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Abstract. In the spirit of a famous theorem of Hédi Daboussi, we examine
the corresponding exponential sums where the sums run over particular
subsets of the set of positive integers.

1. Introduction

According to an old result of H. Weyl [5], a sequence of real numbers (ξn)n∈N

is uniformly distributed modulo 1 if and only if lim
x→∞

1

x

∑
n≤x

e(kξn) = 0 for every

non zero integer k. Here and thereafter, e(y) stands for exp{2πiy}. Weyl’s
criterion represents in itself an important motivation for studying exponential
sums. These sums can be of various forms. Before we present these, let us
provide some key notation. Let T = {z ∈ C : |z| = 1} and U = {z ∈ C :
: |z| ≤ 1}. Let M stand for the set of multiplicative functions and M∗ for the
set of completely multiplicative functions. Finally, let MU be the set of those
f ∈ M such that f(n) ∈ U . Also, writing {x} to denote the fractional part of
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x and given a set of N real numbers x1, . . . , xN , we define its discrepancy as
the quantity

D(x1, . . . , xN ) := sup
[a,b)⊆[0,1)

∣∣∣∣
1

N

∑
n≤N

{xn}∈[a,b)

1− (b− a)

∣∣∣∣.

In 1974, Hédi Daboussi (see Daboussi and Delange [1]) proved that, for every
irrational number α,

sup
f∈MU

1

x

∣∣∣∣
∑
n≤x

f(n)e(nα)

∣∣∣∣ → 0 as x → ∞.

Letting A stand for the set of all additive functions, Daboussi and Delange’s
theorem clearly implies the following result.

Let u ∈ A, α ∈ R \ Q, and consider the corresponding sequence
(θn)n∈N defined by θn = u(n) + nα, n = 1, 2, . . .. Then, the se-
quence (θn)n∈N is uniformly distributed modulo 1. Moreover, the
discrepancy of all such sequences (θn)n∈N satisfies

sup
u∈A

DN (θ1, . . . , θN ) → 0 as N → ∞.

In 1986, the second author [3] generalised the Daboussi theorem by proving
the following.

Theorem A. Let ℘∗ stand for a set of primes for which
∑

p∈℘∗ 1/p = ∞. Let
F be the set of those arithmetic functions f : N → C for which |f(n)| ≤ 1 for
all positive integers n and satisfying the condition

n = pm, (m, p) = 1, p ∈ ℘∗ implies that f(n) = f(p)f(m).

Further let (a(n))n∈N be a sequence of complex numbers such that |a(n)| ≤ 1
for all n ∈ N and such that, for every p1, p2 ∈ ℘∗, p1 �= p2,

(1.1)
1

x

∑
n≤x

a(p1n)a(p2n) → 0 as x → ∞.

Then,

(1.2) sup
f∈F

1

x

∣∣∣∣
∑
n≤x

f(n)a(n)

∣∣∣∣ → 0 as x → ∞.

Remark 1.1. Let α be an arbitrary irrational number. Since the function
a(n) := e(nα) satisfies condition (1.1), the Daboussi theorem also applies to
this function a(n).

In this paper, we obtain similar results when the sums appearing in (1.2)
run over particular subsets of N.
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2. Examples

Consider the following three examples.

Example 1. Let 0 < � < k be two co-prime integers. Let ϕ stand for Euler’s
totient function and consider the function

h(n) :=
1

ϕ(k)

∑
χ

χ(�)χ(n) =

{
1 if n ≡ � (mod k),

0 otherwise,

where the above sum runs over all characters modulo k. Given any arithmetic
function a(n), we then have that

∑
n≤x

n≡� (mod k)

h(n)a(n) =
1

ϕ(k)

∑
χ

χ(�)
∑
n≤x

h(n)χ(n)a(n).

