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Abstract. Let Vn = X1,n+X2,n+· · ·+Xn,n where the Xi,n’s are Bernoulli
random variables which take the value 1 with probability b(i;n). Let λn =

=
n∑

i=1

b(i;n), λ = lim
n→∞

λn, and mn = max
1≤i≤n

b(i;n). We derive asymptotic

results for P (Vn = k) that hold without assuming that λ < +∞ ormn → 0.
Also, we do not assume k to be fixed, but instead, our results hold uni-
formly for all k which satisfy particular growth conditions with respect to n.
These results extend known Poisson local limit theorems to the case when
λ = +∞. While our results apply to triangular arrays, without the as-
sumption that mn → 0 they continue to hold for sums of Bernoulli random
variables. In this setting, our growth conditions cover a range of values for
k not centered at λn, thus complementing known local limit theorems based
on approximation by the normal distribution. In addition, we show that
our local limit theorems apply to a scheme of dependent random variables
introduced in the work of B.A. Sevast’yanov.
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1. Introduction

1.1. Preliminaries

In this paper we consider triangular arrays of random variables {Xi,n, 1 ≤
≤ i ≤ n; n ∈ N} such that, for every n, the Xi,n, 1 ≤ i ≤ n, are Bernoulli
random variables. If for every n, the variables Xi,n, 1 ≤ i ≤ n, are independent
Bernoulli random variables, we say that the array is row-wise independent.

Given a triangular array {Xi,n, 1 ≤ i ≤ n; n ∈ N}, we let P (Xi,n = 1) =
= b(i;n),

(1.1) Vn = X1,n +X2,n + · · ·+Xn,n

and
b(i1, i2, ..., ik;n) = P (Xi1,n = Xi2,n = · · · = Xik,n = 1).

We denote

λn =

n∑
i=1

b(i;n), λ = lim
n→∞

λn,

αn =

n∑
i=1

ln (1− b(i;n)) , βn =

n∑
i=1

b(i;n)

1− b(i;n)
, mn = max

1≤i≤n
b(i;n).

In this paper we derive Poisson-type local limit theorems for P (Vn = k)
that hold when the Xi,n’s are assumed to be independent Bernoulli random
variables and λ = +∞. In particular we give sufficient conditions under which

P (Vn = k) ∼ P (Vn = 0)
λk
n

k!

or

P (Vn = k) ∼ P (Vn = 0)
βk
n

k!
.

Under additional assumptions we also prove exact Poisson asymptotic behavior

P (Vn = k) ∼ e−λn
λk
n

k!
.

While our results apply to triangular arrays, when no assumption on mn → 0 is
made, they continue to hold for sums of Bernoulli random variables. Also, we do
not assume k to be fixed, but instead, our results hold uniformly for all k which
satisfy particular growth conditions with respect to n. These growth conditions
are valid on intervals that are not contained in those for which (1.2) or (1.3)
hold, thus complementing known local limit theorems based on approximation
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by the normal distribution and providing new results in the setting of sums of
Bernoulli random variables.

In addition, we show that our local limit theorems apply to a scheme of
dependent random variables introduced in the work of B.A. Sevast’yanov [18],
in which local limit theorems were derived under assumptions λ < +∞ and
mn → 0.

In 1.2 we provide the relevant background and motivation for this work.
Section 2 contains the theorems and proofs.

1.2. The setting and background

The problem of approximating the limiting local behavior of the distribution
of Vn, known as Poisson-binomial or Poisson’s Binomial distribution, has a long
history in probability. This problem has been studied in two main directions:

(a) λ = +∞ with a Gaussian limit

(b) 0 < λ ≤ +∞ with a Poisson limit.

The first local limit result for case (a) is the well known De Moivre–Laplace
Theorem (1795), see P. Gorrochurn [9] for a historical account. This theorem
states that if Xi,n = Xi, and X1, X2, ..., Xn are independent and identically
distributed Bernoulli random variables, with 0 < b(i;n) = p < 1, then as
n → +∞,

(1.2) sup
k:|k−np|≤ϕ(n)

∣∣∣∣∣∣
P (Vn = k)

1√
2πnp(1−p)

e−(k−np)2/(2np(1−p))
− 1

∣∣∣∣∣∣
−→ 0

for ϕ(n) = o(np(1− p))2/3. For a proof see A.N. Shiryaev [19], for example.

