/
√
y−d}

|f |+
∫

[d,y]∩{|f |≥1/
√
y−d}

|f | ≤

≤
√
y − d+

∫

[d,y]∩{f2≥1/(y−d)}

|f |.

Therefore

(F (y)− F (d))· | ln(y − d)| ≤

≤
√
y − d· | ln(y − d)|+ 2·

∫

[d,y]∩{f2≥1/(y−d)}

|f(x)|· ln(|f(x)|) dx ≤

≤
√
y − d· | ln(y − d)|+ 2·

y∫

d

|f |· (log+ ◦|f |)

and here √
y − d· | ln(y − d)| → 0 (y → d+ 0).

If f ∈ L log+ L[a, b], then

y∫

d

|f |· (log+ ◦|f |) → 0 (y → d+ 0),

which leads to

(F (y)− F (d))· | ln(y − d)| → 0 (y → d+ 0). �

The function f0 shows that the converse of (2) is not true, in contrast to
the above statement on the integrability of Mf. Namely, Stein [3] proved that
for a function f ∈ L1[a, b] , we get

�Mf�1 < +∞ =⇒ f ∈ L log+ L[a, b].

From this it follows immediately that for all f ∈ L1[a, b] the next equivalence
is true:

(3) �Mf�1 < +∞ ⇐⇒ f ∈ L log+ L[a, b]
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and (see Proposition 2)

�Mf�1 < +∞ =⇒ lim
y→z

((F (y)− F (z))· ln(|y − z|)) = 0 (z ∈ [a, b]).

In other words the next consequence holds:

Proposition 3. If f ∈ L1[a, b] and there is a point z ∈ [a, b] such that

lim sup
y→z

(|F (y)− F (z)|· | ln(|y − z|)|) > 0,

then �Mf�1 = +∞.

Now, we consider an example which shows that the assumption �Mf�1 =
= +∞ is not enough for

lim sup
y→z

(|F (y)− F (z)|· | ln(|y − z|)|) > 0.

Proposition 4. There exists f ∈ L1[a, b] such that �Mf�1 = +∞, but

lim sup
y→z

(|F (y)− F (z)|· | ln(|y − z|)|) = 0

for all z ∈ [a, b].

Proof. Indeed, let
cn := qn· 2n (n ∈ N),

where the numbers qn > 0 (n ∈ N) satisfy the conditions

∞∑
n=0

qn < +∞ and

∞∑
n=0

nqn = +∞

and

n·
∞∑

k=n

qn → 0 (n → ∞).

For example the numbers

qn :=
1

(n+ 1)2· ln(n+ 2)
(n ∈ N)

fulfil these requirements. By means of cn’s we define the function

f = f1 : [0, 1] → (0,+∞)

as follows:
f1(x) := cn (x ∈ [2−n−1, 2−n], n ∈ N).
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Then
1∫

0

|f1| =
∞∑

n=0

cn· 2−n−1 =
1

2
·

∞∑
n=0

qn < +∞,

i.e. f1 ∈ L1[0, 1]. However, with a suitable N ∈ N it follows that

1∫

0

|f1|· (log+ ◦|f |) = 1

2
·

∞∑
n=0

qn· log+(cn) = 1

2
·

∞∑
n=N

qn· ln cn =

=
1

2
·

∞∑
n=N

qn(n· ln 2− (2· ln(n+ 1) + ln(ln(n+ 2)).

Here we can assume also that

2· ln(n+ 1) + ln(ln(n+ 2)) <
n· ln 2

2
(N ≤ n ∈ N).

So
1∫

0

|f1|· (log+ ◦|f |) ≥ ln 2

4
·

∞∑
n=N

nqn = +∞.

This means that f1 /∈ L log+ L[0, 1], i.e. �Mf�1 = +∞. Furthermore, let
n ∈ N be given, then

2−n∫

0

|f1| =
∞∑

k=n

cn· 2−k−1 =
1

2
·

∞∑
k=n

qk

and we get

| ln 2−n|·
2−n∫

0

|f1| = n· ln 2
2

·
∞∑

k=n

qk → 0 (n → ∞).

Finally, if 0 < z ∈ [0, 1], then f1 is bounded on [z/2, 1] and this implies

lim
n→∞ |In| = 0 =⇒ lim

n→∞

(
ln(|In|)·

∫

In

|f |
)
= 0

for all intervals z ∈ In ⊂ [0, 1] (n ∈ N). �

Thus for the set

S[a, b] := {f ∈ L1[a, b] : lim
y→z

((F (y)− F (z))· ln(|y − z|)) = 0 (z ∈ [a, b])}
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the inclusions
L log+ L[a, b] ⊂ S[a, b] ⊂ L1[a, b]

are strong:

f1 ∈ S[a, b] \ L log+ L[a, b] and f0 ∈ L1[a, b] \ S[a, b].

