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Abstract. Integer-valued autoregressive (INAR) processes is a relatively
new field of time series analysis. Bootstrapping such data is not an evident
problem, further assumptions are needed, or possibly the bootstrap sam-
ples will not form an INAR process. In this paper we present a new, non-
parametric bootstrap method, based on the idea of block bootstrap. The
procedure resamples blocks that perfectly match to the last element of the
previous block. We present properties of this so called matched bootstrap
approach and compare our method to other frequently used bootstrap pro-
cedures for INAR processes. We apply the methods to a natural disaster
dataset.

1. Introduction

Time series analysis is a dynamically developing field of mathematics. Be-
sides (mostly) continuous data of financial and some environmental time series,
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integer-valued digital, environmental and social data also motivate new models
in order to describe and predict real life processes better. One of the most com-
mon model is the autoregressive (AR) process, which is suitable for continuous
data only. Its modification is the integer-valued autoregressive (INAR) process
introduced by [1]. In fact, not every stationary, integer valued time series follow
this type of structure, however INAR can be a good approximation for most of
such real life data sets.

In the description of an INAR process we expect correlation among the
nearby elements, similarly to the AR processes. The definition of an (Xt, t ∈ Z)
INAR process of order p by [2] and [10] is the following:

Xt = α1 ◦Xt−1 + α2 ◦Xt−2 + · · ·+ αp ◦Xt−p + εt,

where 0 ≤ αi < 1 (i = 1, 2, . . . , p) are the autocorrelation coefficients, ” ◦ ”
is the binomial thinning operator introduced by [18] meaning that α ◦Xt is a
realization of Bin(Xt, α). The εt innovation process (εt, t ∈ Z) is independent
fromXs (s < t). It contains independent, identically distributed, integer valued
random variables. Usual choice for the innovations is the Poisson distribution.
If
∑p

i=1 αi < 1 the given equation has a stationary solution.

In our paper we will analyse the first order INAR(1) processes:

Xt = α ◦Xt−1 + εt,

using the notations described above. We assume stationarity, so 0 ≤ α < 1.

One can consider a stationary INAR process as a discrete Markov chain.
The work of [13] summarizes the most important definitions and properties of
Markov chains. Each value is a state and there is a pij transition probability
between the given i and j values. The pij probabilities strongly depends on α
and the innovation distribution, which imply some statements, as follows. De-
note the support of the distribution of the innovations by D and the stationary
distribution by Q and let t be a natural number.

• The transition probability pts > 0, where s = u+d, 0 ≤ u ≤ t are integers
and d ∈ D.

• For every other state s we have pts = 0.

• The states constitute one class (i.e. ∀ s ∈ D can be reached from t).

• The chain is irreducible, aperiodic and positive recurrent. Each state t
has a positive expected return time 1/Q(t) (by [13] Theorem 1.7.7.).

The main questions when analysing an INAR process are to estimate the
expectation, variance and the α autoregression parameters. The mean and
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variance can easily be estimated based on the observations. Similarly as in
case of AR processes one can use the Yule–Walker equations to estimate α for
INAR processes ([7]). However constructing confidence intervals and deriving
the standard deviation of the given statistics are not straightforward.

A generally accepted way for constructing confidence intervals is using boot-
strap simulations [8]. We present the frequently used methods in section 2.
One of the most common method developed for time series is the circular block
bootstrap by [15] which uses blocks of the original process. The block selection
is automatized by [16] to maximize the effectiveness of estimating the expecta-
tion. Parametric bootstrap techniques are also available for time series, see e.g
[11, 4]. A comparison study by [9] reveals that parametric bootstrap methods
result in the most efficient estimates for INAR series. However the parametric
assumptions might fail, therefore an effective non-parametric bootstrap can be
desirable.

In section 3 we introduce a new, non-parametric, block resampling-based
bootstrap technique, which is related to [5]’s method, called matched bootstrap,
especially developed for INAR(1) processes. In order to its proper behaviour
we need to shorten the original series. However, we prove that the loss of
observations is negligible for long time series.

In section 4 we compare the parameter estimates using matched bootstrap,
circular block bootstrap and parametric bootstrap for INAR processes, extend-
ing the work of [9]. We show that matched bootstrap procedure is effective on
INAR series both with Poisson and uniform innovations, in contrast to other
methods. As a real life application, we analyse the dataset of the most signifi-
cant volcanic eruptions from the last 100 years [6] in section 5.

