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Abstract. An inequality will be presented for areas of triangles with side
lengths given by the powers of a given triple. For small powers we provide
separate proofs, for some further cases computer aided proofs are proposed.
Finally we prove our statement in full.

1. Introduction

Inequalities for triangle areas which contain some powers of the sides are not
uncommon, see e.g. the Area section in [1], especially Ono’s and Weitzenbock’s
inequality. On further investigation we found an inequality which compares the
area of a triangle with sides (a, b, ¢) with the area of the triangle having sides
(a*, 0% c*), k > 2. Hence Heron’s formula

Aa,bye) =3/ (a+b—c)(b+c—a)(c+a—b)at+b+c)

for the area of a triangle will play a central role in our treatment. In what
follows we will employ the square of this quantity.
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We introduce the notations
Ay =bi 4+ & —d* By=d"+F—bvF, Cp=d"+bF -,
and their sum
S = A + Br + Cy, =af + " +
Here a, b, c are positive numbers, and k is a natural number. With these quan-
tities we define
Gr = 3 Ak BrCi Sk,
a scalar multiple of the squared area of a (possibly existing) triangle.
Remark 1.1. Although the degree of Gy, is 4k, this number can be halved by
observing that by virtue of the identity
(1.1) ApBrCy Sy, = Ao Bog + BopCop + Cap Aoy

we can replace (a2, b%,¢c?) by (a,b,c). More concretely, define g via

(12) gk(a7b7 C) = Gk(\/a7 \/Ea \/6)7
then g is a polynomial of degree 2k in three variables.

Now we can formulate a preparative lemma and the main result.

Lemma 1.1. If for some positive numbers a,b,c and for n € N the triangle
(a™,b",c") emists, then the triangles (a*,b* cF), 1 <k <n also exist.

Theorem 1.1. Assume the triangle (a*,b*, c*) exists for some k. Then
gk < gt

In fact, gr < g1gx_1 18 also true. Equality holds if and only if all variables are
equal: a =b=c. As a consequence, for the areas we have

A(ak, bk, ck) < (%)kilAk(a, b, c).

The theorem will be proven in the next sections. In order to emphasize
the complexity and significance of the nonnegativity problem for polynomials,
we give four proofs in case of &k = 2, two for £ = 3, and one for &k = 4. If the
degree is larger, we have a method applicable for all concrete k, using a growing
amount of calculations. Finally, a computer-free, concise proof will be given
for arbitrary k.

To begin with, we prove Lemma 1.1.

Proof of Lemma 1.1. Without loss of generality assume a > b > ¢, which
means a®+b* > ¥ and a¥+cF > bF holds for any k, thus it remains to show that
bF4-ck > a*. By assumption b"+c" > a™, and consequently (b/a)"+(c/a)™ > 1,
where both terms on the left are decreasing in n, i.e. (b/a)* + (c/a)* > 1 holds
for k < n. Rearranging gives b* + c¥ > a*, proving our result. |
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2. The proofs for £k = 2

Proof 1. Elementary identities will be used. We have
(G} = Ga) = (A2 By + BaCy + CaAz)? — 3A;ByC5 S5 =

= A%B% + B%CQZ + 02214% + 2A5B505S5 — 3A3B2C555 =

= A3B3 + B3C3 + O3 A} — A2ByCa(As + By + C2) =

= 1[A3(Bs — C2)? + B3(As — C2)* + C3 (A2 — B»)?],
where we applied the identity As + By + Cy = S5. |
Proof 2. Sum of squares representation. Let us denote

a=a’>+be, B=0b>4ac, ~v=c*+ab,

then we have
g — 92 = g[(a+ B —27)" +3(a - B)?.
Note that our MATLAB program yields other solutions too, e.g.