Observe that hχ ∈ MU and that, in light of Theorem A and setting

S := {n ∈ N : n ≡ � (mod k)} and S(x) := #{n ≤ x : n ∈ S},

we have that

∑
f∈MU

1

S(x)

∣∣∣∣∣
∑
n≤x
n∈S

f(n)a(n)

∣∣∣∣∣ → 0 as x → ∞.

Example 2. For each i = 1, 2, . . . , r, let gi : N → N be a multiplicative
function. Moreover, for i = 1, . . . , r, let 0 < �i < ki be co-prime integers such
that gi(n) ≡ �i (mod ki). Further set

S := {n ∈ N : gi(n) ≡ �i (mod ki) for i = 1, . . . , r}.

Then, assuming that there exists a number c > 0 such that lim
x→∞

S(x)

x
≥ c and

letting a(n) be as in Theorem A, we have

sup
f∈MU

1

S(x)

∣∣∣∣∣
∑
n≤x
n∈S

f(n)a(n)

∣∣∣∣∣ → 0 as x → ∞.

Example 3. Let J1, . . . , Jr ⊆ [0, 1) be finite unions of intervals. Let P1(x), . . . ,
. . . Pr(x) ∈ R[x], each of positive degree, and let Qm1,...,mr

(x) := m1P1(x) +
+ · · ·+mrPr(x), wherem1, . . . ,mr ∈ Z. Assume thatQm1,...,mr (x)−Qm1,...,mr (0)
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has at least one irrational coefficient for each r-tuple (m1, . . . ,mr) �= (0, . . . , 0).
Further set S := {n ∈ N : {P�(n)} ∈ J� for � = 1, . . . , r} and let λ stand for
the Lebesgue measure. Kátai [4] proved that under these conditions,

sup
g∈MU

∣∣∣∣∣
1

x

∑
n≤x
n∈S

g(n)− λ(J1) · · ·λ(Jr)
x

∑
n≤x

g(n)

∣∣∣∣∣ → 0 as x → ∞.

3. A generalisation of Theorem A

Theorem 1. Let ℘∗ and a(n) be as in Theorem A. Let u1, . . . , ur be additive
functions, each with a continuous limit distribution. For each � = 1, . . . , r, let

J� := [ξ
(�)
1 , ξ

(�)
2 ) be intervals such that the set

S := {n ∈ N : u�(n) ∈ J� for � = 1, . . . , r}
has infinitely many elements and is also such that S(x) := #{n ≤ x : n ∈ S}
satisfies lim inf

x→∞
S(x)

x
≥ d > 0. Then,

sup
f∈M

1

S(x)

∣∣∣∣∣∣∣
∑
n≤x
n∈S

f(n)a(n)

∣∣∣∣∣∣∣
→ 0 as x → ∞.

Remark 3.1. Observe that according to the Erdős–Wintner theorem [2], an
additive function f has a limit distribution if and only if each of the three series

∑
p

|f(p)|>1

1

p
,

∑
p

|f(p)|≤1

f(p)

p
,

∑
p

|f(p)|≤1

f2(p)

p

converge. It is also known that the limit distribution is continuous if and only

if
∑

f(p)�=0

1

p
= ∞.

Proof. Given an arbitrary interval I = [η1, η2), define the corresponding
function

eI(x) :=

{
1 if x ∈ I,

0 if x ∈ R \ I.
Moreover, let M be a positive integer such that η1 +M > η2 and further let

LM :=

∞⋃
h=−∞

(I + hM) so that eLM
(x) =

{
1 if x ∈ LM ,

0 if x ∈ R \ LM .
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Since the function eLM
(x) is periodic modulo M , we have that

eLM
(x) =

∞∑
h=−∞

ch e

(
hx

M

)
, where c0 = η2 − η1.

Further let

hLM
(x) :=

1

δ2

δ∫

−δ

δ∫

−δ

eLM
(x+ y1 + y2) dy1 dy2 =

∞∑
h=−∞

ch(δ) e

(
hx

M

)
,

where c0(δ) = η2 − η1 and |ch(δ)| ≤ C

(
M

δ

)2
1

h2
for each h �= 0, for some

positive constant C.

