AROUND THE WEAK LIMIT OF ITERATES OF SOME RANDOM-VALUED FUNCTIONS

Karol Baron (Katowice, Poland)

Dedicated to Professor Antal Járai on his 70th birthday

Communicated by Zoltán Daróczy

(Received January 25, 2020; accepted May 20, 2020)

Abstract. Given a probability space (Ω, \mathcal{A}, P) , a real and separable Banach space X, a linear and continuous $\Lambda: X \to X$ with $\|\Lambda\| < 1$, and an \mathcal{A} -measurable and integrable $\xi: \Omega \to X$ with the Fourier transform $\gamma: X^* \to \mathbb{C}$ we characterize the weak limit of *iterates of the random-valued* function $f: X \times \Omega \to X$ given by $f(x, \omega) = \Lambda x + \xi(\omega)$ with the aid of the functional equation

$$\varphi(x^*) = \gamma(x^*)\varphi(x^* \circ \Lambda).$$

Then, making use of this characterization, given a probability Borel measure μ on X we examine continuous at zero solutions $\varphi: X^* \to \mathbb{C}$ of the equation

$$\varphi(x^*) = \hat{\mu}(x^*)\varphi(x^* \circ \Lambda).$$

1. Introduction

Fix a probability space (Ω, \mathcal{A}, P) and a real and separable Banach space X.

Key words and phrases: Random–valued functions, iterates, convergence in law, Fourier transform, iterative functional equations, continuous solutions, Gaussian measures. 2010 Mathematics Subject Classification: 39B12, 28C20, 39B32, 39B52, 60B12, 60B15. The Project is supported by the Institute of Mathematics of the University of Silesia in Katowice (Iterative Functional Equations and Real Analysis program).

32 K. Baron

Given a linear and continuous $\Lambda: X \to X$ and an \mathcal{A} -measurable $\xi: \Omega \to X$ consider the function $f: X \times \Omega \to X$ given by

(1.1)
$$f(x,\omega) = \Lambda x + \xi(\omega)$$

and its iterates defined by (see [7, 1.4])

$$f^0(x,\omega_1,\omega_2,\ldots)=x, \quad f^n(x,\omega_1,\omega_2,\ldots)=f\left(f^{n-1}(x,\omega_1,\omega_2,\ldots),\omega_n\right)$$

for $n \in \mathbb{N}$, $x \in X$ and $(\omega_1, \omega_2, \ldots)$ from Ω^{∞} defined as $\Omega^{\mathbb{N}}$. It follows from [6, Corollary 5.6 and Lemma 3.1] (see also [1, Theorem 3.1]) that if $\|\Lambda\| < 1$ and $\xi : \Omega \to X$ is integrable, then the sequence $(f^n(x, \cdot))_{n \in \mathbb{N}}$ of random variables on the product probability space $(\Omega^{\infty}, \mathcal{A}^{\infty}, P^{\infty})$ converges in law to a random variable independent of $x \in X$, i.e., for every $x \in X$ the sequence $(\pi_n^f(x, \cdot))_{n \in \mathbb{N}}$ of the distributions of $(f^n(x, \cdot))_{n \in \mathbb{N}}$ converges weakly to a probability Borel measure π^f on X; additionally

$$\int\limits_{Y} \|x\| \pi^f(dx) < \infty.$$

In [2] we characterized this limit distribution in the case where X is a real and separable Hilbert space. It turns out that this characterization works also in our case, in fact with the same proof.

2. A characterization of the limit distribution

The following theorem provides a characterization of π^f via the functional equation

(2.1)
$$\varphi(x^*) = \gamma(x^*)\varphi(x^* \circ \Lambda)$$

for its Fourier transform $\varphi^f: X^* \to \mathbb{C}$,

$$\varphi^f(x^*) = \int_X e^{ix^*x} \pi^f(dx),$$

where γ stands for the Fourier transform of ξ ,

$$\gamma(x^*) = \int_{\Omega} e^{ix^*\xi(\omega)} P(d\omega) \text{ for } x^* \in X^*.$$

Note that any two probability Borel measures on X with the same Fourier transform are equal, see [5, p. 36].