Several extensions of (1.2) without the assumption that the Xi’s are identi-
cally distributed have been proposed. For example, let b(i;n) = pi, 1− pi = qi,
and B2

n = V ar(Vn). Under the assumption that 0 < pi < 1, M.M. Mamatov
[15] proved the existence of an absolute constant C such that

(1.3)

∣∣∣∣BnP (Vn = k)− (
√
2π)−1 e

− (k−λn)2

2B2
n

∣∣∣∣ < C

∑n
i=1 piqi

(
p2i + q2i

)
B3

n

.

Further extensions which cover arbitrary lattice distributions can be found
in B.V. Gnedenko [8], R. Giuliano-Antonini, M. Weber [7] and V.V. Petrov
[16], for example. In such results, however, as in (1.3), the differences of the
probabilities are considered instead of the quotients.

It is important to note that the asymptotic ratio of probabilities cannot be
recovered from their asymptotic differences when each term in the difference
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goes to zero. In fact, if one is interested in ratios, and the random variables are
i.i.d. Bernoulli, (1.3) is not an improvement over (1.2). By using the notation
in (1.2), expression (1.3) reduces to

(1.4) e−
(k−np)2

2np(1−p)

∣∣∣∣∣∣
P (Vn = k)

1√
2πnp(1−p)

e−(k−np)2/(2np(1−p))
− 1

∣∣∣∣∣∣
<

C ′
√

np(1− p)
,

where C ′ ≥ C/4. It follows from (1.4) that if

|k − np| >
√
np(1− p)

√
ln(np(1− p))

the factor in front of the absolute value in (1.4) is eventually less than the
upper bound, thus giving no useful information on the size of the ratio inside
the absolute value. Hence (1.3) does not imply (1.2).

Note that in general the estimate in (1.4) cannot be improved (see V.V. Pet-
rov [16], p. 197).

Case (b), concerning Poisson limits, was first investigated under the as-
sumption that the Xi,n’s are independent and λ < +∞. In this setting it is
well known that Vn converges pointwise to a Poisson random variable with
parameter λ if and only if

(ia) lim
n→+∞

mn = 0 or (ib) lim
n→+∞

n∑
i=1

b2(i;n) = 0,

see [23].

In general, condition (ib) implies condition (ia); in the case that λ < +∞,
conditions (ia) and (ib) are actually equivalent.

Pointwise convergence of Vn to a Poisson random variable T as well as local
limit theorems can be obtained by showing that the variation distance goes to
0 as n goes to ∞. The variation distance, D, is given by

D = sup
k≥0

|P (Vn ≤ k)− P (T ≤ k)| .

In this setting, one of the first results for pointwise convergence can be
found in R. Von Mises [22]. Subsequently, various methods were employed to
improve rates of convergence, or equivalently, to find tighter upper bounds for
D, see for example J.V. Prohorov [17], L. Le Cam [14], W. Vervatt [12], [21],
G. Simons, N.L. Johnson [20], and Y.H. Wang [23].

Poisson approximation to Vn in the case when the Xi,n’s are dependent has
also been the object of much investigation and several approaches have been
proposed; see for example J. L. Hodges, Jr., L. Le Cam [10], B. Freedman [5],
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L.H.Y. Chen [3], A. D. Barbour, L. Holst, S. Janson [2], and R. Arratia, L.
Goldstein, L. Gordon (1990) [1].

The case of approximating P (Vn = k) by a Poisson random variable Tn

with parameter λn, when limn→+∞ λn = +∞, has been considered by a smaller
number of researchers; it has generated very interesting results.

P. Deheuvels, D. Pfeifer [4], show that under condition (ia),

(1.5) D ∼ 1√
2πe

n∑
i=1

b2(i;n)

λn
.

