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Abstract. In this short note, we demonstrate that in a σ-finite measure
space the union and the intersection of arbitrary (i.e., not necessary count-
able) families of measurable sets can be defined in a natural manner. By
examples, we also show that the σ-finiteness of the underlying measure
space is only sufficient for this property but not necessary.

The notions that we discuss below turn out to be significant if one tries
to extend the Radon–Nikodym Theorem for non-σ-finite measure spaces. For
details, we refer to Section 1.1 and pages 65–71 of the recent monograph [1] by
Fonseca and Leoni. More comments will be given at the end of this note.

Definition 1. Given a measure space (X,A, μ), we say that a set A ∈ A is
μ-contained in B ∈ A if μ(A \ B) = 0 and we denote this fact by A ⊆μ B.
Analogously, a set A ∈ A is said to be μ-equal toB ∈ A if μ((A\B)∪(B\A)) = 0
holds and this property is denoted as A =μ B.

It is easy to see that =μ is an equivalence relation on the σ-algebra A, and
⊆μ is a partial ordering on the equivalence classes. It can also be shown that
the function dμ defined by

dμ(A,B) := μ((A \B) ∪ (B \A)) (A,B ∈ A)
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is a semimetric on A and it is a metric on the equivalence classes with respect
to the equivalence relation =μ.

Definition 2. For a family {Aγ : γ ∈ Γ} ⊆ A of measurable subsets, we say
that a set A ∈ A is its μ-essential union if

Aγ ⊆μ A (γ ∈ Γ),

and if, for A∗ ∈ A,
Aγ ⊆μ A∗ (γ ∈ Γ),

holds, then A ⊆μ A∗. The notion of the μ-essential intersection is defined com-
pletely in a similar manner: A set A ∈ A is called the μ-essential intersection
of the family {Aγ : γ ∈ Γ} ⊆ A if

A ⊆μ Aγ (γ ∈ Γ),

and if, for A∗ ∈ A,
A∗ ⊆μ Aγ (γ ∈ Γ),

is satisfied, then A∗ ⊆μ A.

Clearly, if the sets A,A ∈ A exist, then they are uniquely determined up to
the equivalence =μ. It is also easy to see that, for all countable subset Γ0 ⊆ Γ,

A ⊆μ

⋂
γ∈Γ0

Aγ ,
⋃

γ∈Γ0

Aγ ⊆μ A

are valid. On the other hand, in general, it is not true that A ⊆μ

⋂
γ∈Γ Aγ , and⋃

γ∈Γ Aγ ⊆μ A. To see the clear difference from the standard notions of union
and intersection, consider the following example. Let (R,L, λ) be the standard
Lebesgue measure space on R. Then, for any non-Lebesgue measurable subset
Γ ⊆ R, the essential union of the family {{γ} : γ ∈ Γ} is the empty set
because λ({γ} \ ∅) = 0 for all γ ∈ Γ. On the other hand, the standard union
of this family is Γ, which cannot be λ-equal to the empty set because it is
non-measurable.

The following theorem establishes the existence of the essential union and
intersection of arbitrary families of measurable sets in σ-finite measure spaces.

Theorem. Let (X,A, μ) be a σ-finite measure space. Then any family {Aγ :
: γ ∈ Γ} ⊆ A of measurable sets has a μ-essential union and a μ-essential
intersection.

For the proof of the above Theorem, we shall need the following auxiliary
result.
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Lemma. If (X,A, μ) is a σ-finite measure space then there exists a finite mea-
sure ν on A such that μ and ν are mutually absolutely continuous with respect
to each other, that is, μ(A) = 0 holds if and only if ν(A) = 0.

Proof. The statement is trivial if μ(X) < ∞, therefore we may assume
that μ(X) = ∞. Let A1, A2, . . . be pairwise disjoint measurable sets such that
X =

⋃∞
n=1 An and 0 < μ(An) < ∞ for all n ∈ N. Then define ν in the following

way:

ν(A) :=
∞∑

n=1

μ(A ∩An)

2nμ(An)
(A ∈ A).

One can easily verify that ν is a measure on A, ν(X) = 1, and μ and ν are
mutually absolutely continuous with respect to each other. �

Proof of the Theorem. It is sufficient to prove the statement about the
existence of the μ-essential union, because the assertion for the μ-essential
intersection follows from this by switching to complements of the sets belonging
to the given family. In view of the Lemma, we can assume that μ(X) < ∞.
We may also assume that the family {Aγ : γ ∈ Γ} is closed under countable
union.

We are going to show that, for all n ∈ N, there exists γn ∈ Γ such that

μ(Aγ \Aγn
) <

1

n
(γ ∈ Γ).

Let γn1 ∈ Γ be arbitrary. If, for all γ ∈ Γ, we have μ(Aγ \ Aγn1
) < 1

n , then
the choice γn := γn1 completes the argument. In the other case, there exists
γ� ∈ Γ such that μ(Aγ′ \Aγn1

) ≥ 1
n . Since the family is closed under countable

union, there exists γn2
∈ Γ such that Aγ′ ∪Aγn1

= Aγn2
. Then

Aγn2
⊇ Aγn1

and μ(Aγn2
) ≥ μ(Aγn1

) +
1

n
.