It is clear that hLM
(x) = eLM

(x) if x ∈ [η1 + 2δ, η2 − 2δ) and if x ∈
∈ [−M + η2,M − η1] \ [η1 − 2δ, η2 + 2δ]. Moreover, we have that

0 ≤ eLM
(x)− hLM

(x) ≤ 1 for all x ∈ R.

Let ε > 0 and let M be an integer sufficiently large so that there exists a
number x0 > 0 for which

#{n ≤ x : max
�=1,...,r

|u�(n)| ≥ M/2} < εx for all x ≥ x0

and also

max
�=1,...,r

(
|ξ(�)1 |+ |ξ(�)2 |

)
≤ M

2
.

Observe that such an integer M must exist because each function u�(n) is
assumed to have a limit distribution.

Now, let R be sufficiently large so that

r∑
�=1

∑
|m|>R

|c(�)m (δ)| < ε.

Then, further define

h
(R)
� (x) :=

R∑
m=−R

c(�)m (δ)e
(mx

δ

)
(� = 1, . . . , r)

and set

ES(n) :=

{
1 if n ∈ S,

0 if n ∈ N \ S.
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Observe that

∑
n≤x

∣∣∣ES(n)− h
(R)
1 (u1(n)) · · ·h(R)

r (ur(n))
∣∣∣ ≤ C1ε x,

where C1 is a positive constant depending on M and δ, only. Thus,
(3.1)∣∣∣∣∣

∑
n≤x
n∈S

f(n)a(n)−
∑

|m1|≤R,...,|mr|≤R

c(1)m1
(δ) · · · c(r)mr

(δ)T (m1, . . . ,mr)

∣∣∣∣∣ ≤ C1ε x,

where

(3.2) T (m1, . . . ,mr) =
∑
n≤x

f(n) e

(
m1u1(n)

M

)
· · · e

(
mrur(n)

M

)
a(n).

Since

g(n) := e

(
m1u1(n)

M

)
· · · e

(
mrur(n)

M

)
∈ MU ,

we have that f(n)g(n) ∈ MU , implying that the expression in (3.2) is o(x) as
x → ∞. It follows from (3.1) that

lim sup
x→∞

sup
f∈MU

1

S(x)

∣∣∣∣∣
∑
n≤x
n∈S

f(n)a(n)

∣∣∣∣∣ ≤ C1ε.

Since this inequality holds for any ε > 0, the proof of Theorem 1 is complete. �

The following two results can also be proved along the same lines.

Theorem 2. Let ℘∗, u1, . . . , ur and S be as in Theorem 1. Let (κn)n∈N be a
sequence of real numbers for which the corresponding sequence (θn)n∈N defined
by θn := κp1n − κp2n is uniformly distributed modulo 1 for every p1 �= p2,
p1, p2 ∈ ℘∗. For each additive function v and positive integer N , consider the
expression

DN,S(v) := sup
[a,b)⊆[0,1)

1

S(N)
|#{n ≤ N : n ∈ S, v(n) + κn ∈ [a, b)} − (b− a)| .

Then,

sup
v∈A

DN,S(v) → 0 as N → ∞.
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Theorem 3. Let Q(x) ∈ R[x] be such that Q(0) = 0 and Q(x) �∈ Z[x]. Set
a(n) := e(Q(n)). Then,

1

x

∑
n≤x

a(p1n)a(p2n) → 0 as x → ∞

for every p1 �= p2, p1, p2 ∈ ℘∗. Moreover, assuming that m1P1(x) + · · · +
+mrPr(x) +Q(x) /∈ Z[x] for every r-tuple (m1, . . . ,mr) ∈ Zr. Then,

sup
f∈MU

1

S(x)

∣∣∣∣∣
∑
n≤x
n∈S

f(n)a(n)

∣∣∣∣∣ → 0 as x → ∞.
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