Much broader work has been done by H-K Hwang, Kowalski and Nikeghbali.
H-K Hwang derived a unified scheme for Poisson approximation to discrete ran-
dom variables. These results are based on the assumption that the generating
function of the random variables satisfies certain asymptotic regularity condi-
tions, see H-K Wang [11]. However these results are approximation theorems,
not limit theorems.

Kowalski and Nikeghbali opened a new direction in the theory of conver-
gence of random variables by defining a new type of convergence, called mod
Poisson convergence [13]. Limited to our setting however, the general asymp-
totic estimates their theory provides are comparable to (1.5), which again do
not translate into meaningful bounds for the ratio of probabilities for the range
of values we consider in this work.

2. Statement of theorems and proofs

2.1. Independent case

We begin by considering the case of independent random variables and
obtain a local limit theorem that holds for λ ≤ +∞.

Theorem 2.1. Let the array {Xi,n, 1 ≤ i ≤ n; n ∈ N} be row-wise indepen-
dent, and suppose 0 < λ ≤ +∞. If

(A1) lim
n→+∞

mn = 0,

then for any function φ(n) such that φ(n)mn → 0 as n → +∞,

sup
{k: k2≤ φ(n)}

∣∣∣∣
P (Vn = k)

P (Vn = 0)λk
n/k!

− 1

∣∣∣∣ −→ 0 as n → +∞.



288 I. Simonelli and L. D. Simonelli

Proof. Suppose k ≥ 1, and let φ(n) be such that φ(n)mn → 0 as n → +∞.
Then

(2.1) P (Vn = k) =
∑

B⊂{1,2,··· ,n}
|B|=k

( ∏
i∈B

b(i;n)
∏
j∈Bc

(1− b(j;n))
)
≥

≥ P (Vn = 0)
∑

B⊂{1,2,··· ,n}
|B|=k

( ∏
i∈B

b(i;n)
)
.

We rewrite the sum in the above lower bound as follows,

∑
B⊂{1,2,··· ,n}

|B|=k

( ∏
i∈B

b(i;n)
)

=
∑

A⊂{1,2,··· ,n}
|A|=k−1

(∏
i∈A

b(i;n)
)∑

j∈Ac b(j;n)

k
=

=
∑

A⊂{1,2,··· ,n}
|A|=k−1

(∏
i∈A

b(i;n)
)λn −

∑
j∈A b(j;n)

k
≥(2.2)

≥ (λn − (k − 1)mn)

k

∑
A⊂{1,2,··· ,n}

|A|=k−1

(∏
i∈A

b(i;n)
)
.

By repeating similar calculations, one obtains

∑
B⊂{1,2,··· ,n}

|B|=k

( ∏
i∈B

b(i;n)
)
≥

k−1∏
j=0

(λn − jmn)

k!
,

and

P (Vn = k) ≥ P (Vn = 0)

k−1∏
j=0

(λn − jmn)

k!
≥ P (Vn = 0)

(λn − kmn)
k

k!
=

= P (Vn = 0)
λk
n

k!

(
1− kmn

λn

)k

= P (Vn = 0)
λk
n

k!

(
1−

k2mn

λn

k

)k

≥

(2.3) ≥ P (Vn = 0)
λk
n

k!

(
1− k2mn

λn

)

for sufficiently large n, since
(
1− x

k

)k

is increasing in k if 0 < x < 1.
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In order to derive an upper bound for P (Vn = k),

P (Vn = k) =
∑

B⊂{1,2,··· ,n}
|B|=k

( ∏
i∈B

b(i;n)
∏
j∈Bc

(1− b(j;n))
)
=

=
∑

B⊂{1,2,··· ,n}
|B|=k

( ∏
i∈B

b(i;n)

1− b(i;n)

n∏
j=1

(1− b(j;n))
)
≤

≤ P (Vn = 0)
∑

B⊂{1,2,··· ,n}
|B|=k

( ∏
i∈B

b(i;n)

1−mn

)
=

= P (Vn = 0)
1

(1−mn)k

∑
B⊂{1,2,··· ,n}

|B|=k

( ∏
i∈B

b(i;n)
)
.