2. Bootstrap methods for INAR processes

2.1. The AR bootstrap

Since INAR processes are closely related to AR processes, it is logical to
use parametric AR bootstrap for resampling an INAR process [4]. It might be
suitable for some estimation problems, however it ruins the integer structure, so
they are definitely not applicable to INAR-specific problems, like estimating the
proportion of zeros in the process. LetX = X1, X2, . . . , XN be the observations
of the INAR process. The steps of the procedure are the following:

1. Construct X∗
i = Xi −X centred series, where X is the sample mean.
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2. Estimate the coefficient α by the Yule–Walker equation of X∗, denote the
estimate by α̂.

3. Calculate ε̂i = X∗
i −X∗

i−1 · α̂ for i = 2, 3, . . . , N .

4. Centre the residuals as ε̃i = ε̂i − 1
N−1

∑N
j=2 ε̂j . Denote the empirical

distribution of the ε̃’s by F.

5. Generate bootstrap samples by Yi = Yi−1 · α̂+ ε∗t , (i = 2, ..., N) where ε∗t
is a random element of F. Y1 can be equal to X1, or a random element
of X.

The AR bootstrap has numerous desired properties, such as consistency and
asymptotic normality when estimating the mean ([9]), however it is inconsistent
for the variance ([19]). Since the residuals are not integer valued and may also
be negative, this procedure is not able to give a possible realization of an INAR
process.

The idea of AR bootstrap can not be modified for INAR processes, since the
integer valued residuals can not be estimated directly. There are some residual
based methods like the one introduced by [3] based on the work of [4], but they
are mostly biased (proved by [9]). The key to constructing a residual based
bootstrap method is to estimate the residual distribution in an unbiased way,
which is usually a very difficult task.

2.2. Parametric INAR bootstrap

To overcome the problem of estimating the residual distribution one can
use parametric INAR bootstrap as [9] suggest. In this approach the observed
data is used only to estimate the parameters of the INAR process and the
residuals (e.g. the parameter λ in case of Poisson distributed innovations),
then bootstrap samples are generated using the estimated parameters. For
this procedure an assumption for the family of the residuals distribution is
needed - in our case this is the Poisson distribution. The algorithm is the
following:

1. Estimate the auto-regressive parameter (α̂) of the time series (e.g. using
the Yule–Walker estimator).

2. Since the marginal distribution of a Poisson(λ) based INAR(1) is also
Poisson with parameter λ/(1−α), one can estimate λ by using the sample

mean and α̂: λ̂ = X · (1− α̂).
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3. Using a suitable starting value (e.g. Y1 = X1, or Y1 =
⌊
X
⌋
) the simulated

bootstrap process will be

Yi = α̂ ◦ Yi−1 + εi,

where εi is a Poisson(λ̂) distributed random variable, independent from
the past of the process.

The bootstrap sample will be integer-valued using the parametric INAR
bootstrap. Under mild conditions the INAR bootstrap consistency is proved
by [9]. This method is usually really effective, however one needs a correct
assumption for the residuals’ distribution, otherwise the estimates might be
biased.

2.3. Circular block bootstrap

One of the most popular way for bootstrapping time series is resampling
and attaching blocks of the original sample [15]. Theoretical results and asymp-
totic properties can be found in [12]. For choosing the optimal block size [16]
proposed an adaptive algorithm based on the sample, which is corrected by
[14]. This procedure is developed for estimating the mean of the process. A
comparison study of [17] investigates different types of block bootstrap meth-
ods.

A potential error can occur if the starting observation of the chosen block
is near to the end of the sample. In this case one may continue the given block
at the beginning of the sample (circularity). Based on these guidelines the
circular block bootstrap method is the following:

Let X = X1, X2, . . . , Xn be the original time series, and � be the selected
block size (e.g. by [16]). Select i1, i2, . . . , i�n/�� starting points uniformly from
1, 2, . . . , n. The bootstrap sample will then be:

Y = Xi1 , Xi1+1, . . . , Xi1+�−1, Xi2 , . . . , Xi2+�−1, . . . , Xi�n/�� , . . . , Xi�n/��+�−1,

circularly returning to X1 if necessary. If � is not a divisor of n, the last block
will be shorter.