Theorem 2.1. Assume X is a real and separable Banach space, $\Lambda: X \to X$ is linear and continuous, $\xi: \Omega \to X$ is A-measurable, and $f: X \times \Omega \to X$ is given by (1.1). If

$$\|\Lambda\| < 1$$
 and $\int_{\Omega} \|\xi(\omega)\|P(d\omega) < \infty$,

then:

- (i) the Fourier transform of π^f is the only solution $\varphi: X^* \to \mathbb{C}$ of (2.1) which is continuous at zero and fulfils $\varphi(0) = 1$;
- (ii) if $\varphi: X^* \to \mathbb{C}$ is a continuous at zero solution of (2.1) and $\varphi(0) = 0$, then $\varphi = 0$.

Proof. For $n \in \mathbb{N}$ define $\xi_n : \Omega^{\infty} \to X$ by $\xi_n(\omega_1, \omega_2, \ldots) = \xi(\omega_n)$ and note that ξ_n , $n \in \mathbb{N}$, are identically distributed: Denoting by ρ the distribution of ξ we have

$$P^{\infty}(\xi_n \in B) = P(\xi \in B) = \rho(B)$$

for $n \in \mathbb{N}$ and Borel $B \subset X$. Since

$$f^n(x,\omega) = \Lambda f^{n-1}(x,\omega) + \xi_n(\omega)$$
 for $x \in X$, $\omega \in \Omega^{\infty}$,

and the random variables $\Lambda \circ f^{n-1}(x,\cdot)$, ξ_n are independent, we see that

$$\pi_n^f(x,\cdot) = \left(\pi_{n-1}^f(x,\cdot) \circ \Lambda^{-1}\right) * \rho \quad \text{for } n \in \mathbb{N}, \ x \in X.$$

Hence, passing to the limit (cf. [8, Ch. III, Th. 1.1]),

$$\pi^f = (\pi^f \circ \Lambda^{-1}) * \rho.$$

Consequently, see also [8, p. 58], for $x^* \in X^*$,

$$\varphi^{f}(x^{*}) = \int_{X} e^{ix^{*}x} \left((\pi^{f} \circ \Lambda^{-1}) * \rho \right) (dx) =$$

$$= \int_{X \times X} e^{ix^{*}(x+z)} \left((\pi^{f} \circ \Lambda^{-1}) \times \rho \right) (d(x,z)) =$$

$$= \int_{X} \left(\int_{X} e^{ix^{*}x} \cdot e^{ix^{*}z} (\pi^{f} \circ \Lambda^{-1}) (dx) \right) \rho(dz) =$$

$$= \left(\int_{X} e^{ix^{*}x} (\pi^{f} \circ \Lambda^{-1}) (dx) \right) \left(\int_{X} e^{ix^{*}z} \rho(dz) \right) =$$

$$= \left(\int_{X} e^{ix^{*}\Lambda x} \pi^{f} (dx) \right) \gamma(x^{*}) = \varphi^{f}(x^{*} \circ \Lambda) \gamma(x^{*}).$$

34 K. Baron

To prove the uniqueness consider a continuous at zero solution $\varphi:X^*\to\mathbb{C}$ of (2.1). Then

$$\varphi(x^*) = \varphi\left(x^* \circ \Lambda^n\right) \prod_{k=0}^{n-1} \gamma\left(x^* \circ \Lambda^k\right) \quad \text{for } n \in \mathbb{N}, \ x^* \in X^*,$$

 $\lim_{n\to\infty}\Lambda^n=0$ and

$$|\gamma(x^* \circ \Lambda^k)| \le 1$$
 for $k \in \mathbb{N} \cup \{0\}$ and $x^* \in X^*$.

Hence, if $\varphi(0) = 1$, then

$$\varphi(x^*) = \prod_{n=0}^{\infty} \gamma(x^* \circ \Lambda^n) \text{ for } x^* \in X^*,$$

and if $\varphi(0) = 0$, then $\varphi = 0$.

Remind that a probability Borel measure μ on a real and separable Banach space X is called Gaussian (see [4, 1.3 and C.1], [5, p. 37]) if for every $x^* \in X^*$ the measure $\mu \circ x^{*-1}$ is either a Dirac measure or a Gauss distribution on the real line.

Note that by the Fernique theorem (see [5, Theorem 2.6]) every Gaussian measure has finite moments.

Example 2.2. If X is a real and separable Banach space, $\Lambda : X \to X$ is linear and continuous with $\|\Lambda\| < 1$, $\xi : \Omega \to X$ is \mathcal{A} -measurable and Gaussian, and $f : X \times \Omega \to X$ is given by (1.1), then π^f is Gaussian.