From (2.2),

∑
B⊂{1,2,··· ,n}

|B|=k

( ∏
i∈B

b(i;n)
)
≤ λn

k

∑
A⊂{1,2,··· ,n}

|A|=k−1

(∏
i∈A

b(i;n)
)
,

and by repeating similar calculations,

∑
A⊂{1,2,··· ,n}

|A|=k

(∏
i∈A

b(i;n)
)
≤ λk

n

k!
.

Since for 0 ≤ x < 1
1

(1− x
k )

k
≤ ex ≤ 1 +

x

1− x
,

the above calculation gives, for x = kmn,

P (Vn = k) ≤ P (Vn = 0)
λk
n

k!

(
1 +

kmn

1− kmn

)

if n is sufficiently large. We now have

−ε1(k,mn) ≤
P (Vn = k)

P (Vn = 0)λk
n/k!

− 1 ≤ ε2(k,mn),(2.4)

where ε1(k,mn) =
k2mn

λn
and ε2(k,mn) =

kmn

1− kmn
. Thus, for i = 1, 2, as

n → +∞,
sup

{k: k2≤φ(n)}
εi(k,mn) → 0.

This, and the validity of the result in the case k = 0 completes the proof. �
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Remark 2.1. Theorem 2.1 holds without any assumption on the finiteness of λ.
Estimates for mn and simple additional information about λn, e.g. λn ≥ c > 0
for all n, are sufficient to obtain accurate asymptotics for Vn via (2.4).

If λ < +∞, then

lim
n→+∞

P (Vn = 0) = lim
n→+∞

eαn = e−λ,

and thus, Theorem 2.1 implies a well known convergence result which we state
as a corollary.

Corollary 2.1. Let the array {Xi,n, 1 ≤ i ≤ n; n ∈ N} be row-wise indepen-
dent. If the following hold,

(A1) lim
n→+∞

mn = 0,

(A2) lim
n→+∞

λn = λ < +∞,

then for any function φ(n) such that φ(n)mn → 0 as n → +∞,

sup
{k: k2≤ φ(n)}

∣∣∣∣
P (Vn = k)

e−λλk/k!
− 1

∣∣∣∣ −→ 0 as n → +∞.

By assuming λ = +∞, we obtain a local limit theorem replacing the con-
dition mn → 0 by the weaker assumption that mn is bounded away from 1.

Theorem 2.2. Let the array {Xi,n, 1 ≤ i ≤ n; n ∈ N} be row-wise indepen-
dent, and let mn < β < 1 for all n. If

(A3) lim
n→+∞

λn = +∞,

then for any function φ(n) such that φ(n)
λn

→ 0 as n → +∞,

sup
{k: k2≤ φ(n)}

∣∣∣∣
P (Vn = k)

P (Vn = 0)βk
n/k!

− 1

∣∣∣∣ −→ 0 as n → +∞.

Proof.

P (Vn = k) =
∑

B⊂{1,2,··· ,n}
|B|=k

( ∏
i∈B

b(i;n)
∏
j∈Bc

(1− b(j;n))
)
=

=
∑

B⊂{1,2,··· ,n}
|B|=k

( ∏
i∈B

b(i;n)

1− b(i;n)

n∏
j=1

(1− b(j;n))
)
=
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= P (Vn = 0)
∑

B⊂{1,2,··· ,n}
|B|=k

( ∏
i∈B

b(i;n)

1− b(i;n)

)
=

= P (Vn = 0)
∑

A⊂{1,2,··· ,n}
|A|=k−1

(∏
i∈A

b(i;n)

1− b(i;n)

) ∑
j∈Ac

b(j;n)
1−b(j;n)

k
=

= P (Vn = 0)
∑

A⊂{1,2,··· ,n}
|A|=k−1

(∏
i∈A

b(i;n)

1− b(i;n)

)βn −
∑

j∈A
b(j;n)

1−b(j;n)

k
.

