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Abstract. Simultaneous number systems were analysed in the ring of the
Gaussian and the Eisenstein integers in [5, 3, 7, 8]. In this paper we present
some results for further characterisations in the rings of integers of general
imaginary quadratic fields. We show that in each ring there are infinitely
many simultaneous number systems, and we give an efficient algorithm for
the decision problem.

1. Introduction

Let M be an n × n integer linear operator. Let furthermore D be a finite
subset of Zn containing 0. The system (Zn,M,D) is a number system if each
element x of Zn has a unique, finite representation of the form

x =
m∑
i=0

M idi ,

Key words and phrases: Simultaneous number systems, digital expansions.
2010 Mathematics Subject Classification: 11Y55.
EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management in Autonomous Vehicle Control
Technologies – The Project is supported by the Hungarian Government and co-financed
by the European Social Fund.

https://doi.org/10.71352/ac.51.077

https://doi.org/10.71352/ac.51.077


78 I. I. Farkas and A. Kovács

where di ∈ D, m ∈ N. Here M is called the base or radix, and D is the digit
set or alphabet. Necessary conditions for this unique representation property
are (1) the expansiveness of the base, (2) the full residue system property of
the digit set, and (3) the unit condition det(M − I) �= ±1 [6]. The congruence
relation here means that two elements are congruent if they belong to the same
coset of the factor group Zn/MZn. When the first two conditions hold then
we speak about radix systems.

Let ϕ : Zn → Zn, x
ϕ�→ M−1(x − d) for the unique d ∈ D satisfying x ≡ d

(mod M). Since M−1 is contractive and D is finite, there exists a vector norm
�.� on Rn such that for the corresponding operator norm

∥∥M−1
∥∥ < 1 holds,

and there is a constant C such that the orbit of every x ∈ Zn eventually enters
the finite set (so-called testing set) T = {x ∈ Zn | �x� < C} for the repeated
application of ϕ, and after entering the orbit never leaves it. This means that
the sequence x, ϕ(x), ϕ2(x), . . . is eventually periodic for all x ∈ Zn. A point p
is called periodic if ϕk(p) = p for some k > 0. Clearly, a system is a number
system if the orbit of each point goes to zero, hence, the only periodic point is
the zero. We note that such a norm exists with continuum cardinality.

Since the testing set is finite, the finite representation property can algo-
rithmically be decided (the ”decision problem”). Unfortunately, depending on
the eigenvalue spectrum of M , the testing set can be enormous huge [4].

There are two main types of structured digit sets which are studied and
applied extensively in the research: the arithmetic type (including the canonical
and symmetric alphabets) and the dense one. Dense alphabets contain elements
with minimal norm from each residue class. A special dense alphabet is the
adjoint one, where D = {0 = d1, . . . , dt}, t = | det(M)|, and each coordinate
of Madjdi belong to the set | det(M)| × (−1/2, 1/2]. Dense alphabets are basic
blocks for constructing number systems. Suppose that the spectral radius of
M−1 is smaller that 1/2. Then the system (Zn,M,D) is always a number
system with the dense digit set.

There is an important connection between lattice-based number systems
and number systems in the ring of integers in algebraic number fields. Consider
any non-zero monic polynomial f(x) ∈ Z[x]. Then, the factor ring Λ = Z[x]/(f)
is a lattice and all the number expansion related problems can be formulated
in Zn where the operator M is the companion of f . If f(x) is irreducible then
Λ is isomorphic with Z[θ] (where f(θ) = 0 in an appropriate extension of Q).
If K is a number field with degree n and OK is the ring of its integers then
there always exist a Z-basis of OK . Hence, the columns of M can be expressed
with this basis as well (e.g. with the power basis in monogenic fields).

Block diagonal systems were introduced in [5] in the following way: let the
radix systems (Zni ,Mi, Di) be given (1 ≤ i ≤ k ≥ 2). Consider the direct
product of the lattices Zn = Z

∑
i ni and the direct sum M = M1 ⊕ · · · ⊕ Mk
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of the operators. For simplicity, we denote the components of any z ∈ Zn by
z = z1•z2•. . .•zk where zi ∈ Zni . Based on the alphabetsDi there are different
ways for producing a complete residue system D mod M . The simplest one is
the homomorphic construction [5].