97 — 92 = g5 [3(a+28 - 37)* + (—5a + 48 +7)?],
which, interestingly, also depends only on («, 3,7). [ |

Proof 3. Application of the Schur inequality. Observe that the polynomial
%(g% — go) assumes

(2.1) a* +b* + ¢t —a®b—aPc — ab® — bPc — ac® — b + abe + ab’c + abc?.

Since this is a homogeneous symmetric polynomial, it can be written as a linear
combination of the basis elements my, m31, mMos, Mo11, the monomial symmetric
polynomials (see [3]) of degree 4. For convenience, we specify them here.

For nonnegative variables (a,b,c¢) and naturals (p,q,r), the corresponding
monomial symmetric polynomial is the sum of all monomials with exponents
ranging over all permutations of the triple (p,q,7) :

My qr = aPblc” + aPb ¢ + a®bPc” + a%b"cP + a"bPc? 4 a"bcP.

Note the outcome of this term-normalization: for a = b = ¢ we always have
Mpqr = 6aPT4". We order the exponents to be monotone decreasing and
omit possible zeroes, hence we write for instance ms 1,9 = ms, 1, except for the
(likewise frequently used) bracket notation

[P, ¢, 7] = mypg.r,
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where normally all exponents are indicated like e.g. [3,1,0].

In our case (three variables, fourth degree) they are

4,0,0] = 2(a* +b* 4+ ),

[4,0,0]

ma1 =[3,1,0] = a®b + a®c + b*a + bPc + Pa + b,
2 =[2,2,0] = 2(a®b?® + b*c* + c*a?),

ma11 =[2,1,1] = 2(a’bc + b?ac + c*ab).

Schur’s inequality ([5], Theorem 3) on monomials asserts that

(2.2) Scha(p,q) = [p +2¢,0,0] — 2[p+¢,4,0] + [p,q,q] > 0

is valid for all positive p and ¢. Choosing p = 2 and ¢ = 1 just gives the desired
result,

my — 2m3 1 +mo 1,1 > 0. |
Proof 4. Difference Substitution (DS). This means substituting (as in [4])
(2.3) a=z, b=zx+y, c=x+y+z,
which is equivalent to
r=a, y=b—a, z=c-—0b,

hence it holds
>0, y>0, 2>20 < 0<a<b<ec

Since the polynomial at issue is symmetric, it suffices to perform only one
substitution of this kind instead of checking all possible 3! permutations. If all
the coefficients are positive, we are done. In our case the quartic (2.1) becomes

22y + 2Pyz 4+ 2227 + dwy2® + 202 + 39727 4 3y + 24,

proving that the original polynomial is indeed nonnegative for all a,b,c > 0.1
3. The proofs for k =3 and £k =4

To get on the case k = 3 we could work with the polynomial g3 — g3, however
it turns out that g; go — g3 is easier to handle, and the nonnegativity of the latter
obviously implies the nonnegativity of the former.

Theorem 3.1. g3 < g192.
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Proof 1. We make use of the following theorem of V. Cirtoaje [2, Theo-
rem 1.1]: Let fo(x,y,2) be a symmetric homogeneous polynomial of degree six
which has the highest coefficient A < 0. The inequality fs(x;y;z) > 0 holds for
all nonnegative real numbers x;y; z if and only if

fﬁ(xa 1, 1) >0 and fﬁ(oayvz) >0 fOT‘ all T, Y,z > 0.
Note that the highest coefficient A above is the coefficient of r2 in

fo(x,y,2) = Ar? + hi(p, q) + ha(p, ),
obtained after rewriting the original form using the substitution
(3.1) p=x+y+z q=xy+yz+zr, T =1TY2.
Let us check the assumption of this theorem! For
fo =9(g192 — g3) =
=4a% — 2a°b — 2a°¢ — a*b? — 2a*bc — a*® — 24363 + 4a>b%c + 4a3b® —