To obtain a lower bound, we bound the above sums as follows,

∑
A⊂{1,2,··· ,n}

|A|=k−1

(∏
i∈A

b(i;n)

1− b(i;n)

)βn −
∑

j∈A
b(j;n)

1−b(j;n)

k
≥

≥ 1

k

(
βn − (k − 1)β

(1− β)

) ∑
A⊂{1,2,··· ,n}

|A|=k−1

(∏
i∈A

b(i;n)

1− b(i;n)

)
=

=
βn

k

(
1− (k − 1)β

βn(1− β)

) ∑
A⊂{1,2,··· ,n}

|A|=k−1

(∏
i∈A

b(i;n)

1− b(i;n)

)
≥

≥ βn

k

(
1− (k − 1)β

λn(1− β)

) ∑
A⊂{1,2,··· ,n}

|A|=k−1

(∏
i∈A

b(i;n)

1− b(i;n)

)
.

Following similar calculations as those leading up to (2.3), we obtain

∑
B⊂{1,2,··· ,n}

|B|=k

( ∏
i∈B

b(i;n)

1− b(i;n)

)
≥ βk

n

k!

(
1− k β

λn (1− β)

)k

.

Hence, by exploiting again the increasing property of (1− x
k )

k for 0 < x < 1 as
a function of k,

P (Vn = k) ≥P (Vn = 0)
βk
n

k!


1−

k2β
λn(1−β)

k




k

≥

≥P (Vn = 0)
βk
n

k!

(
1− k2β

λn(1− β)

)
.
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To obtain an upper bound,

P (Vn = 0)
∑

A⊂{1,2,··· ,n}
|A|=k−1

(∏
i∈A

b(i;n)

1− b(i;n)

)βn −
∑

j∈A
b(j;n)

1−b(j;n)

k
≤

≤ P (Vn = 0)
βn

k

∑
A⊂{1,2,··· ,n}

|A|=k−1

(∏
i∈A

b(i;n)

1− b(i;n)

)
.

So,

P (Vn = k) ≤ P (Vn = 0)
βk
n

k!
.

We now have

−ε(k, λn) ≤
P (Vn = k)

P (Vn = 0)βk
n/k!

− 1 ≤ 0,

where

ε(k, λn) =
k2β

λn(1− β)
.

For any given φ(n) such that φ(n)/λn −→ 0 as n → +∞,

sup
{k: k2≤φ(n)}

ε(k, λn) → 0 as n → +∞.

This and the validity of our result in the case k = 0 completes the proof. �

Remark 2.2. Since the only assumption on the behavior of mn is to be
bounded away from 1, Theorem 2.2 gives a new local limit theorem for ar-
bitrary sums of independent Bernoulli random variables with λn → ∞. Note
that the range of values of k for which Theorem 2.2 holds differs from the range
of values in (1.2) and (1.3). Hence our result provides new limiting results in
the case of sums of Bernoulli random variables.

We single out an interesting special case of Theorems 2.1 and 2.2, where
exact Poisson asymptotic behavior is obtained.

Theorem 2.3. Let the array {Xi,n, 1 ≤ i ≤ n; n ∈ N} be row-wise indepen-
dent. If

(A3) lim
n→+∞

λn = +∞,

(A4) lim
n→∞

n∑
i=1

b2(i;n) = 0,
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then mn → 0, and for every function φ(n) such that φ(n)mn → 0 as n → +∞,

sup
{k: k2≤φ(n)}

∣∣∣∣
P (Vn = k)

e−λnλk
n/k!

− 1

∣∣∣∣ −→ 0 as n → +∞.

Proof. (A4) and the inequality

n∑
i=1

b2(i;n) ≥ m2
n

give that lim
n→∞

mn = 0, and therefore in our proof we can assume that for all

n, and for i such that 1 ≤ i ≤ n, 0 ≤ b(i;n) < 1/2.