In the following we concentrate to block diagonal systems with special al-
phabets.

2. Simultaneous systems

Definition 2.1. A block diagonal system (Zkn,M1 ⊕ M2 ⊕ · · · ⊕ Mk, D) is
called an (n, k)-simultaneous system if Mi : Zn → Zn and all the digits dj ∈ D
have the form v • v • · · · • v, v ∈ Zn.

Kátai et. al. investigated the (1, k) cases [2] where N1, N2, . . . , Nk are mu-
tually coprime integers, none of them are ±1, and D = {δe}, e = 1 • · · · • 1,
δ = 1, 2, . . . |N1N2 · · ·Nk| − 1. They showed that the system (Zk, N1 ⊕ · · · ⊕
⊕Nk, D) is a number system iff k = 2 and N2 = N1 + 1 < 1.

Regarding simultaneous systems one of the main research problem is to
determine digit sets allowing number system constructions. As a first attempt,
Nagy [8] applied canonical digit sets for the blocks in the lattice of Gaussian
integers. He proved that in this case simultaneous number system constructions
are not possible. Then, in the same lattice, the following construction was
applied: for two blocks M1 and M2 with digit sets D1 mod M1 and D2 mod
M2 let us consider the set

(2.1) D = {d1 +M1d2}, where d1 ∈ D1 and d2 ∈ D2 .

It is easy to check that D is a full residue system. We note that for more than
two blocks the construction can be made recursively.

In a series of papers (2, 2)-simultaneous constructions were analysed in
Gaussian and the Eisenstein rings [5, 3, 7, 8]. Nagy and Krutki investigated
the (2, 3)-simultaneous systems numerically with (2.1) type alphabets [9] where
the blocks are integers from the ring Q[

√
5]. We remark that since the rings of

integers of algebraic number fields are commutative, the possible simultaneous
constructions are narrowed, namely, the pairwise difference of the bases must
be units.

Consider the (2, 2)-simultaneous system (Z4,M,D) with digit set D of form
(2.1) where M = M1 ⊕ M2. In the following we investigate that in which
circumstances (Z4,M1,M2, D) can be simultaneous number systems.

Lemma 2.1. Let S1 = (Z2,M1, D1), S2 = (Z2,M2, D2) be two radix systems
with some D1, D2. If the block diagonal system S = (Z4,M1,M2, D) with the
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alphabet

(2.2) D = {d • d : d = d1 +M1d2, where d1 ∈ D1 and d2 ∈ D2}
is a (2, 2)-simultaneous number system then S1 and S2 are both number systems.

Proof. Consider the function f : Z2 × Z2 → Z4,

f(z1, z2) = (cm • cm, cm−1 • cm−1, . . . , c1 • c1, c0 • c0)M = x • y ,
where ci = ai +M1bi, z1 =

∑m
i M i

1ai, z2 =
∑m

i M i
2bi, ai ∈ D1, bi ∈ D2. The

function f operates on those points which have finite expansions in S1 and
S2, respectively. Observe that f is injective but not necessary surjective. Let
x ∈ Z2 be any point chosen and let us examine the expansions of the points
x• y ∈ Z4. These points have all finite expansions in S. Exactly one of them is
f(z1, 0) =

∑
i M

i
1ai •

∑
i M

i
2ai, which shows that x has a finite expansion in S1.

Similarly, let y ∈ Z2 any point. Consider the (necessarily finite) expansions of
the points x •M1y. Exactly one of them is f(0, z2) =

∑
i M

i+1
1 bi •M1

∑
i M

i
2bi

showing that y has finite expansion in S2. �

Remark 2.1. The number system property of S1 and S2 are not sufficient for
S being a number system. For example

(Z2,
(
2 −1
1 2

)
, D1 = {( 00 ) , ( 10 ) ,

(−1
0

)
, ( 01 ) ,

(
0−1

)}) and
(Z2,

(
3 −1
1 3

)
, D1 ∪ {( 1−1

)
, ( 12 ) ,

(−1
−1

)
, ( 11 ) ,

(−1
1

)})
are number systems due to [1], but their simultaneous construction is not,
having 9 periodic witnesses.

In this paper we examine (2, 2)-simultaneous systems in arbitrary rings of
integers of imaginary quadratic fields.