The circular block bootstrap method is non-parametric, therefore no as-
sumptions for the time series structure other than stationarity is needed. Be-
tween blocks there is no correlation (conditionally on the sample) by the se-
lection procedure. Thus despite the favourable asymptotic properties, for e.g.
estimating the autocorrelation coefficients usually an extremely large sample is
needed.
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3. The matched bootstrap procedure

In this section we propose a modification of the non-parametric block boot-
strap procedure in order to combine the advantages and overcome the disad-
vantages of the existing methods. The main idea of the new method is that
instead of choosing the new block randomly (as in CBB), the starting value
must be the same as the previous block ends. Matching the blocks by the
identical values result in the bootstrap sample. This way each pair of adjacent
observations in the generated bootstrap sample appears in the real sample, too.
In spite of the number of possible blocks is being smaller (compared to CBB),
the correlation structure can be more precise. The idea is similar as the one
described in [5], but our method allows only perfect matching of the blocks.

It is possible that a block starts at the end of the series and can not be
continued. For solving this problem we will also introduce circularity with
some changes to save the correlation structure. Before sampling the blocks we
shorten the original sample so that the new one starts and ends with the same
value. By this reduction we might loose some observations in the beginning and
at the end of the series. We will use only this shorter sequence in the bootstrap
procedure. If a resampled block would reach the end of the reduced series we
will continue it in the beginning as the values are the same. The reduced series
is long enough to make the bootstrap estimates relevant by proposition 3.1.

Proposition 3.1. Let X = X1, X2, . . . , XN be a realization of a stationary
INAR process with autocorrelation 0 ≤ α < 1.

a) One can choose 1 ≤ i < j ≤ N such that Xi = Xj with probability tending
to 1 as N → ∞.

b) Choose Xi and Xj as described in a) such that they are the first and
the last appearance of the same value in X. The difference between
N (the length of the original sequence) and the length of the sequence
Xi, Xi+1, . . . , Xj is o(N) with probability 1.

Proof. a) Denote the stationary distribution of the Markov chain (generated by
the X process) by Q (this is the same as the stationary distribution of X). Let
t be an arbitrary element of supp(Q) and denote the first occurrence of t by Xt1

(the waiting time has finite expectation since the Markov chain is irreducible).
As the Markov chain is stationary and irreducible the expected return time of
t is mt = 1/Q(t). Since Q(t) > 0 for each t ∈ supp(Q), mt < ∞. Therefore as
N → ∞, (N − t1) → ∞ too, so P (∃t2|t1 < t2 < N,Xt2 = Xt1) → 1.

b) Let t be an arbitrary element of supp(Q). The expected return time of
t is mt = 1/Q(t). Suppose t appears τ times in X. The distance between the
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first and the last appearance of t can be considered as sum of τ−1 independent
random variables from the distribution of the return time. Denote the value
of the i-th return by Ri, the time of first appearance of t by W1 and the time
from the last t to the end of X by W2. Then N = W1 +R1 + · · ·+Rτ−1 +W2

holds. The ratio of the loss is W1+W2

N , where the numerator is a sum of two
random variables, so it tends to 0 with probability 1 as N → ∞. �

In the proof we used arbitrary values, but in application it can be optimized
by using a value that results in the longest sequence. In fact, for realistic
parameters and sample sizes this type of reduction is practically always possible
(the probability is close to 1). In table 1 we give the average proportion of the
simulated samples where the reduction failed. Besides, in table 2 we present
the average length of reduced sequences compared to the original one. One can
see, that even for the most extreme case (α = 0.99, λ = 20) a 100 size sample
is usually enough to keep at least 75% of the original observations.

Sample type α = 0.3 α = 0.99 α = 0.3 α = 0.99
λ = 3 λ = 3 λ = 20 λ = 20

n=10 0 1.06 4.54 16.73
n=20 0 0 0 0.57
n=50 0 0 0 0
n=100 0 0 0 0

Table 1: Percentage of simulated time series, where all of the observations were
unique. The calculations are based on Poisson INAR processes, using given
parameters and 100 000 simulations.

Sample type α = 0.3 α = 0.99 α = 0.3 α = 0.99
λ = 3 λ = 3 λ = 20 λ = 20

n=10 0.787 0.572 0.594 0.396
n=20 0.891 0.652 0.788 0.535
n=50 0.957 0.737 0.915 0.677
n=100 0.978 0.797 0.957 0.763

Table 2: Average ratio of the length of reduced sequence and the original
observations based on Poisson INAR processes, for the given parameters. The
calculations are based on 100 000 simulations. The cases when no repeating
observation occurred were considered as 0.

