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(Received January 29, 2020; accepted April 15, 2020)

Abstract. Polynomial-like Boolean functions form a class of the Boolean
functions invariant with respect to a special transform of the linear space
of the two-valued logical functions. Another special set of the Boolean-
functions are the set of the symmetric functions. In an earlier article we
introduced the class of the symmetric polynomial-like Boolean functions
and investigated some elementary properties of such functions. In the
present article we deal with the special case of the homogeneous symmetric
polynomial-like Boolean functions.

In this article disjunction and logical sum, conjunction and logical product,
exclusive or and modulo two sum, as well as complementation and negation
are used in the same sense and they are denoted respectively by ∨, ∧, ⊕ and .
The elements of the field with two elements and the elements of the Boolean
algebra with two elements are denoted by the same signs, namely by 0 and 1;
N denotes the non-negative integers, and N+ the positive ones.

1. Introduction

Logical functions and especially the two-valued ones have important role in
our everyday life, so it is easy to understand why they are widely investigated.
A scope of the investigations is the representations of these functions and the
transforms from one representation to another ([3], [4], [5]). Another area of
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the examinations is the search of special classes of the set of these functions.
Post determined the closed classes of the switching functions [11], but there
are a lot of another classes of the Boolean functions invariant with respect
to some property. Such properties can be for example linear transforms. In
[6] the author of the present paper introduced a class of the Boolean functions
invariant under a special linear transform. The functions of that class are called
polynomial-like Boolean functions.

1.1. Represantations of a Boolean function

It is well-known that an arbitrary two-valued logical function of n variables
can be written in the uniquely determined canonical disjunctive normal form,
i.e. as a logical sum whose members are pairwise distinct logical products of
n factors, where each of such logical products contains every logical variable
exactly once, either negated or not negated exclusively. Clearly, there exist
exactly 2n such products. Supposing that the variables are indexed by the
integers 0 ≤ j < n and the variable indexed by j is denoted by xj , these
products can be numbered by the numbers 0 ≤ i < 2n in such a way that we
consider the non-negative integer containing 0 in the j-th position of its binary
expansion if the j-th variable of the given product is negated, and 1 in the other
case. Of course, this is a one to one correspondence between the 2n distinct

products and the integers of the interval [0..2n − 1], and if i =
∑n−1

j=0 a
(i)
j 2j ,

where a
(i)
j is either 0 or 1, then the product corresponding to it is

(1.1) m
(n)
i =

2n−1∧
j=0

x

(
a
(i)
j

)

j ,

where x(0) = x = 0⊕x and x(1) = x = 1⊕x. Such a product is called minterm
(of n variables).

With the numbering given above we numbered the Boolean functions of n
variables, too. A Boolean function is uniquely determined by the minterms
contained in its canonical disjunctive normal form, so a Boolean function is
uniquely determined by a 2n long sequence of 0-s and 1-s, where a 0 in the j-th

position (now 0 ≤ j < 2n) means that m
(n)
j doesn’t occur in that function, and

1 means that the canonical disjunctive normal form of the function contains
the minterm of the index j (this sequence is the spectrum of the canonical
disjunctive normal form of the function, and similarly will be defined the spectra

with respect to other representations of the function), i.e. for l =
∑2n−1

i=0 α
(l)
i 2i

with α
(l)
i ∈ {0, 1}

(1.2) f
(n)
l =

2n−1∨
i=0

(
α
(l)
i ∧m

(n)
i

)
.

Now f
(n)
l denotes the l-th Boolean function of n variables.
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Another possibility for giving a Boolean function is the so-called Zhegalkin-

polynomial. Let S
(n)
i = ∧n−1

j=0 x
a
(i)
j

j , where x0 = 1 = 0 ∨ x, x1 = x = 1 ∨ x

and i =
�n−1

j=0 a
(i)
j 2j again. This product contains only non-negated variables,

and the j-th variable is contained in it if and only if the j-th digit is 1 in the
binary expansion of i. There exist exactly 2n such products which are pairwise
distinct. Now any Boolean function of n variables can be written as a modulo
two sum of such terms, and the members occurring in the sum are uniquely
determined by the function. That means that we can give the function by a
2n-long 0 - 1 sequence, and if the i-th member of such a sequence is ki then

(1.3) f (n) =
2n−1⊕
i=0

�
ki ∧ S

(n)
i

�
.