Proof. By [4, 1.8] the Fourier transform γ of ξ has the form

$$\gamma(x^*) = e^{iL(x^*) - \frac{1}{2}B(x^*, x^*)}$$
 for $x^* \in X^*$,

where $L: X^* \to \mathbb{R}$ is continuous and linear and $B: X^* \times X^* \to \mathbb{R}$ is continuous, bilinear and symmetric with $B(x^*, x^*) \ge 0$ for $x^* \in X^*$. Since

$$|L(x^*\circ\Lambda^n)|\leq \|L\|\|x^*\|\|\Lambda\|^n\quad\text{for }x^*\in X^*,\ n\in\mathbb{N},$$

 $|B(x^* \circ \Lambda^n, z^* \circ \Lambda^n)| \le ||B|| ||x^*|| ||x^*|| ||\Lambda||^{2n}$ for $x^*, z^* \in X^*$ and $n \in \mathbb{N}$,

the formulas

$$l(x^*) = \sum_{n=0}^{\infty} L(x^* \circ \Lambda^n) \quad \text{for } x^* \in X^*,$$

$$b(x^*, z^*) = \sum_{n=0}^{\infty} B(x^* \circ \Lambda^n, z^* \circ \Lambda^n) \quad \text{for } x^*, z^* \in X^*,$$

define a continuous and linear function $l: X^* \to \mathbb{R}$ and a bilinear, symmetric and continuous function $b: X^* \times X^* \to \mathbb{R}$ such that $b(x^*, x^*) \geq 0$ for $x^* \in X^*$. In particular, the function $\varphi: X^* \to \mathbb{R}$ given by

$$\varphi(x^*) = e^{il(x^*) - \frac{1}{2}b(x^*, x^*)}$$

is continuous. It is easy to check that

$$l(x^*) = L(x^*) + l(x^* \circ \Lambda)$$
 and $b(x^*, x^*) = B(x^*, x^*) + b(x^* \circ \Lambda, x^* \circ \Lambda)$

for $x^* \in X^*$ which shows that φ solves (2.1). By Theorem 2.1(i) and [4, 1.8] we infer that φ is the Fourier transform of π^f and π^f is Gaussian.

3. A functional equation

Assuming now that X is a real and separable Banach space, $X \neq \{0\}$, $\Lambda: X \to X$ is linear and continuous with $\|\Lambda\| < 1$, and μ is a probability Borel measure on X, consider, following [3], the equation

(3.1)
$$\varphi(x^*) = \hat{\mu}(x^*)\varphi(x^* \circ \Lambda),$$

where $\hat{\mu}$ denotes the Fourier transform of μ ,

$$\hat{\mu}(x^*) = \int_{Y} e^{ix^*x} \mu(dx) \quad \text{for } x^* \in X^*.$$

Clearly, $\hat{\mu}: X^* \to \mathbb{C}$ is continuous, and if additionally μ has a finite first moment, i.e., if $\int\limits_X \|x\| \mu(dx)$ is finite, then $\hat{\mu}$ is of class C^1 ,

$$\hat{\mu}'(x^*)z^* = i \int_{Y} (z^*x)e^{ix^*x}\mu(dx)$$
 for $x^*, z^* \in X^*$,

and

$$|\hat{\mu}(x^*) - \hat{\mu}(z^*)| \le \left(\int_X ||x|| \mu(dx)\right) ||x^* - z^*|| \text{ for } x^*, z^* \in X^*.$$

Theorem 3.1. If μ has a finite first moment, then there exists a probability Borel measure ν on X with a finite first moment such that $\hat{\nu}$ solves (3.1), and for any continuous at zero solution $\varphi: X^* \to \mathbb{C}$ of (3.1) we have

$$\varphi = \varphi(0)\hat{\nu};$$

in particular, every continuous at zero solution $\varphi: X^* \to \mathbb{C}$ of (3.1) is of class C^1 and Lipschitz.

36 K. Baron

We shall prove Theorem 3.1 letter on, together with the next one and with the following remark.

Remark 3.1. If μ has a finite first moment and $\Lambda(X) = X$, then for every $c \in \mathbb{C}$ the set of all discontinuous at zero solutions $\varphi : X^* \to \mathbb{C}$ of (3.1) such that $\varphi(0) = c$ and $\varphi \mid_{X^* \setminus \{0\}}$ is of class C^1 and Lipschitz has the cardinality at least that of the continuum.

