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Abstract. Given a probability space (€2,.4, P), a real and separable Ba-
nach space X, a linear and continuous A : X — X with ||A]| < 1, and
an A-measurable and integrable £ : Q@ — X with the Fourier transform
v : X* — C we characterize the weak limit of iterates of the random-—
valued function f: X x Q@ — X given by f(z,w) = Az + £(w) with the aid
of the functional equation

p(”) = y(z")p(z" o A).

Then, making use of this characterization, given a probability Borel mea-
sure © on X we examine continuous at zero solutions ¢ : X* — C of the
equation

p(a”) = iz )p(z" o A).

1. Introduction

Fix a probability space (2, .4, P) and a real and separable Banach space X.
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Given a linear and continuous A : X — X and an A-measurable £ : Q) — X
consider the function f: X x Q@ — X given by

(L.1) flz,w) = Az + £(w)
and its iterates defined by (see [7, 1.4])

fo(wilaw% o ) =, f"(m,wl,wg, .. ) = f (fn_l(xawlvw% <. ')7wn)

forn € N, z € X and (w;,ws,...) from Q> defined as QY. Tt follows from
[6, Corollary 5.6 and Lemma 3.1] (see also [1, Theorem 3.1]) that if ||A]| < 1 and
§:Q — X is integrable, then the sequence (f"(z,)),cy of random variables
on the product probability space (Q2°°, A% P>) converges in law to a random
variable independent of x € X, i.e., for every z € X the sequence (WZL (z, ~))neN
of the distributions of (f"(z,-)),cy converges weakly to a probability Borel
measure 7/ on X; additionally

/||x||7rf(dac) < 00.
X

In [2] we characterized this limit distribution in the case where X is a real and
separable Hilbert space. It turns out that this characterization works also in
our case, in fact with the same proof.

2. A characterization of the limit distribution
The following theorem provides a characterization of 7/ via the functional
equation
(2.1) p(x7) = y(z")p(z" 0 A)
for its Fourier transform ¢f : X* — C,

of(a") = [ ol (da),

X

where  stands for the Fourier transform of &,
~y(z*) = /em*&(“)P(dw) for x* € X™.
Q

Note that any two probability Borel measures on X with the same Fourier
transform are equal, see [5, p. 36].
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Theorem 2.1. Assume X is a real and separable Banach space, A : X — X
is linear and continuous, & : Q — X is A-measurable, and f: X x Q — X is
given by (1.1). If

IAl<1 and / 1€(w)[| P(dw) < oo,
Q

then:

(i) the Fourier transform of ©f is the only solution ¢ : X* — C of (2.1)
which is continuous at zero and fulfils p(0) = 1;

(ii) if ¢ : X* — C is a continuous at zero solution of (2.1) and ¢(0) = 0,
then ¢ = 0.

Proof. For n € N define &, : Q° — X by &, (w1, ws,...) = {(w,) and note
that &,, n € N, are identically distributed: Denoting by p the distribution of £
we have
P>(& € B) = P(§ € B) = p(B)
for n € N and Borel B C X. Since
[ (z,w) = Af" Ha,w) + & (w) forz € X, we Q™
and the random variables A o f*~!(x,-), &, are independent, we see that

7l (z,-) = (71'7]:_1(5(}, o A_l) xp forneN, zeX.
Hence, passing to the limit (cf. [8, Ch. III, Th. 1.1]),
= (mf o A7) % p.
Consequently, see also [8, p. 58], for * € X*,
@f(x*) = /eix*”’j ((7rf oA_l) * p) (dz) =

X

_ / eim*(z—i-z) ((ﬂ_f OA—l) > p) (d(l‘,Z)) _

XxX

:/ (Y/emm.eim*z(ﬁfoAl)(dx) o) =
X
= /eix*”(wfoA—l)(dx) (}[emzp(dz) _

= | [ e et tan) | 1) = " 0 A2(a),
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To prove the uniqueness consider a continuous at zero solution ¢ : X* — C
of (2.1). Then

n—1
o(z*) = p (2" o A™) H o (x* oAk) forneN, ¥ e X*,
k=0

lim,, yoo A™ = 0 and
Iy(z* o A¥)| <1 for k€ NU{0} and z* € X*.

Hence, if ¢©(0) = 1, then
p(z*) = H v(x* o A”") for a* € X¥,
n=0

and if ¢(0) = 0, then ¢ = 0. [ |

Remind that a probability Borel measure p on a real and separable Banach
space X is called Gaussian (see [4, 1.3 and C.1], [5, p. 37]) if for every a* € X*
the measure ;o x* ! is either a Dirac measure or a Gauss distribution on the
real line.

Note that by the Fernique theorem (see [5, Theorem 2.6]) every Gaussian
measure has finite moments.