But this polynomial can be considered as a polynomial over the field of two
elements, and in this case we write the polynomial in the following form:

(1.4) f (n) =

2n−1�
i=0

kiS
(n)
i .

where now S
(n)
i =

�n−1
j=0 x

a
(i)
j

j , and the sum, the product and the exponentiation
are the operations of the field.

Between the first and the second representation of the same Boolean func-
tion there is a very simple linear algebraic transform. Considering the coef-
ficients of the canonical disjunctive normal form of a Boolean function of n
variables and the coefficients of the Zhegalkin polynomial of a function of n
variables, respectively, as the components of an element of a 2n-dimensional
linear space over the field of two elements, denoted by F2, the relation between
the vectors belonging to the two representations of the same Boolean function
of n variables can be given by k = A(n)α. Here k is the vector containing
the components of the Zhegalkin polynomial, α is the vector, composed of the
coefficients of the disjunctive representation of the given function, and A(n) is
the matrix of the transform in the natural basis.

For the matrix of the transform it is true that

(1.5) A(n) =

⎧⎪⎪⎨
⎪⎪⎩

(1) if n = 0

�
A(n−1) 0(n−1)

A(n−1) A(n−1)

�
if n ∈ N+

(this form of the matrix shows that for every n ∈ N, A(n) is the n-th power

of the two-order

�
1 0
1 1

�
regular quadratic matrix, if the operation is the

Kronecker-product).
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From the previous results immediately follows that

(
A(n+1)

)2

=

(
A(n) 0(n)

A(n) A(n)

)(
A(n) 0(n)

A(n) A(n)

)
=

=

( (
A(n)

)2
0(n)

0(n)
(
A(n)

)2
)

(1.6)

and as
(
A(0)

)2
= (1), so we get by induction that

(1.7)
(
A(n+1)

)2

= I(n+1),

where I(n) denotes the n-order identity matrix.

1.2. Polynomial-like Boolean functions

Let us consider again the transform between the canonical disjunctive nor-
mal form and the Zhegalkin polynomial of the same function. If α is the
spectrum of the canonical disjunctive normal form of the function, and k is
the spectrum of the Zhegalkin polynomial of the function, then k = A(n)α. In
the special case when α = k, the corresponding function is a polynomial-like
Boolean function [6]. As A(0) = (1), so each of the two zero variable Boolean
functions is polynomial-like. Now let u = u0u1 be the spectrum of the canoni-
cal disjunctive normal form of a Boolean function f of n + 1 variables, where
n is a nonnegative integer. Then

(1.8)

(
u0

u1

)
=

(
A(n) 0(n)

A(n) A(n)

)(
u0

u1

)

if and only if u0 = A(n)u0 and u1 = A(n)u0+A(n)u1 = u0+A(n)u1, that is f is
polynomial-like if and only if u0 =

(
A(n) + I(n)

)
u1, where u1 is the spectrum

of the canonical disjunctive normal form of an arbitrary Boolean function of
n variables. As a consequence we get that the number of the n + 1 variable
polynomial-like Boolean functions is equal to 22

n

. It is easy to see, too, that
the spectra of the canonical disjunctive normal forms of the polynomial-like
Boolean functions of n+1 variables make up a 2n-dimensional subspace of the
2n+1-dimensional linear space of the spectra of the canonical disjunctive normal
forms of all of the n+ 1 variable Boolean functions. This space is spanned by
the columns of the following matrix:

(1.9)

(
A(n) + I(n)

I(n)

)
.
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1.3. Symmetric functions and symmetric polynomials

Definition 1.1. Let n ∈ N, let X and Y be sets, f : Xn → Y and π an
arbitrary element of the symmetric group Sn. The function f is symmetric, if
for any (u0, · · · , ui, · · · , un−1) ∈ Xn

(1.10) f (u0, · · · , ui, · · · , un−1) = f
(
uπ(0), · · · , uπ(i), · · · , uπ(n−1)

)
.