3. Simultaneous systems in the ring of integers of imaginary
quadratic fields

Let F ≥ 2 be a square-free integer. Let Q(i
√
F ) be an imaginary quadratic

extension of Q. It is known that if F �≡ 3 (mod 4) then {1, δ} while for F ≡ 3
(mod 4) {1, ω} is an integer basis in the set of integers of Q(i

√
F ) (δ = i

√
F

and ω = 1+i
√
F

2 ). The lattice generated by the basis {1, δ} will be called as
δ-lattice and the lattice generated by {1, ω} will be called as ω-lattice.

As it was mentioned, full characterisation of simultaneous number system
constructions is known in case of the Gaussian ring (F = 1), a partial one in
the Eisenstein ring (F = 3). Due to Dirichlet unit theorem, the group of units
in the remaining cases is always {−1, 1}.
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Let (Z2,M1, D1), (Z2,M2, D2) be radix systems with dense alphabets D1

and D2 respectively. Consider the operators

(3.1) M1 =

(
a −F b
b a

)
and M2 =

(
a+ 1 −F b
b a+ 1

)

in the δ-lattice and the operators

(3.2) M1 =

(
a −G b
b a+ b

)
and M2 =

(
a+ 1 −G b
b a+ b+ 1

)

in the ω-lattice, where G = F+1
4 , a, b ∈ Z and b �= 0.

In the following we apply the 2-norm for further investigations. We start
with some notations. Let us denote the sublattice of points v•v ∈ Z2⊗Z2 byW .
Let furthermore rm = min

{∥∥M−1
1

∥∥ , ∥∥M−1
2

∥∥}, rM = max
{∥∥M−1

1

∥∥ , ∥∥M−1
2

∥∥},
K∗ = max{�d∗� : d∗ • d∗ ∈ D}, K = max{�d� : d ∈ D}, L∗ = K∗ rM

1−rM
,

L = K rM
1−rM

, R = max{�M1� , �M2�}, and κi the condition numbers of Mi,
respectively, κ = max{κ1, κ2}. In the rest of the paper we suppose that Di are
adjoint alphabets modulo Mi respectively.

Lemma 3.1. �M−1
2 −M−1

1 � = �M−1
1 � �M−1

2 �.

The proof is straightforward.

Lemma 3.2. K∗ ≤ 1√
2
�M1� (�M2�+ 1).

Proof. Since

max
d∈Di

�d� = max
b∈[−1/2,1/2)2

�M∗
i b� ≤ �Mi�√

2

for i = 1, 2 therefore

K∗ = max
d•d∈D

�d� = max
d1∈D1,d2∈D2

�M1 d2 + d1� ≤ �M1� (�M2�+ 1)√
2

. �

Theorem 3.1. There is a constant γ ∈ R depending on M1 and M2 such that
if

(1) γ
1−rm

< 1 and all the points in W ∩ L \ {0} are non-periodic or

(2) γ
1−rm

≥ 1 and all the points 0 �= z = z1 • z2 ∈ Z4 for which

(3.3) �z� ≤ L, �z1 − z2� <
γ

1− rm

are non-periodic, then (Z4,M1,M2, D) is a simultaneous number system.
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Proof. Let z = z1 • z2 ∈ Z4. Since

�ϕ1(z1)− ϕ2(z2)� =

=
∥∥M−1

1 (z1 − d)−M−1
2 (z2 − d)

∥∥ =

=
∥∥M−1

1 (z1 − d)−M−1
1 (z2 − d) +M−1

1 (z2 − d)−M−1
2 (z2 − d)

∥∥ ≤
≤ ∥∥M−1

1 ((z1 − d)− (z2 − d))
∥∥+

∥∥(M−1
1 −M−1

2 )(z2 − d)
∥∥ ≤

≤ ∥∥M−1
1

∥∥ �z1 − z2�+
∥∥M−1

1 −M−1
2

∥∥ �z2 − d� ≤
≤ rm �z1 − z2�+ �M−1

1 ��M−1
2 �(L∗ +K∗) ≤

≤ rm �z1 − z2�+ rM rm K∗

1− rM
≤

≤ rm �z1 − z2�+ rm rM�M1�(�M2�+ 1)√
2(1− rM )︸ ︷︷ ︸

γ

,

by which the theorem follows. �

Let us investigate the limits of the condition numbers. In the δ-lattice

κ =
F 2b2 + 2a2 + b2 +

√
b2(F − 1)2((F + 1)2b2 + 4a2)