We first consider the case k = 0. By using the Taylor series expansion of
ln(1− x), one obtains the following bounds for 0 < x < 1/2,

(2.5) − x− x2 ≤ ln(1− x) ≤ −x.

Using (2.5) with x = b(i;n), one gets

exp(−
n∑

i=1

b2(i;n)) ≤ P (Vn = 0)

e−λn
≤

exp(−
n∑

i=1

b(i;n))

e−λn
= 1.

So we have that

exp(−
n∑

i=1

b2(i;n)) ≤ P (Vn = 0)

e−λn
≤ 1.(2.6)

It follows from (A4) that both bounds go to 1 as n goes to infinity, and
thus, the convergence holds for the case k = 0.

Since mn → 0, for k ≥ 1, the proof of Theorem 2.1 applies, and (2.4) and
(2.6) give

1− ε1(k,mn) ≤
P (Vn = k)

e−λn
λk
n

k!

≤ exp(

n∑
i=1

b2(i;n)) (1 + ε2(k,mn)) .

The result follows from the above inequalities. �

2.2. Dependent case

In this section we extend our previous results to arrays {X̃i,n, 1 ≤ i ≤
≤ n; n ∈ N} where for every n, X̃i,n, 1 ≤ i ≤ n, are dependent Bernoulli
random variables which satisfy a scheme described by B.A. Sevast’yanov [18].
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We use the notation introduced in Section 1.1 if the random variables are
independent and modify this notation by adding ’ ˜ ’ when the the random
variables are dependent. Let S0,n = S̃0,n = 1, and for 1 ≤ k ≤ n let

Sk,n =
∑

i1,··· ,ik

b(i1;n)b(i2;n) · · · b(ik;n)

and
S̃k,n =

∑
i1,··· ,ik

b̃(i1, i2, ..., ik;n),

where each of the above sums is over all collections of mutually distinct indices
1 ≤ i1 < i2 < · · · < ik ≤ n.

We consider rare sets, Ik(n), to be particular collections of k mutually dis-
tinct indices. To simplify the notation, in what follows by

∑
Ik(n)

and
∑

Ik(n)c

we denote summations over all collections of k indices in Ik(n) and Ik(n)
c,

respectively.

Theorem 2.4. Let {X̃i,n, 1 ≤ i ≤ n; n ∈ N} be a triangular array and
{Xi,n, 1 ≤ i ≤ n; n ∈ N} a row-wise independent triangular array. If the
following assumptions are satisfied:

(B1) lim
n→+∞

b̃(i1, i2, ..., ik;n)

b(i1;n)b(i2;n) · · · b(ik;n)
= 1 for all (i1, i2, ..., ik) ∈ Ick(n)

(B2) lim
n→+∞

S̃k,n∑
Ik(n)

c

b̃(i1, i2, ..., ik;n)
= 1

(B3) lim
n→+∞

Sk,n∑
Ik(n)

c

b(i1;n)b(i2;n) · · · b(ik;n)
= 1,

where the limits (B1), (B2), and (B3) are uniform in k and in (i1, i2, · · · , ik) ∈
∈ Ick(n), then

(2.7) lim
n→+∞

P (Ṽn = k)

P (Vn = k)
= 1

uniformly in k. Moreover Theorems 2.1, 2.2, and 2.3 apply with Vn replaced
by Ṽn.

Remark 2.3. There are some differences between the assumptions of Theorem
2.4 and those of Theorem 1 in B.A. Sevast’yanov [18]. In our theorem we require
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(B1)− (B3) to hold uniformly in k, which is not required in Theorem 1 of [18].
Since the proof in [18] is based on the method of moments, finiteness is a crucial
assumption. By requiring uniformity in k, we are able to extend Sevast’yanov’s
result to λ = +∞. Moreover, since we do not assume that mn → 0, Theorem
2.4 also applies to sums of dependent Bernoulli random variables and not only
to triangular arrays. In the case 0 < λ < +∞, conditions (B1) − (B3) of
Theorem 2.4 are equivalent to conditions (2) and (3) of Theorem 1 in [18]. In
the setting where λ is not assumed to be finite, our formulation is preferable
since when λ = +∞, conditions (B1) − (B3) can be satisfied even without
assuming ∑

Ik(n)

b(i1;n)b(i2;n) · · · b(ik;n) −→ 0

or ∑
Ik(n)

b̃(i1, i2, ..., ik;n) −→ 0

as n → +∞.