If K is a field, and p ∈ K [x0, · · · , xi, · · · , xn−1], then p is a symmetric polyno-
mial over K, if

(1.11) p = p ◦ (xπ(0), · · · , xπ(i), · · · , xπ(n−1)

)
,

where ◦ denotes the composition.

Theorem 1.1. The Boolean function f is symmetric if and only if its Zhegalkin-
polynomial is symmetric.

Proof. Let n be a nonnegative integer and p a symmetric polynomial in n
indeterminates over the field K, furthermore let p̂ be the polynomial function
belonging to p. If π is a permutation of the set {0, · · · , n− 1}, then for any
element u0 · · · un−1 of the set Kn

p̂ (u0, · · · , un−1) = p ◦ (u0, · · · , un−1) =

= (p ◦ (x0, · · · , xn−1)) ◦ (u0, · · · , un−1) =

=
(
p ◦ (xπ−1(0), · · · , xπ−1(n−1)

)) ◦ (u0, · · · , un−1) =

= p ◦ ((xπ−1(0), · · · , xπ−1(n−1)

) ◦ (u0, · · · , un−1)
)
=

= p ◦ ((x0, · · · , xn−1) ◦
(
uπ(0), · · · , uπ(n−1)

))
=

= p ◦ (uπ(0), · · · , uπ(n−1)

)
=

= p̂
(
uπ(0), · · · , uπ(n−1)

)
,

(1.12)

that is, if the polynomial p is symmetric, then so is the polynomial function
determined by p, too.

Now let K be a field of q elements and ϕ : Kn → K a symmetric function.
Then there exists one and only one polynomial p of degree at most q − 1 in
every indeterminates over that field that p̂ = ϕ, namely

(1.13) p =
∑

u0···un−1∈Kn

ϕ (u0, · · · , un−1)
n−1∏
i=0

(
e− (xi − ui)

q−1
)
.
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Then

p[x0, · · · , xn−1] =
∑

u0···un−1∈Kn

ϕ (u0, · · · , un−1)
n−1∏
i=0

(
e− (xi − ui)

q−1
)
=

=
∑

u0···un−1∈Kn

ϕ (u0, · · · , un−1)

n−1∏
i=0

(
e− (

xπ(i) − uπ(i)

)q−1
)
=

=
∑

u0···un−1∈Kn

ϕ
(
uπ(0), · · · , uπ(n−1)

)×(1.14)

×
n−1∏
i=0

(
e− (

xπ(i) − uπ(i)

)q−1
)
=

=
∑

u0···un−1∈Kn

ϕ (u0, · · · , un−1)
n−1∏
i=0

(
e− (

xπ(i) − ui

)q−1
)
=

= p[xπ(0), · · · , xπ(n−1)], .

so also the polynomial p is symmetric.

Both parts of the above proof obviously apply even when K is a field of
two elements, and then ϕ = p̂ is a Boolean function and p is the corresponding
Zhegalkin polynomial. �

Remark 1.1. The polynomial function for a symmetric polynomial is a sym-
metric function, but the converse is not necessarily true. There are infinitely
many polynomials with the same polynomial function over a finite field, most
of which are not symmetric even when the corresponding polynomial func-
tion is symmetric. For example, the polynomial function for the polynomi-
als p(1) = x0x

2
1 and p(2) = x0x1 over the field of two elements is the sym-

metric function p̂ = x0x1 , but p(1) is not a symmetric polynomial, since
p(1) = x0x

2
1 �= x2

0x1 = p(3).

It is worth to mention the following fact.

Theorem 1.2. Let k be a nonnegative integer and k ≤ n ∈ N. The k-deg-
ree homogeneous symmetric Zhegalkin-polynomial in n indeterminates is the
k-degree elementary symmetric polynomial in n indeterminates over F2.