2a2 + 2Fb2
=

= 1 +
(F − 1)2b2 + |b|(F − 1)

√
(F + 1)2b2 + 4a2

2a2 + 2Fb2
,

by which lima→∞ κ = 1, limb→∞ κ = F, limF→∞ κ = ∞. Clearly, if F = 1 then
κ = 1. In the ω-lattice

κ = 1 +
b2(G2 − 2G+ 2)

2(Gb2 + a2 + ab)
+

+

√
b2(G2 − 2G+ 2)(4(a2 +Gb2 + ab) + b2(G2 − 2G+ 2))

2(Gb2 + a2 + ab)

by which lima→∞ κ = 1, limb→∞ κ = 1 + G2−2G+2+
√
G4+4

2G , limG→∞ κ = ∞.

Theorem 3.2. Consider the ring of integers in any imaginary quadratic field
and the operators of form (3.1) and (3.2) acting on them. Then for each
0 �= b ∈ Z there can be infinitely many simultaneous number systems con-
structed.
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Proof. Let us examine when in Theorem 3.1 the condition γ
1−rm

< A = 1 is
satisfied:
(3.4)

γ

1− rm
=

rm rM �M1�(�M2�+ 1)√
2(1− rm) (1− rM )

≤ r2MR(R+ 1)√
2(1− rM )2

≤ κ(rM + κ)√
2(1− rM )2

< A ,

by which √
2r2M − (2

√
2 + κ)rM +

√
2− κ2 > 0 .

The solutions for 0 < rM < 1 can be given by

√
2 + κ−

√
κ2 + 4

√
2κ(κ+ 1)

2
√
2

> 0 .

The above inequality holds iff κ2 <
√
2 (κ < 1.1892) which happens in infinitely

many cases for given b and F .

We need yet to control the fulfilment of the condition that W∩L\{0} having
only non-periodic elements. Suppose the contrary. Then M−1

1 ( xy ) = M−1
2 ( xy )

for some x, y ∈ Z. However, it is possible only for ( xy ) = 0. The proof is
finished. �

We note that following the thread of Theorem 3.2 for A = 2 in (3.4) we get
that κ < 23/4 in which case

rM < −1/8 23/4 + 1− 1/8

√
32 + 2

√
2− 16 23/4 ∼ 0.438 .

Similarly, for the case A = 4 the inequality κ < 25/4 follows and in this case
rM < 0.6694 holds, approx. We draw the reader’s attention to the fact that the
small norm of the inverse does not mean that the condition number is small.
Figure 1 shows how the values γ

1−rm
changes in the neighbourhood of the origin

for F = 2 and F = 7.

In the following we examine how many periodic elements may exist for a
given simultaneous system.

Consider a circle in R2 centered at the origin with radius s ≥ 0. Let us
denote the number of integer point inside the circle by N(s).

Theorem 3.3. Given a simultaneous radix system (Z4,M1,M2, D) in a ring of
integers of an imaginary quadratic field, where the operators are of form (3.1)
or (3.2) with digits (2.2). Suppose that A ∈ R is calculated by (3.4). Then, for
the possible periodic elements π = (π1, π2, π3, π4) the following conditions hold:

�(π1, π2)− (π3, π4)� < A , �π� ≤ A
√
2(1/rm − 1), π ∈ T ,

where T is an effectively computable set having N(A)2 elements.
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Figure 1: The x axis represents a, the y axis represents the b values. The
points represent the values γ

1−rm
for F = 2 (left) and F = 7 (right) in the

neighbourhood of the origin. Darker points represent higher values.

Proof. If π is periodic, then clearly

�π� ≤ L =
KrM
1− rM

≤ rM�M1�(�M2�+ 1)

1− rM
,

hence
Lrm√

2(1− rm)
≤ rMrm�M1�(�M2�+ 1)√

2(1− rm)(1− rM )
< A

by which �π� ≤ L < A
√
2(1/rm − 1). This bound can easily be computed.