3. Integrability

In connection of the equivalence (3) Stein [4, p. 23] says in his famous book
(without proof) that for all functions f ∈ L1[a, b] and for all numbers ρ > 0

b∫

a

Mf · (log+ ◦(Mf))ρ < +∞ ⇐⇒
b∫

a

|f |· (log+ ◦|f |)ρ+1 < +∞

holds. We remark, that a proof for ⇐= can be found in the books of Weisz
and Bennet–Sharpley [5], [1], resp. Next we shall generalize this Stein’s equiv-
alence. As special case, a common proof for the (Lp, Lp) and (L log+ L,L1)-
boundedness follows as well.

To this end let the functions

ψ, Λ : [0,+∞] → [0,+∞]

be given and assume that the next properties hold: ψ, Λ are absolute contin-
uous on all compact intervals I ⊂ [0,+∞), are nondecreasing,

lim
x→+∞ψ(x) = lim

x→+∞Λ(x) = +∞

and ψ(0) = Λ(0) = 0. We consider the functions

Φ(y) := y·ψ(y) (y ≥ 0)

and
Θ(y) := y·Λ(y) (y ≥ 0).

It will be assumed also that there are numbers r, c > 0 such that

c· y·ψ�(y) ≤
y∫

0

t−1·ψ(t) dt ≤ Λ(y) + y·ψ�(y) (a.e. y > r)

and

Θ�(y) =

y∫

0

t−1·Φ�(t) dt (a.e. y > 0).
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Theorem. For all f ∈ L1[a, b] we have

b∫

a

Φ ◦ (Mf) < +∞ ⇐⇒
b∫

a

Θ ◦ |f | < +∞.

It is clear that in the case Θ ≤ Φ the part =⇒ follows simple from
|f | ≤ Mf a.e.

Proof of Theorem. First of all, we remark that by the assumptions there
is α > r such that ψ(α) > 0 and Λ(α) > 0. If g : [0,+∞] → [0,+∞] is
Lebesgue-measurable and a.e. finite, then

b∫

a

g· (ψ ◦ g) =
∫

{g≤α}

g· (ψ ◦ g) +
∫

{g>α}

g· (ψ ◦ g),

where ∫

{g≤α}

g· (ψ ◦ g) ≤ (b− a)·α·ψ(α) < +∞.

Furthermore

∫

{g>α}

g· (ψ ◦ g) =
b∫

a

(Φ ◦ g)·χ{g>α} =

+∞∫

0

|{(Φ ◦ g)·χ{g>α} > y}| dy =

=

Φ(α)∫

0

|{(Φ ◦ g)·χ{g>α} > y}| dy +
+∞∫

Φ(α)

|{(Φ ◦ g)·χ{g>α} > y}| dy =: A+B.

Here

A =

Φ(α)∫

0

|{(Φ ◦ g)·χ{g>α} > y}| dy ≤ (b− a)·Φ(α) < +∞

and (taking into account that Φ is increasing on [α,+∞) and absolute con-
tinuous on [α, z] for all z > α)

B =

+∞∫

Φ(α)

|{(Φ ◦ g)·χ{g>α} > y}| dy =

=

+∞∫

α

|{(Φ ◦ g)·χ{g>α} > Φ(y)}|·Φ�(y) dy =

+∞∫

α

|{g > y}|·Φ�(y) dy.
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Therefore

b∫

a

g· (ψ ◦ g) < +∞ ⇐⇒
+∞∫

α

|{g > y}|·Φ�(y) dy < +∞.

Now we assume that

b∫

a

Θ ◦ |f | =
b∫

a

|f |· (Λ ◦ |f |) < +∞.

Then

+∞∫

α

|{Mf > y}|·Φ�(y) dy ≤ C·
+∞∫

α

y−1·
( ∫

{|f |>y}

|f |
)
·Φ�(y) dy =

= C·
+∞∫

α

y−1·
( b∫

a

|f |·χ{|f |>y}
)
·Φ�(y) dy =

= C·
+∞∫

α

y−1·
( +∞∫

0

|{|f |·χ{|f |>y} > t}| dt
)
·Φ�(y) dy =

= C·
( +∞∫

α

y−1·
( y∫

0

|{|f | > y}| dt+
+∞∫

y

|{|f | > t}| dt
)
·Φ�(y) dy

)
=

= C·
( +∞∫

α

|{|f | > y}|·Φ�(y) dy +

+∞∫

α

y−1·
( +∞∫

y

|{|f | > t}| dt
)
·Φ�(y) dy

)
.