Proof. A Zhegalkin-polynomial is a polynomial of degree at most 1 in every
indeterminates over F2, so every monomial of such a polynomial is a product
of some distinct indeterminates of the polynomial. That means that the degree
of a term is equal to the number of the indeterminates occurrence in that term.
If the polynomial is homogeneous and symmetric, and the degree of one of its
terms is k then the polynomial is the sum of the k-degree monomials and only



Homogeneous symmetric polynomial-like Boolean functions 103

of these monomials. But now each of the k-degree monomial is a product of k
distinct indeterminates and the polynomial is the sum of every such term, and
this is the k-degree elementary symmetric polynomial in n indeterminates. �

By this result we can determine a homogeneous symmetric Zhegalkin-poly-
nomial by fixing the number of the indeterminates and the degree of the poly-
nomial, that is by the ordered pair of (n; k) where n is the number of the
indeterminates and k is the degree of the monomials occuring in the polyno-
mial. Similarly, if A is a set of nonnegative integers not greater than n then
(n;A) determines a symmetric Zhegalkin-polynomial containing the k-degree
monomial if and only if k ∈ A.

Let n be a nonnegative integer, n ≥ k ∈ N and A is a subset of the non-
negative integers not greater than n. Then p(n;k) is the k-degree homogeneous
symmetric Zhegalkin-polynomial in n indeterminates and p(n;A) =

∑
k∈A p(n;k).

The condition that k ≤ n is not necessary, if we consider p(n;k) as the
zero-polynomial in the case when k is not a nonnegative integer not greater
than n.

As 2a = 0 for any a ∈ F2, so p(n;A1)+p(n;A2) = p(n;A1ΔA2), where Δ denotes
the symmetric difference, that is, A1ΔA2 = (A1 ∩ Ā2) ∪ (Ā1 ∩A2).

If p(n;A) is polynomial-like, then the Boolean-function f belonging to that
polynomial is the logical sum of the minterms containing exactly n−k negated
variables, as the spectra of the function and the polynomial are identical.

1.4. Earlier results

In this subsection we summerize the results contained in [8] relevant to the
present paper.

By Proposition 7. in [6] if f (x0, · · · , xn−1) is an n-variable polynomial-like
Boolean function, and π is in Sn, that is in the symmetric group of n elements,
then f

(
xπ(0), · · · , xπ(n−1)

)
is also a polynomial-like Boolean function. As the

modulo two sum of polynomial-like Boolean functions is again a polynomial-
like Boolean function, so if f is an n-variable polynomial-like Boolean function,
then

(1.15) g(x0, · · · , xn−1) = ⊕π∈Sn
f(xπ(0), · · · , xπ(n−1))

is evidently a symmetric polynomial-like Boolean function. By this result the
following theorem is not very surprising.

Theorem 1.3. For every nonengative integer n there are symmetric polynomial-
like Boolean functions.
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Proof. The 0-function of n variables is polynomial-like and symmetric for every
nonnegative integer n, and this is true for the Boolean function belonging to
the monomial of p =

∏n−1
i=0 xi that is for the n-variable f =

∧n−1
i=0 xi AND-

function. �

Theorem 1.4. For any n ∈ N the spectra of the symmetric polynomial-like
Boolean functions of n-variables form a linear space.

Proof. For a given nonnegative integer n the sum of symmetric functions of
n variables is a symmetric function, and over the field of two elements this is
enough to be a linear space. Similarly, the set of the polynomial-like Boolean
functions of n variables is a linear space, but then the intersection of the two
spaces is a linear space, too. �

Theorem 1.5. If n is a positive integer, then the negated function of a sym-
metric polynomial-like Boolean function of n variables is not a symmetric
polynomial-like Boolean function.

Proof. The index of a polynomial-like Boolean function of at least one variable
is an even number (see [7], Proposition 3.), so the negated function can not be
polynomial-like, as then 22

n − 1− k is an odd number. �

Corollary 1.1. If n is a positive integer then at most half of the n-variable sym-
metric functions is polynomial-like, so the space of the symmetric polynomial-
like Boolean functions of n-variables is a proper subspace of the space of the
n-variable symmetric Boolean functions.