Example 2.2. If X is a real and separable Banach space, A : X — X is linear
and continuous with ||[A]] < 1, £ : Q@ — X is A-measurable and Gaussian, and
f:X xQ— X is given by (1.1), then 7/ is Gaussian.

Proof. By [4, 1.8] the Fourier transform + of £ has the form
7(33*) _ eiL(w*)—%B(w*,w*) for z* € X*,

where L : X* — R is continuous and linear and B : X* x X* — R is continuous,
bilinear and symmetric with B(z*,2*) > 0 for 2* € X*. Since

[L(z™ o A™)| < [IL[[[[2"[[[|A[]"  for 2™ € X*, n €N,
|B(z* 0 A", z* 0 A™)| < ||B]|[|*||||=*[[|A*"  for z*,2* € X* and n € N,

the formulas

I(z*) = ZL(x* oA™) forz* € X7,
n=0

b(z*,2") = ZB(Z‘* oA" 2" o A") forz*,2" € X7,

n=0
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define a continuous and linear function [ : X* — R and a bilinear, symmetric
and continuous function b : X* x X* — R such that b(z*,z*) > 0 for 2* € X*.
In particular, the function ¢ : X* — R given by

Sﬁ(l‘*) — eil(m*)féb(z*,z*)
is continuous. It is easy to check that
W(x*) =L(xz*)+1(z"oA) and b(z",2") = B(z",2") +b(z* oA,z o A)

for * € X* which shows that ¢ solves (2.1). By Theorem 2.1(i) and [4, 1.8]
we infer that ¢ is the Fourier transform of 7/ and 7/ is Gaussian. |

3. A functional equation

Assuming now that X is a real and separable Banach space, X # {0},
A X — X is linear and continuous with ||A|| < 1, and p is a probability Borel
measure on X, consider, following [3], the equation

(3.1) p(r7) = ilz")p(x” o A),
where [i denotes the Fourier transform of p,
alx™) = /e”*wﬂ(dx) for " € X*.
b'e

Clearly, it : X* — C is continuous, and if additionally p has a finite first
moment, i.e., if [ ||z||u(dz) is finite, then f is of class C?,
X

@ (x*)z* = i/(z*x)e”*‘”u(dz) for z*,2* € X*,
X

and
[a(z™) — p(2")] < /Ilwllu(dx) |z* — 2% forz®, 2" € X"

Theorem 3.1. If p has a finite first moment, then there exists a probability
Borel measure v on X with a finite first moment such that U solves (3.1), and
for any continuous at zero solution ¢ : X* — C of (3.1) we have

= p(0)1;

in particular, every continuous at zero solution ¢ : X* — C of (3.1) is of class
C' and Lipschitz.



36 K. Baron

We shall prove Theorem 3.1 letter on, together with the next one and with
the following remark.

Remark 3.1. If p has a finite first moment and A(X) = X, then for every
¢ € C the set of all discontinuous at zero solutions ¢ : X* — C of (3.1) such
that ©(0) = ¢ and ¢ |x\jo} is of class C' and Lipschitz has the cardinality at
least that of the continuum.

Theorem 3.1 implies that for every Borel and integrable with respect to u
function £ : X — X the equation

(3.2) pla") = pla” o) [ e uin)

X

has exactly one continuous at zero solution ¢ : X* — C such that ¢(0) = 1,
and it is of class C'' and Lipschitz. Consequently, we have the operator & —
%, &€ LY(u, X), and a kind of its continuity gives the following theorem.

Theorem 3.2. If¢,n: X — X are Borel and integrable with respect to i, then

W”lﬂm D)lu(dz) for o € X*.

5*_
) =" < T

Proof. Consider the o—algebra B of all Borel subsets of X, the probability
space (X, B, ) and, given Borel £ : X — X integrable with respect to u, the
function f : X x X — X defined by (1.1), as well as the limit distribution
7/, Put m¢ = 7. According to Theorem 2.1(i), 7¢ solves (3.2). Since the first
moment of ¢ is finite, 7¢ is of class C* and Lipschitz.

Putting v = m;q, and applying Theorem 2.1 we get Theorem 3.1.

To prove Theorem 3.2 it is enough to observe that since p* = ¢, " = 7,
and

"™ _ e T2 | < *|| ||y — || for ¥ € X* and x1, x5 € X,

by [3, Theorem 1] for every z* € X* we have

= /e”*mw (dx) —/e”*zwn(dx) <

=
HM/M )| ().

Pt (a") = ¢"(a")
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To verify the Remark given ¢ € C for every a € C\ {c} define ¢, : X* — C
by
po(a”) = av(z”) for z* € X"\ {0}, ¢a(0) =¢,
and note that it solves (3.1), it is discontinuous at zero and ¢, |x«\ {0} is of
class C! and Lipschitz.
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