We obtain

+∞∫

α

y−1·
( +∞∫

y

|{|f | > t}| dt
)
·Φ�(y) dy =

=

+∞∫

α

y−1·
( +∞∫

α

|{|f | > t}|·χ[y,+∞)(t) dt
)
·Φ�(y) dy =

=

+∞∫

α

|{|f | > t}|·
( t∫

α

y−1·Φ�(y) dy
)
dt =

+∞∫

α

|{|f | > t}|·Θ�(t) dt.
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So by our previous remark (with |f | and ϕ instead of g and ψ, resp.) the
boundedness

b∫

a

|f |· (Λ ◦ |f |) < +∞

implies
+∞∫

α

|{|f | > t}|·Θ�(t) dt < +∞.

By
c·Φ�(y) = c· (ψ(y) + yψ�(y)) ≤ Θ�(y) =

=

y∫

0

z−1·Φ�(z) dz =

y∫

0

(ψ�(z) + z−1·ψ(z)) dz =

= ψ(y) +

y∫

0

z−1·ψ(z) dz (a.e. y > α)

we get

+∞∫

α

|{|f | > y}|·Φ�(y) dy ≤ c−1·
+∞∫

α

|{|f | > y}|·Θ�(y) dy < +∞.

Summarizing the above facts it follows that

b∫

a

Φ ◦ (Mf) =

b∫

a

Mf · (ψ ◦ (Mf)) < +∞.

Next we assume the last boundedness. Then

b∫

a

|f |· (Λ ◦ |f |) =
∫

{|f |≤α}

|f |· (Λ ◦ |f |) +
∫

{|f |>α}

|f |· (Λ ◦ |f |) ≤

≤ (b− a)·α·Λ(α) +
∫

{|f |>α}

|f |· (Λ ◦ |f |) =: C +D.

Since C < +∞, it is anough to investigate the second expression:

D =

∫

{|f |>α}

|f |· (Λ ◦ |f |) =
∫

{|f |>α}

|f(x)|·
( |f(x)|∫

0

ϕ(y) dy
)
,
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where the function ϕ is defined by means of the equality

Λ(y) =

y∫

0

ϕ(z) dz (y ≥ 0).

Thus

∫

{|f |>α}

|f |· (Λ ◦ |f |) =
∫

{|f |>α}

|f(x)|·
( +∞∫

0

ϕ(y)·χ[0,|f(x)|)(y) dy
)
dx =

=

+∞∫

0

ϕ(y)·
( ∫

{|f |>α}

|f(x)|·χ[0,|f(x)|)(y) dx
)
dy =

=

α∫

0

ϕ(y)·
( ∫

{|f |>α}

|f |
)
dy +

+∞∫

α

ϕ(y)·
( ∫

{|f |>y}

|f |
)
dy ≤

≤ �f�1·
α∫

0

ϕ(y) dy +

+∞∫

α

ϕ(y)·
( ∫

{|f |>y}

|f |
)
dy,

where

�f�1·
α∫

0

ϕ(y) dy = �f�1·Λ(α) < +∞.

We recall [3] that with a suitable y0 > 0

∫

{|f |>y}

|f | ≤ 2y· |{Mf > y}| (y ≥ y0).

Let β := max{y0, α}, then

β∫

α

ϕ(y)·
( ∫

{|f |>y}

|f |
)
dy ≤ �f�1·

β∫

α

ϕ(y) dy = �f�1· (Λ(β)− Λ(α)) < +∞

and
+∞∫

β

ϕ(y)·
( ∫

{|f |>y}

|f |
)
dy ≤ 2·

+∞∫

β

|{Mf > y}|· y·ϕ(y) dy.
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From assumptions on ψ,Λ it follows that

y·ϕ(y) = y·Λ�(y) = Θ�(y)− Λ(y) =

y�

0

t−1·Φ�(t) dt− Λ(y) =

= ψ(y) +

y�

0

t−1·ψ(t) dt− Λ(y) ≤ ψ(y) + y·ψ�(y) = Φ�(y) (a.e. y > α).

Therefore

+∞�

β

|{Mf > y}|· y·ϕ(y) dy ≤
+∞�

α

|{Mf > y}|·Φ�(y) dy ≤

≤
b�

a

Mf · (ψ ◦ (Mf)) < +∞,

which proves the boundedness

b�

a

Θ ◦ |f | =
b�

a

|f |· (Λ ◦ |f |) < +∞. �

4. Special cases

a) First let ρ > 0 and

ψ(x) := (log+ x)ρ (x ≥ 0).

Then

ψ�(y) =

⎧⎨
⎩
0 (0 ≤ y < 1)

ρ· y−1· (ln y)ρ−1 (y > 1)

and
y�

0

t−1·ψ(t) dt =
⎧⎨
⎩
0 (0 ≤ y < 1)

(ρ+ 1)−1· (ln y)ρ+1 (y > 1).