Note that an inappropriate starting point can undermine the effectiveness
of the procedure, since the first steps are needed the process to reach the sta-
tionary distribution. However it is not a problem for realistic observations since
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in real life the parametrizations are less extreme than the shown simulations,
so the process reaches the stationary distribution fast. Now we continue by the
description of the bootstrap procedure.

Let X = X1, X2, . . . , XN be an integer-valued stationary time series. Let
Xc = Xi, Xi+1, . . . , Xj be the maximal sequence, where Xi = Xj . If more than
one maximal reduced series exists, chose one arbitrary. In order to produce an
Y = Y1, Y2, . . . , YM (usually M = N) bootstrap sample use the following steps:

1. Set Y1 = X1 (or randomly from X) and block size b.

2. If the last simulated element of the bootstrap series is Yk, choose one of
Xi, Xi+1, . . . , Xj observations that equals Yk randomly, denote it Xk∗ .

3. Let Yk, Yk+1, . . . , Yk+b = Xk∗ , Xk∗+1, . . . , Xk∗+b. If k∗ + b ≤ j and
k + b < M , then go to 2. Otherwise apply one (or both) of the following
corrections:

a) End of sampling series:
If k∗ + b = j + a, where a > 0, return to the process at Xi, i.e. let
Yk, Yk+1, . . . , Yk+b = Xk∗ , Xk∗+1, . . . , Xj , Xi+1, . . . , Xi+a.

b) End of bootstrap series:
If k+ b ≥ M , set b∗ = M − k and use b∗ as block size to complete the Y
sequence.

4. Repeat steps 2-3 to get the Y bootstrap process.

Using matched bootstrap technique the bootstrap sample will maintain the
correlation between each pairs of observations. The innovations come directly
from X, therefore no bias appears due to its estimation.

It is possible to use random block sizes during the procedure. It might
be useful for small samples with large variance to avoid too much repetition.
However, our simulations showed that in general fixed block length is simi-
larly effective as random, coinciding with the results of [12] for regular block
bootstraps, thus we investigate only the fixed block-size matched bootstrap
method.

It is important to mention, that the matched bootstrap procedure is appli-
cable only for INAR(1) processes. For higher order INAR, one may use larger
overlapping sequences between neighbouring blocks. However, this modifica-
tion dramatically reduces in the variability of possible blocks, therefore much
longer observation series is needed to its applicability.
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4. Comparison

We used 5 different bootstrap methods in our comparison study, namely the
AR, parametric INAR (pINAR), CBB with Politis-White block size selection
procedure and matched bootstrap using 10 and 1 size blocks. We considered
these block sizes, as 10 seemed to be a reasonable size (not too small, not too
large, considering that we investigated samples of size 100), while block size 1
is a special case, when the bootstrap sample is increased by a single element in
each step 3 in the algorithm of the matched bootstrap procedure described in
section 3.

We tested the effectiveness of methods on different integer valued time se-
ries. First, we generated stationary INAR processes with Poisson innovations
using fixed parameters α = 0.4 and λ = 5 (table 3). Second, the simulated
samples had α = 0.4 autocorrelation parameter as well, while the innovation
process had the values from 0, 5 or 10 (table 4) with probability 1/3. The
expected value of innovations is the same in both cases, however the structure
is completely different.

Statistic AR pINAR CBB Matching 10 Matching 1

Autoregressive parameter

CI coverage % 0.917 0.916 0.644 0.856 0.816
CI width 0.362 0.366 0.361 0.325 0.365

Standard error 0.0197 0.0199 0.0396 0.0188 0.0267

Mean of the process

CI coverage % 0.931 0.943 0.881 0.869 0.858
CI width 1.645 1.666 1.449 1.528 1.484

Standard error 0.3669 0.3694 0.3327 0.3668 0.3839

Standard deviation

CI coverage % 0.9 1 0.874 0.848 0.634
CI width 0.904 0.959 0.847 0.826 0.754

Standard error 0.1198 0.0686 0.114 0.1162 0.1689

Table 3: Simulated statistics for INAR process with α = 0.4 and λ = 5 for
100 sized samples with Poisson distributed innovations. The autocorrelation
parameter, mean and standard deviation of the bootstrap samples were cal-
culated using different type of procedures. Percentage of confidence intervals
covering the true value, average width of CI and average mean squared error
for each statistic were estimated using 1000 simulated INAR processes. For
bootstrap simulations we used 1000 bootstrap samples in each case.
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Statistic AR pINAR CBB Matching 10 Matching 1