Proof. The complement of a symmetric Boolean function is symmetric, and
it is different from the original one. �

Theorem 1.6. For any 3 ≤ n ∈ N the collection of the symmetric polynomial-
like Boolean functions is a proper subspace of the space of the polynomial-like
Boolean functions.

Proof. The number of the n-variable symmetric Boolean functions is equal to
2n+1, and exactly half of the indices of that functions are even, so for a positive
integer n the number of the symmetric polynomial-like Boolean functions is at
most 2n. For that n the cardinality of the set of the polynomial-like Boolean
functions of n variables is equal to 22

n−1

. If n ≥ 3 then 2n−1 > n, and then
22

n−1

> 2n, the statement is true. �
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2. New results

In the following, unless we say otherwise, polynomial means a polynomial
over F2 of degree at most one in every indeterminate, and if p is the Zhegalkin
polynomial of a polynomial-like Boolean function then also the polynomial itself
is called as polynomial-like.

In this article the zero polynomial has no degree.

The following statement is almost obvious.

Theorem 2.1. Let n be a nonnegative integer. The degree of the Zhegalkin
polynomial of an n-variable f �= 0 Boolean function is at most n.

Proof. The Zhegalkin polynomial of an n-variable Boolean function is a poly-
nomial in n indeterminates. The degree of a nonzero polynomial is the max-
imum of the degrees of its terms. A Zhegalkin polynomial is a polynomial of
degree at most one in every indeterminate, so every monomial of such a poly-
nomial is a product of certain distinct indeterminates and then the degree of
the monomial is the number of the indeterminates contained by that term, that
means not greater than n. �

Theorem 2.2. For every nonnegative integer n the Boolean function belonging
to the homogeneous Zhegalkin polynomial of degree n in n indeterminates is
polynomial-like.

Proof. The homogeneous Zhegalkin polynomial of degree n in n indeter-
minates is a monomial that is the product of the n indeterminates and this
polynomial is the Zhegalkin polynomial of the n-variable AND-function which
is a polynomial-like Boolean function. �

Theorem 2.3. Let k be a nonnegative integer and let k ≤ n ∈ N. If the
Boolean function of a homogeneous symmetric Zhegalkin-polynomial of degree
k in n indeterminates is not polynomial-like then the Boolean function of a ho-
mogeneous symmetric Zhegalkin-polynomial of degree k in n+1 indeterminates
is not polynomial-like, too.

Proof. If the polynomial 0 �= p = p(0) + xnp
(1) in n+1 indeterminates, where

p(0) and p(1) are polynomial of the indeterminates x0, . . . , xn−1, is

• a polynomial of degree n ≥ k, then p(0) is a polynomial of degree at
most k, as every term of p and then every term of p(0), too, is of degree
maximum k;
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• homogeneous, then also p(0) is homogeneous, because p(0) and xnp
(1) have

no common terms;

• symmetric, then p(0) is symmetric, too, since for any permutation of the
indeterminates x0, · · · , xn−1 there is no common term in p(0) and xnp

(1);

• the Zhegalkin polynomial of an n + 1-variable polynomial-like Boolean
function, then p(0) is the Zhegalkin polynomial of an n-variable polynomial-

like Boolean function. Indeed, if the spectrum of p is u =

(
u(0)

u(1)

)
, where

u(0) is the vector composed of the first 2n components of u, then u(0) and
u(1) is the spectrum of p(0) and p(1), respectively. If p is polynomial-like,

then from

(
u(0)

u(1)

)
= u = A(n+1)u =

(
A(n) 0(n)

A(n) A(n)

)(
u(0)

u(1)

)
follows that

u(0) = A(n)u(0), so p(0) is polynomial-like.