If r := e
√

ρ(ρ+1), then

y·ψ�(y) = ρ· (ln y)ρ−1 ≤
y�

1

t−1·ψ(t) dt = 1

ρ+ 1
· (ln y)ρ+1 (y ≥ r).
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It can be simply veryfied that with the function

Λ(y) :=
1

ρ+ 1
· (log+ y)ρ+1 (y ≥ 0),

we get

Θ�(y) =

⎧⎨
⎩
0 (0 ≤ y < 1)

(ρ+ 1)−1· (ln y)ρ+1 + (ln y)ρ (y > 1)

and
y�

0

t−1·ψ�(t) dt =

=

y�

0

t−1·ψ(t) dt+ ψ(y) =

⎧⎨
⎩
0 (0 ≤ y < 1)

(ρ+ 1)−1· (ln y)ρ+1 + (ln y)ρ (y > 1).

Since
y�

0

t−1·ψ(t) dt ≤ Λ(y) (y ≥ 0),

the second assumption for ψ is also fulfilled. Therefore for all f ∈ L1[a, b] the
equivalence

b�

a

Mf · (log+ ◦(Mf))ρ < +∞ ⇐⇒
b�

a

|f |· (log+ ◦|f |)ρ+1 < +∞

holds, which is the above mentioned Stein‘s equivalence.

b) Now, let s > 0 be given and define the function ψ as follows:

ψ(x) := xs (x ≥ 0).

Then

Φ(x) := xs+1 (x ≥ 0)

and

y·ψ�(y) = s· ys (y ≥ 0).

Furthermore
y�

0

t−1·ψ(t) dt = ys

s
(y ≥ 0)
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and

Θ�(y) = (s+ 1)·
y�

0

ts−1 dt =
s+ 1

s
· ys (y ≥ 0).

In other words

Θ(y) =
ys+1

s
(y ≥ 0)

and

Λ(y) =
ys

s
(y ≥ 0)

and our assumptions for ψ (with the constant c := 1/s2) are true. Thus
Theorem gives the next equivalence for all 1 < p < +∞ :

�Mf�p < +∞ ⇐⇒ �f�p < +∞,

which is the Hardy–Littlewood‘s (Lp, Lp)-boundedness.

c) Finally, we take s > 0 and

ψ(x) := xs· log+ x (x ≥ 0).

Then

cy·ψ�(y) = c· (sys· ln y + ys) ≤
y�

1

t−1·ψ(t) dt =

=
1

s
· ys· ln y − 1

s2
· ys + 1

s2
(y ≥ r)

with c := 1/(2s2) and with a suitable r > 1. Furthermore

Θ�(y) =
s+ 1

s
· ys· ln y − 1

s2
· ys + 1

s2
(y ≥ 1).

Therefore let

Θ(y) :=

⎧⎪⎨
⎪⎩
0 (0 ≤ y < 1)

1
s · ys+1· ln y − 1

s2
· ys+1 + 1

s2
· y (y ≥ 1),

and the second assumtion on ψ is automatically fulfiled. Thus

b�

a

Φ ◦ (Mf) < +∞ ⇐⇒
b�

a

Θ ◦ |f | < +∞.
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It is easy to see that

b∫

a

Θ ◦ |f | < +∞ ⇐⇒
b∫

a

|f |s+1· (log+ ◦|f |) < +∞,

which implies the next equivalence for all 1 < p < +∞ :

b∫

a

(Mf)p· (log+ ◦(Mf)) < +∞ ⇐⇒
b∫

a

|f |p· (log+ ◦|f |) < +∞.

(where =⇒ follows from |f | ≤ Mf a.e. as well also for p = +∞ ).

We remark that the last equivalence does not hold in the case p = 1. To
this end we consider the function f ∈ L1[0, 1] such that

f(x) :=
2n

(n+ 1)3
(n ∈ N, 2−n−1 < x ≤ 2−n).

Then
1∫

0

|f |· (log+ ◦|f |) <
∞∑

n=1

1

n2
< +∞.

Since for x ∈ (2−n−1, 2−n) the inequality

Mf(x) ≥ 2n·
2−n∫

0

f = 2n−1·
∞∑

k=n

1

(k + 1)3
>

2n−2

(n+ 1)2
(11 ≤ n ∈ N)

is true, so we get

1∫

0

Mf · (log+ ◦(Mf) ≥
∞∑

n=10

2−n∫

2−n−1

Mf · (log+ ◦(Mf) ≥ 1

16
·

∞∑
n=11

1

n+ 1
= +∞.
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