Autoregressive parameter

CI coverage % 0.924 0.928 0.643 0.834 0.808
CI width 0.364 0.367 0.359 0.322 0.361

Standard error 0.0196 0.0197 0.0404 0.0185 0.0263

Mean of the process

CI coverage % 0.925 0.746 0.885 0.880 0.845
CI width 2.694 1.663 2.365 2.466 2.543

Standard error 1.013 0.7076 0.919 1.017 1.153

Standard deviation

CI coverage % 0.9 0 0.885 0.862 0.791
CI width 1.125 0.958 1.048 1.004 1.004

Standard error 0.1770 3.3504 0.1675 0.1674 0.2023

Table 4: Simulated statistics for INAR process with α = 0.4 using uniform
random innovations over {0, 5, 10} for 100 length samples. The autocorrelation
parameter, mean and standard deviation of the bootstrap samples were cal-
culated using different type of procedures. Percentage of confidence intervals
covering the true value, average width of CI and average mean squared error
for each statistic were estimated using 1000 simulated INAR processes. For
bootstrap simulations we used 1000 bootstrap samples in each case.

For each case, we estimated the parameter α, the mean and the standard
deviation by the bootstrap samples. Using these simulated values we were
able to construct confidence intervals for the given statistics. We present the
percentage of the confidence intervals covering the true value, average width
of the confidence intervals and the mean squared error from the theoretical
parameter values in tables 3 and 4.

In general one can say, that a good bootstrap CI has large coverage rate,
while the it is narrow and the standard error is small. These properties usually
do not coexist, therefore the favourable procedures are different in the cases.

The AR bootstrap is usually quite stable, it has large percentage, narrow
CI and small error, however the bootstrap samples are not integer valued.
The parametric (Poisson-distribution based) INAR bootstrap is the best in
case of Poisson distributed innovations. The α estimate is also acceptable for
the uniform innovation distribution, but for the mean and especially for the
standard deviation it does not have the needed coverage probability, when the
innovation distribution is misspecified. The classical circular block bootstrap is
strong for estimating the mean, but for the other parameters it underperforms.

Comparing the two matched bootstrap methods one can see, that 10 size
blocks usually perform better than 1 size ones. Generally we can say, that
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the performance of the matched bootstrap procedure is acceptable. The CI
coverage ratio is larger than 0.8, the CI is relatively narrow and standard error
for each statistic is one of the smallest. It is not sensitive to the distribution of
innovations and the bootstrap series are integer valued.

Generally one can say, that the results of the AR and matched 10 methods
can be considered in general for parameter and confidence interval estimation,
while the other methods are able to perform well only in some of the cases.

5. Volcanic eruptions

We used the existing and new methods for analysing the number of signif-
icant volcanic eruptions of the last 100 years. The dataset was compiled by
the National Centers for Environmental Information of the US Government,
it can be downloaded from [6] and contains the annual number of the largest
volcanic eruptions from 1900 to 2018 (for the exact definition we refer to [6]).
We analysed the dataset using the AR, parametric INAR (pINAR), CBB with
Politis–White block size selection procedure and matched bootstrap using 10
and 1 size blocks. The estimated autoregression parameter, mean and standard
deviation are presented in table 5.

Method α mean standard deviation

Original 0.245 4.18 2.439
AR 0.227 (0.05 - 0.41) 4.177 (3.64 - 4.73) 2.403 (2.03 - 2.8)

pINAR 0.227 (0.04 - 0.4) 4.174 (3.67 - 4.69) 2.019 (1.71 - 2.36)
CBB 0.151 (-0.03 - 0.33) 4.187 (3.67 - 4.77) 2.421 (1.98 - 2.87)

Matched 10 0.205 (0.02 - 0.36) 4.054 (3.37 - 4.79) 2.202 (1.82 - 2.56)
Matched 1 0.199 (-0.01 - 0.39) 4.044 (3.53 - 4.6) 2.21 (1.89 - 2.54)

Table 5: Estimated statistics for the time series of annual volcanic eruptions
from 1900 to 2018. The estimates and 95% confidence intervals for the au-
tocorrelation parameter, mean and standard deviation were calculated using
different type of bootstrap techniques. The bootstrap estimations are based on
1000 simulations.