Now we construct the set T . If π� = (π�
1, π

�
2, π

�
3, π

�
4) is periodic then

�(π�
1, π

�
2)− (π�

3, π
�
4)� < A

and
�(π�

1 − d1, π
�
2 − d2)− (π�

3 − d1, π
�
4 − d2)� < A

for any digit (d1, d2, d1, d2) ∈ D. For the appropriate congruent digit d let x1 =
= π�

1−d1, x2 = π�
2−d2, x3 = π�

3−d1, x4 = π�
4−d2. Hence,M1(π1, π2) = (x1, x2),

M2(π3, π4) = (x3, x4) for some (π1, π2, π3, π4) ∈ Z4, where

�(π1, π2)− (π3, π4)� < A .

Rewriting the previous equations in the δ-lattice we get that

−Fb(π2−π4)+a(π1−π3)−π3 = x1−x3, a(π2−π4)+b(π1−π3)−π4 = x2−x4 ,

while in the ω-lattice

−Gb(π2−π4)+a(π1−π3)−π3 = x1−x3, (a+b)(π2−π4)+b(π1−π3)−π4 = x2−x4 .
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Solving the previous equations for π we get that

π1 = π3 +
a(x1 − x3 + π3) + Fb(x2 − x4 + π4)

Fb2 + a2
,

π2 = π4 +
a(x2 − x4 + π4)− b(x1 − x3 + π3)

Fb2 + a2

in the δ-lattice, and

π1 = π3 +
(a+ b)(x1 − x3 + π3) +Gb(x2 − x4 + π4)

Gb2 + a2 + ab
,

π2 = π4 +
a(x2 − x4 + π4)− b(x1 − x3 + π3)

Gb2 + a2 + ab

in the ω-lattice. Simplifying the equations above we have
(3.5)
π1 = FY b−(a+1)X−ξ1, π2 = −bX−(a+1)Y −ξ2, π3 = π1+X, π4 = π2+Y

in the δ-lattice, and
(3.6)
π1 = GY b−(a+1)X−ξ1, π2 = −bX−(a+b+1)Y −ξ2, π3 = π1+X, π4 = π2+Y

in the ω-lattice, where X2+Y 2 < A2, ξ21+ξ22 < A2, (ξ1 = x1−x3, ξ2 = x3−x4).

Searching for all solutions we have N(A)2 equations for the periodic candi-
dates, exactly what we stated. �

Let us examine the case A = 2.

In case of a δ-lattice the formula (3.5) has the following form:
⎧⎪⎨
⎪⎩

−1 ≤ (a+ 1)X − FbY + π1 ≤ 1

−1 ≤ bX + (a+ 1)Y + π2 ≤ 1

X,Y ∈ {−1, 0, 1}
(3.7)

Table 1 and Table 2 contain the possible periodic elements in the δ and
ω lattices. A row in Table 1 can be interpreted in the way that π = (π1, π2,
π1 +X,π2 + Y ) where X, Y , π1 and π2 are from (3.7). For example, if X = 1,
Y = 0 then π1 ∈ {−2− a,−1− a,−a} and π2 ∈ {−1− b,−b, 1− b}, therefore
e.g. (−2 − a,−1 − b,−1 − a,−1 − b) ∈ T , a periodic candidate. We remark
that in case of algorithmic search we have to check the fulfilness of �π� ≤ L
for each candidate π. The rows in Table 2 can be interpreted similarly.

In case of ω-lattice the solution (3.6) has the following form:
⎧⎪⎨
⎪⎩

−1 ≤ (a+ 1)X −GbY + π1 ≤ 1

−1 ≤ bX + (a+ b+ 1)Y + π2 ≤ 1

X,Y ∈ {−1, 0, 1}
(3.8)
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X Y π1 π2

0 0 {−1, 0, 1} {−1, 0, 1}
1 0 {−2− a,−1− a,−a} {−1− b,−b, 1− b}
−1 0 {a, a+ 1, a+ 2} {b− 1, b, b+ 1}
0 1 {−1 + Fb, Fb, 1 + Fb} {−2− a,−1− a,−a}
0 −1 {−1− Fb,−Fb, 1− Fb} {a, a+ 1, a+ 2}
1 1 {Fb− a− 2, F b− a− 1, F b− a} {−2− a− b,−1− a− b,−a− b}
−1 −1 {a− Fb, a− Fb+ 1, a− Fb+ 2} {a+ b, a+ b+ 1, a+ b+ 2}
1 −1 {−2− a− Fb,−1− a− Fb,−a− Fb} {a− b, a− b+ 1, a− b+ 2}
−1 1 {a+ Fb, a+ Fb+ 1, a+ Fb+ 2} {b− a− 2, b− a− 1, b− a}

Table 1: The table contains the solutions of (3.7). From the rows one can build
the elements of T .