Based on the above properties, if p is an n + 1 indeterminate k-degree ho-
mogeneous symmetric polynomial which is the Zhegalkin polynomial of an
n+ 1-variable polynomial-like Boolean function, then p(0) is a k-degree homo-
geneous symmetric polynomial in n indeterminates belonging to an n-variable
polynomial-like Boolean function. From this follows that the theorem holds. �
Corollary 2.1. If for an integer n not less than the nonnegative integer k the
Boolean function belonging to a k-degree homogeneous symmetric Zhegalkin-
polynomial in n indeterminates is not polynomial-like and n ≤ m is an inte-
ger then the Boolean function belonging to a k-degree homogeneous symmetric
Zhegalkin-polynomial in m indeterminates is not polynomial-like, too.

Proof. It follows immediately from the previous theorem by induction on m. �

Definition 2.1. Let n ∈ N and 2n > i ∈ N. i can be written in a unique
way in the form i =

∑n−1
l=0 il2

i where for any nonnegative index l less then n

il ∈ {0, 1} and i0 · · · in−1 = i ∈ {0, 1}n. Then w (i) = w (i) =
∑n−1

l=0 il is the
weight of i and i covers the vector j0 · · · jn−1 = j ∈ {0, 1}n belonging to the

nonnegative integer 2n >
∑n−1

l=0 jl = j, if for each of the indices l il ≥ jl. The
fact that i covers j is denoted by i � j. In the case of i � j we also say that i
covers j.

Remark 2.1. If n ∈ N, 2n > i ∈ N, 2n > j ∈ N and i � j, then i ≥ j and
w (i) ≥ w (j), since under the given conditions i =

∑n−1
l=0 il2

l ≥ ∑n−1
l=0 jl2

l = j

and w (i) =
∑n−1

l=0 il ≥
∑n−1

l=0 jl = w (j).

Theorem 2.4. Let n be a nonnegative integer and let n ≥ k ∈ N. Then

p(n;k) is polynomial-like if and only if

(
w
k

)
is an even number for every integer

k < w ≤ n.
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Proof. p(n;k) is polynomial-like if and only if u = Au, where u is the spectrum

of the polynomial, that is, if ui = vi = (Au)i =
∑2n−1

j=0 ai,juj =
∑i

j=0 ai,juj for
every nonnegative integer i less than 2n. The i-th component ui of u belonging
to p(n;k) is equal to 1 if and only if w (i) = k and ai,j = 1 exactly in the case
when i covers j (see the Corollary in [5]). By the Remark above i ≥ j if i � j.
Depending from the weight of i we have to distinguish three cases:

1. if wi = w (i) < k, then ui = 0, furthermore if uj = 1 then ai,j = 0, so in

that case ai,juj = 0 for every 0 ≤ j ≤ i, and then vi =
∑i

j=0 ai,juj = 0 = ui;

2. if wi = w (i) = k then there exists one and only one nonnegative integer
j not greater than i that uj = 1 and ai,j = 1, namely j = i, so now in the

sum
∑i

j=0 ai,juj there is exactly one nonzero member, ai,iui, therefor vi =

=
∑i

j=0 ai,juj = ai,iui = 1 = ui;

3. finally let i be such an integer that wi = w (i) > k. Then there are

(
wi

k

)

such index j, that i � j and wj = w (j) = k, and then vi =
∑i

j=0 ai,juj =

=
∑

i�j uj =
∑

i�j 1 = 0 = ui if and only if

(
wi

k

)
is an even number. �

Corollary 2.2. Let n be a nonnegative integer. Then

1. p(n;0) is polynomial-like if and only if n = 0;

2. p(n;n) is polynomial-like for every nonnegative integer n;

3. p(n+1;n) is polynomial-like if and only if n is an odd number.