Theorem 3.1 implies that for every Borel and integrable with respect to μ function $\xi: X \to X$ the equation

(3.2)
$$\varphi(x^*) = \varphi(x^* \circ \Lambda) \int_{Y} e^{ix^* \xi(x)} \mu(dx)$$

has exactly one continuous at zero solution $\varphi^{\xi}: X^* \to \mathbb{C}$ such that $\varphi^{\xi}(0) = 1$, and it is of class C^1 and Lipschitz. Consequently, we have the operator $\xi \mapsto \varphi^{\xi}, \ \xi \in L^1(\mu, X)$, and a kind of its continuity gives the following theorem.

Theorem 3.2. If $\xi, \eta: X \to X$ are Borel and integrable with respect to μ , then

$$\left| \varphi^{\xi}(x^*) - \varphi^{\eta}(x^*) \right| \le \frac{\|x^*\|}{1 - \|\Lambda\|} \int_X \|\xi(x) - \eta(x)\| \mu(dx) \quad for \ x^* \in X^*.$$

Proof. Consider the σ -algebra \mathcal{B} of all Borel subsets of X, the probability space (X, \mathcal{B}, μ) and, given Borel $\xi : X \to X$ integrable with respect to μ , the function $f : X \times X \to X$ defined by (1.1), as well as the limit distribution π^f . Put $\pi_{\xi} = \pi^f$. According to Theorem 2.1(i), $\hat{\pi}_{\xi}$ solves (3.2). Since the first moment of π_{ξ} is finite, $\hat{\pi}_{\xi}$ is of class C^1 and Lipschitz.

Putting $\nu = \pi_{id_X}$ and applying Theorem 2.1 we get Theorem 3.1.

To prove Theorem 3.2 it is enough to observe that since $\varphi^{\xi} = \hat{\pi_{\xi}}$, $\varphi^{\eta} = \hat{\pi_{\eta}}$ and

$$|e^{ix^*x_1} - e^{ix^*x_2}| \le ||x^*|| ||x_1 - x_2||$$
 for $x^* \in X^*$ and $x_1, x_2 \in X$,

by [3, Theorem 1] for every $x^* \in X^*$ we have

$$\left| \varphi^{\xi}(x^*) - \varphi^{\eta}(x^*) \right| = \left| \int_X e^{ix^*x} \pi_{\xi}(dx) - \int_X e^{ix^*x} \pi_{\eta}(dx) \right| \le \frac{\|x^*\|}{1 - \|\Lambda\|} \int_Y \|\xi(x) - \eta(x)\| \, \mu(dx).$$

To verify the Remark given $c\in\mathbb{C}$ for every $a\in\mathbb{C}\setminus\{c\}$ define $\varphi_a:X^*\to\mathbb{C}$ by

$$\varphi_a(x^*) = a\hat{\nu}(x^*)$$
 for $x^* \in X^* \setminus \{0\}, \quad \varphi_a(0) = c,$

and note that it solves (3.1), it is discontinuous at zero and $\varphi_a\mid_{X^*\backslash\{0\}}$ is of class C^1 and Lipschitz.

References

- [1] **Baron**, **K.**, Weak law of large numbers for iterates of random-valued functions, *Aequationes Math.*, **93** (2019), 415–423.
- [2] **Baron, K.,** Weak limit of iterates of some random-valued functions and its application, *Aequationes Math.*, **94** (2020), 415–425; 427 (Correction).
- [3] **Baron, K.,** Remarks connected with the weak limit of iterates of some random-valued functions and iterative functional equations, *Ann. Math. Sil.*, 2020, https://doi.org/10.2478/amsil-2019-0015
- [4] Bogachev, V.I., Gaussian measures on linear spaces. Analysis, 8.J. Math. Sci., 79 (1996), 933-1034.
- [5] Da Prato, G., and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications 44, Cambridge University Press, Cambridge, 1992.
- [6] **Kapica**, **R.**, The geometric rate of convergence of random iteration in the Hutchinson distance, *Aequationes Math.*, **93** (2019), 149–160.
- [7] Kuczma, M., B. Choczewski and R. Ger, Iterative Functional Equations, Encyclopedia of Mathematics and its Applications 32, Cambridge University Press, Cambridge, 1990.
- [8] Parthasarathy, K.R., Probability Measures on Metric Spaces, Probability and Mathematical Statistics 3, Academic Press, Inc., New York San Francisco London, 1967.

Karol Baron

University of Silesia in Katowice Institute of Mathematics Katowice Poland baron@us.edu.pl