If, for all γ ∈ Γ, we have μ(Aγ \ Aγn2
) < 1

n , then with γn := γn2
we are done.

Otherwise, there exists γ� ∈ Γ such that μ(Aγ′ \Aγn2
) ≥ 1

n . Then there exists
γn3 ∈ Γ such that Aγ′ ∪Aγn2

= Aγn3
and we have

Aγn3
⊇ Aγn2

and μ(Aγn3
) ≥ μ(Aγn2

) +
1

n
.

Continuing this procedure, it terminates after finitely many steps, because the
measure space is finite and the measure of the sequence increases by 1

n in each
step.
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Finally, let

A :=

∞⋃
n=1

Aγn .

Then, for all γ ∈ Γ,

μ(Aγ \A) <
1

n
(n ∈ N),

therefore μ(Aγ \A) = 0, i.e., Aγ ⊆μ A.

If A∗ ∈ A has similar properties as A, then it μ-contains Aγn
for all n ∈ N,

hence it should μ-contain A, too. �

The σ-finiteness of the measure space is neither necessary or sufficient for the
conclusion of the theorem. To see this, let A be the σ-algebra of all countable
and co-countable subsets of R and define two measures, μ and ν as follows:
let μ(A) := 0 if A is countable and μ(A) := ∞ if A is co-countable (i.e., its
complement is countable), and let ν be the counting measure, i.e., let ν(A) := n
if A is finite and contains n elements and let ν(A) := ∞ if A has infinitely many
elements. Obviously, the two measure spaces (X,A, μ) and (X,A, ν) are not
σ-finite.

First we show that the conclusion of the Theorem holds in (X,A, μ). Let
{Aγ : γ ∈ Γ} ⊆ A be a family of measurable sets. If, for each γ ∈ Γ, the set Aγ

is countable, then the empty set (moreover, any countable set) can be chosen
as the μ-essential union of the family. If, for some γ0 ∈ Γ, Aγ0

is co-countable,
then R (or any co-countable set) can be chosen as the μ-essential union of the
family.

Finally, let Γ ⊆ R be a non-countable set such that its complement is also
not countable. We show that the family {{γ} : γ ∈ Γ} cannot have a ν-essential
union. To see this, observe that a set A ∈ A has ν measure zero if and only if
A = ∅. Thus, A ⊆ν B is equivalent to the standard inclusion A ⊆ B. Hence,
the ν-essential union of the family {{γ} : γ ∈ Γ} should be equal to the set Γ,
which does not belong to A, i.e., which is not measurable. (This second example
was also observed by Zoltán Boros during the 16th Debrecen-Katowice Winter
Seminar in Hernádvécse.)

The following result was established in [1, Theorem 108]. Here the notation
≤μ stands for inequality which holds μ-almost everywhere.

Corollary. Let (X,A, μ) be a σ-finite measure space. Then, for any family
{fγ : X → [−∞,+∞] | γ ∈ Γ} of extended real-valued measurable functions,
there exist measurable functions f, f : X → [−∞,+∞] such that

f ≤μ fγ ≤μ f (γ ∈ Γ),
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and if f∗, f∗ : X → [−∞,+∞] are measurable functions such that

f∗ ≤μ fγ ≤μ f∗ (γ ∈ Γ),

then f∗ ≤μ f and f ≤μ f∗.

The μ-uniquely determined functions f and f defined in the above corol-
lary are called the essential infimum and essential supremum of the family of
measurable functions (cf. [1, Definition 106]). It is easy to see that, for all
countable subset Γ0 ⊆ Γ,

f ≤μ inf
γ∈Γ0

fγ , sup
γ∈Γ0

fγ ≤μ f.

On he other hand, in general, it is not true that f ≤μ infγ∈Γ fγ , and supγ∈Γ fγ ≤μ

≤μ f .

The above result can easily be deduced from the Theorem by applying it to
the epigraphs of the functions and observing that, for two extended real-valued
functions f, g : X → [−∞,+∞] the relation f ≤μ g (i.e., the inequality f ≤ g
holds μ almost everywhere) if and only if epi g ⊆μ⊗λ epi f , where μ⊗λ denotes
the product measure of μ and the Lebesgue measure λ.

In the book [1] first the notions of μ-essential supremum and infimum of
families of measurable functions is defined. The concepts of μ-essential union
and intersection of families of measurable sets are then introduced via the
μ-essential supremum and infimum of their characteristic functions. In this
note we followed a different approach, we defined the notions μ-essential union
and intersection of families of measurable sets first.

Those measure spaces where the conclusion of our Theorem remains valid
are called localizable by the terminology of the book [1]. It turns out that the
Radon–Nikodym Theorem remains valid for measures on such spaces.
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