Proof. 1. wi = w (i) = 0 if and only if i = 0. Now there is no such i, that

w (i) < 0, and if n > 0, then for instance

(
n
0

)
= 1 is not an even number;

2. the weight of the index of a term of a Zhegalkin-polynomial is equal to
the number of the indeterminates occuring in that term so an n-indeterminate
Zhegalkin polynomial has no member with index 2n > i ∈ N such that wi =
= w (i) > n;

3. in this case it is only true for n + 1 that w(i) > n, and

(
n+ 1
n

)
=

=

(
n+ 1
1

)
= n+ 1 is even exactly in the case when n is odd. �
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Remark 2.2. The first two cases are not new results. On the one hand the
n-variable constant 1-function is polynomial-like if and only if n = 0 (see Propo-
sition 3 and the Remark after Proposition 6 in [7] and p(n;0) is the Zhegalkin
polynomial of that function. On the other hand the second statement says the
same as Theorem 2.2 in this article.

Theorem 2.5. Let l be a positive and t a nonnegative integer and let k =
= 2l (2t+ 1) − 1. Then p(n;k) is polynomial-like, if k ≤ n < k + 2l, and

p(k+2l;k) is not polynomial-like.

Proof. By the previous theorem the only thing to prove is that

(
w
k

)
is an

even number if k < w ≤ n < k + 2l but

(
k + 2l

k

)
is an odd number.

Let 2l ≥ r = 2u (2v + 1) be a positive integer. r uniquely determines the
nonnegative integers u and v. 2l ≥ 2u (2v + 1) and 2v+1 ≥ 1 imply that u ≤ l,
and u = l is equivalent to the case that r = 2l. If w = k + r then

(
w
k

)
=

(
k + r
k

)
=

(
k + r
r

)
=

=

∏r
i=1 (k + i)∏r

i=1 i
=

∏r−1
i=0 ((k + 1) + i)∏r

i=1 i
=

k + 1

r

r−1∏
i=1

(k + 1) + i

i
.

(2.1)

Let us write the positive integer i less than r in the form r = 2pi (2qi + 1). Now
l > pi ∈ N. Then

(2.2)
k + 1

r
= 2l−u 2t+ 1

2v + 1
,

(k + 1) + i

i
=

2l (2t+ 1) + 2pi (2qi + 1)

2pi (2qi + 1)
=

=
2
(
2l−pi−1 (2t+ 1) + qi

)
+ 1

2qi + 1
=

2wi + 1

2qi + 1
,

(2.3)

so

(2.4)

(
w
k

)
= 2l−u 2t+ 1

2v + 1

r−1∏
i=1

2wi + 1

2qi + 1
= 2l−u (2t+ 1)

∏r−1
i=1 (2wi + 1)

(2v + 1)
∏r−1

i=1 (2qi + 1)
.

Both the numerator and the denominator of the fraction are products of odd
integers, so both the numerator and the denominator are odd integers. The
binomial coefficient is an integer and the denominator of the fraction is relative
prime to 2l−u, hence itself the fraction is an integer. From this follows that(
w
k

)
is odd for the given w and k if and only if u = l, that is, when r = 2l. �
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Theorem 2.6. Let p be a Zhegalkin polynomial of x0, · · · , xn−1, xn and let
p = p(0) + xnp

(1) where p(0) and p(1) are Zhegalkin polynomials of the indeter-
minates x0, · · · , xn−1. Then p = p(n+1;k) if and only if k = 0, k = n + 1, or
0 < k ≤ n and p(0) = p(n;k) and p(1) = p(n;k−1).

Proof. With the cases k = 0 and k = n + 1 we dealt earlier. Let 0 < k ≤ n
and p = p(n+1;k). We know that in this case p(0) = p(n;k). Now p(n+1;k) is
the sum of the k-degree monomials of the n+ 1 indeterminates not containing
any other terms. These monomials either contain xn or not in a mutually
exclusive manner. The sum of the latter is the set of the k-degree monomials
of the indeterminates x0, · · · , xn−1, and their sum is p(n;k). Each of the other
monomials is the product of xn and one and only one monomial of degree k−1
of the other indeterminates and all of these monomials are in p, so their sum is
xnp

(n;k−1). Conversely, if p = p(n;k) + xnp
(n;k−1), then each member of p(n;k)

and xnp
(n;k−1) is a k-degree monomial of the n + 1 indeterminates, and each

of such monomial is a member of one of the two preceding polynomials, so
p = p(n+1;k). �
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