One can see, that the results of the AR method are close to the original
estimated values. The pINAR underestimates the standard deviation, even the
observed value is outside the confidence interval. The CBB underestimates the
autocorrelation, so that the dependence is not even significant by this method.
The confidence interval for α using matched 1 method also contains 0. In
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contrast, matched 10 method result in acceptable estimates and confidence
intervals for all of the statistics. It suggests smaller values than the estimates
of the original sample, which might be explained by usually less eruptions, with
some more intense periods. The confidence intervals are asymmetric in this
case, as supposed to be for a process with non-normal distributed innovation
structure.

Finally we present a prediction for year 2019 and compare it with the ob-
served number of large eruptions. We estimated the average of the process
by the mean of the sample. Using the estimated α̂ autoregression parameters
from table 5 we calculated the λ̂ = X · (1 − α̂) approximation for the Poisson
distribution’s parameter. This choice may be motivated by the fact that the
innovations (new erupting volcanoes in the given year) are expected to fulfil the
properties of the Poisson process. Then we simulated random values from the
Bin(X2018, α̂) + Poi(λ̂) distribution. The histogram of marginal distribution
for year 2019 can be seen on figure 1. The matched 10 and the AR bootstrap
method both predicted 6 eruptions for year 2019 by using squared loss function.
In fact, that year 7 large eruptions occurred, thus both method preformed well.

(a) Matched bootstrap with 10 sized
blocks

(b) AR bootstrap

Figure 1: Monte Carlo simulation for the number of large eruptions in year
2019 based on the two best bootstrap technique. The histograms are based on
100 000 simulations.
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6. Conclusion

We presented the matched bootstrap method for INAR(1) processes. This
non-parametric block-based method selects new blocks fitting perfectly to the
previous ones. The received time series has a structure similar to the original
INAR observations, while the bootstrap estimates performs comparably to the
previously known, best procedures as it was shown by our simulation study.
As it is not sensitive for the innovation distribution, it can be used for a wide
range of INAR(1) series without making assumptions.

A similar idea can be executed for classical block bootstrap. One can choose
the upcoming block using a weighted distribution (kernel function) of the obser-
vations in order to rise the probability of choosing similar values as the end of
the previous block. This procedure needs a deeper research to find the optimal
weights and analyse the asymptotic and finite sample properties.

Unfortunately the generalization for higher order INAR processes is not
evident. Trying to match more observations lowers the number of suitable
blocks which makes the model less random. However, not claiming perfect
matching, only similar values - based on a probabilistic decision as [5] - may
extend the procedure for higher ordered processes as well.
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[7] Drost, F. C., van den Akker, R. and B. J. M. Werker, Efficient
estimation of auto-regression parameters and innovation distributions for
semiparametric integer-valued AR(p) models, J. R. Stat. Soc. Ser. B. Stat.
Methodol., 71 (2009), 467–485.

[8] Efron, B., Bootstrap methods: another look at the jackknife, The Annals
of Statistics, 7 (1979), 1–26.

[9] Jentsch, C. and C. Weiss, Bootstrapping INAR models, Bernoulli, 25
(2019), 2359–2408.

[10] Du J. and Li Y., The integer-valued autoregressive (INAR(p)) model,
Journal of Time Series Analysis, 12 (1991), 129–142.

[11] Kreiss, J., Bootstrap Procedures for ar(∞)-process, Springer, 1992.

[12] Lahiri, S. N., Theoretical comparisons of block bootstrap methods, The
Annals of Statistics, 27 (1999), 386–404.

[13] Norris, J. R., Markov Chains (Cambridge Series in Statistical and Prob-
abilistic Mathematics), Cambridge University Press, Cambridge, 1997.

[14] Patton, A., Politis, D. N. and J. P. Romano, Correction to ”Auto-
matic Block-Length Selection for the Dependent Bootstrap” by D. Politis
and H. White, Econometric Reviews, 28 (2009), 372–375.

[15] Politis, D. N. and J. P. Romano, A circular block-resampling proce-
dure for stationary data, in: R. Lepage and L. Billard (eds.) Exploring the
Limits of Bootstrap, Wiley, New York (1992), 263–270.

[16] Politis, D. N. and H. White, Automatic block-length selection for the
dependent bootstrap, Econometric Reviews, 23 (2004), 53–70.

[17] Radovanov, B. and A. Marcikić, A comparison of four different
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