X Y π1 π2

0 0 {−1, 0, 1} {−1, 0, 1}
1 0 {−2− a,−1− a,−a} {−1− b,−b, 1− b}
−1 0 {a, a+ 1, a+ 2} {b− 1, b, b+ 1}
0 1 {−1 +Gb,Gb, 1 +Gb} {−2− a− b,−1− a− b,−a− b}
0 −1 {−1−Gb,−Gb, 1−Gb} {a+ b, a+ b+ 1, a+ b+ 2}
1 1 {Gb− a− 2, Gb− a− 1, Gb− a} {−2− a− 2b,−1− a− 2b,−a− 2b}
−1 −1 {a−Gb, a−Gb+ 1, a−Gb+ 2} {a+ 2b, a+ 2b+ 1, a+ 2b+ 2}
1 −1 {−2− a−Gb,−1− a−Gb,−a−Gb} {a, a+ 1, a+ 2}
−1 1 {a+Gb, a+Gb+ 1, a+Gb+ 2} {−a− 2,−a− 1,−a}

Table 2: The table contains the solutions of (3.8). From the rows one can build
the elements of T .

Example 3.4. Let F = 2 and b = 2020 be fixed. Table 3 describes that for
a < −11297 or a > 11296 the inequality A < 1 holds. If −11297 ≤ a < −5053
and 5052 < a ≤ 11296 then 1 ≤ A <

√
2, etc. We get the highest value for A

when a = 0.

a -11297 -5053 -2575 0 2574 5052 11296

A 1
√
2 2 2.84 2

√
2 1

L 15110.95 9761.59 8387.18 8086.01 8387.18 9761.59 15110.95
N(A)2 1 25 81 625 81 25 1

Table 3: The table shows the simultaneous case of F = 2, b = 2020 for some
boundary values of a, the corresponding radius L and the number of points
N(A)2 to be checked. L is calculated by the formula from Theorem 3.3.

Example 3.5. Let now F = 7 and b = 2020 be fixed. We did similar compu-
tations as before. From Table 4 we can see that for a < −17267 or a > 15246
the inequality A < 1 holds. The highest value for A happens when a = −1011.



Simultaneous number systems 87

a -1011 -141 0 748 1791 3725 6769 15246

A 5.49 5 4.85 4 3 2
√
2 1

L 12420.87 12181.89 12111.53 11730 11443.89 11858.72 13817.4 21365
N(A)2 9409 4761 4761 2025 625 81 25 1

a -1011 -1880 -2769 -3812 -5746 -8771 -17267

A 5.49 5 4 3 2
√
2 1

L 12420.87 12181.89 11730 11443.89 11858.72 13817.4 21365
N(A)2 9409 4761 2025 625 81 25 1

Table 4: The case of F = 7 and b = 2020 for some boundary values of a, the
corresponding radius L and the number of points N(A)2 to be checked. L is
calculated by the formula from Theorem 3.3.

Figure 2 shows how L and N(A)2 are changes in the function of a in the
cases F = 2, b = 2020 and F = 7, b = 2020. We note that for a given L the size
of the testing set (integer points in the 4-dimensional ball with radius L) can be
enormous large. Our method reduces the points to be examined significantly
(see Tables 3 and 4).

(a) F = 2 and b = 2020 (b) F = 7 and b = 2020

Figure 2: The x axis represents a, the y axis represents the L (dashed line) and
the N(A)2 values.

4. Further works

Continuing this research we plan to develop an algorithm by which the
simultaneous number system concept can be examined in the rings of integers
of imaginary quadratic fields in some finite regions.
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Hungary
Ingrid.Farkas@inf.elte.hu

Attila.Kovacs@inf.elte.hu