Proof. We use inclusion-exclusion, see J. Galambos, I. Simonelli [6], to express

(2.8) P (Ṽn = k) =

n∑
l=0

(−1)l
(
k + l

k

)
S̃k+l,n.

We will compare this to

(2.9) P (Vn = k) =

n∑
l=0

(−1)l
(
k + l

k

)
Sk+l,n.

We begin by rewriting

P (Ṽn = k) =

n∑
l=0

(−1)l
(
k + l

k

)
S̃k+l,n =

=
n∑

l=0

(−1)l
(
k + l

k

)
 ∑

Ic
k+l(n)

b̃(i1, i2, ..., ik+l;n) +
∑

Ik+l(n)

b̃(i1, i2, ..., ik+l;n)


 =

=
n∑

l=0

(−1)l
(
k + l

k

) ∑
Ic
k+l(n)

b̃(i1, i2, ..., ik+l;n)


1 +

∑
Ik+l(n)

b̃(i1, i2, ..., ik+l;n)

∑
Ic
k+l(n)

b̃(i1, i2, ..., ik+l;n)


 .
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Since we can write
∑

Ic
k+l(n)

b̃(i1, i2, ..., ik+l;n) =

=
∑

Ic
k+l(n)

(
b̃(i1, i2, ..., ik+l;n)

b(i1;n)b(i2;n) · · · b(ik+l;n)
· b(i1;n)b(i2;n) · · · b(ik+l;n)

)
,

it follows from (B1) that for ε > 0 there exists n0 such that for n ≥ n0 and all
l + k,

(1− ε

3
)

∑
Ic
k+l(n)

b(i1;n)b(i2;n) · · · b(ik+l;n) ≤

≤
∑

Ic
k+l(n)

b̃(i1, i2, ..., ik+l;n) ≤

≤ (1 +
ε

3
)

∑
Ic
k+l(n)

b(i1;n)b(i2;n) · · · b(ik+l;n).

From (B3), it follows that there exists an n1 such that for n ≥ n1 and all
l + k,

(1− ε

3
) ≤

∑
Ic
k+l(n)

b(i1;n)b(i2;n) · · · b(ik+l;n)

Sk+l,n
≤ (1 +

ε

3
).

Lastly, since

S̃k,n∑
Ic
k+l(n)

b̃(i1, i2, ..., ik+l;n)
= 1 +

∑
Ik+l(n)

b̃(i1, i2, ..., ik+l;n)

∑
Ic
k+l(n)

b̃(i1, i2, ..., ik+l;n)
,

it follows from (B2) that there exists n2 such that for n ≥ n2 and all l + k,

1 ≤ 1 +

∑
Ik+l(n)

b̃(i1, i2, ..., ik+l;n)

∑
Ic
k+l(n)

b̃(i1, i2, ..., ik+l;n)
≤ (1 +

ε

3
).

Let N = max{n0, n1, n2}. Then for n ≥ N ,

(1− ε

3
)2

n∑
l=0

(−1)l
(
k + l

k

)
Sk+l,n ≤ P (Ṽn = k) ≤

≤ (1 +
ε

3
)3

n∑
l=0

(−1)l
(
k + l

k

)
Sk+l,n
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which can be expressed as

(1− ε

3
)2P (Vn = k) ≤ P (Ṽn = k) ≤ (1 +

ε

3
)3P (Vn = k).

Thus, for all k,

(1− ε

3
)2 ≤ P (Ṽn = k)

P (Vn = k)
≤ (1 +

ε

3
)3.

Since ε is arbitrary, we have shown that the results in Theorems 2.1, 2.2, and
2.3 hold under the respective assumptions for this case of dependence. �
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