—2a3¢® — a?b* + 4a%b3c — 602622 + 4a%be — et — 2ab® — 2abte+
+ 4ab3c? 4 dab* — 2ab* — 2ac® + 465 — 20°¢c — b*? — 2633 —
— b2t — 26 + 4c°

the polynomial transformed through (3.1) is

—9r2 + (26p® — 50pq)r + (4p° — 26p*q + 43p*¢® — 12¢%),

thus A = —9 < 0. Hence it is enough to examine the nonnegativity of our
polynomial at the values (a,1,1) and (0, b, ¢). For these we obtain

4a3(a+1)(a—1)% and 4b* + 6b3c + Tb?c? + 6bc® + 4c?.
Both are nonnegative for all nonnegative a, b, ¢, thus the proof is complete. Wl

Poof 2. We use again the monomial symmetric polynomials. In three variables,
for degree 6 these are
me =2(a’ + b + c°),
ms1 =a’(b+c) +b0°(a+c)+c(a+b),
myp =a*(b? + %) + b*(a® + &) + *(a® +b?),
Mma11 = 2abc(a3 +03 4+ 03),
ma 3 =2(a*0® + b33 + *a?),
m321 = abC(aQ(b +e)+b*(a+c)+cF(a+ b)),

ma 22 = 6a2b202.
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In this basis our polynomial has the form
99192 — g3) = 2ms — 2ms5,1 — Ma2 —Ma1,1 — M3z +4mz21 — M2 2.
We succeeded in decomposing this into three smaller components

81 =mg — 2ms5 1 + ma1,1,
Sg =mg — 2Mmy2 — My 1,1 +2Mm321,

83 =My 2 — My 1,1 —M33+ 2m3 21 — M222,

all three of which are nonnegative on Ri. As for the first form s;, one can apply
Schur’s (two-parametric) inequality with p =4,¢ =1, i.e. s = Scha(4,1).

The second form, ss can be handled by means of Schur’s one-parametric
inequality ([5], Corollary 4):

(3.2) Sch(t) =2'(z —y)(z —2) +y'(y —2)(y — 2) + 2 (z — ) (2 — y) >0,

valid for all
>0, y>0, 2>0, and t > 0.

Namely, we take ¢ = 3 and multiply the left hand side by (x + y + z). After
expanding, we get so, i.e. s5 = Sch(3)(a + b+ ¢).

Finally, the third form is the expansion of the Vandermonde-like product:
(a—b)2(b—c)*(c—a)? = s3.
In consequence, equality 9(g192 — g3) = s1 + s2 + s3 proves the theorem. W

Now we turn to the case k = 4. We prove the following statement.

Theorem 3.2. g4 < ¢193.

Proof. Since all three terms in the decomposition
9(g193 — 9a) =2Sch(5) (a + b+ c) +2Sch(4) (a® + b* + )+
+((a=b)(b—c)c—a)a+b+c)’

are nonnegative, the theorem follows. (Note that Schur’s function (3.2) is
applied here with the arguments (a, b, ¢) instead of (z,y, z) as above). |

Corollary 3.1. Putting together Theorem 1.1, Theorem 3.1 and Theorem 3.2
(i.e. the inequalities valid for k = 2,3,4) we obtain gy < g7.
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4. The (computer aided) proof for some further values of k

Here we exhibit a possible proof using the method of difference substitution
(2.3), capable for all moderate sizes (this restriction is necessary owing to the
growing amount of calculations). Since these calculations are performed quite
easily, using e.g. the Maple command subs (a=x,b=x+y, c=x+y+z,sg) ; we give
only the number of terms in the expansions for polynomials g1 gx_1—gx. Observe
that, by induction, if g1 < gf717 and g19x—1 — gx > 0, then

gk < g19k—1 < glgffl = g}.

The following table gives the number of terms for the (original) polynomials
919k—1 — g and that for the polynomials transformed by DS - the difference
substitution.

k 2 3 4 5 6 7
original 12 | 28 | 36 | 36 | 36 | 36
transformed | & | 19 | 34 | 33 | 76 | 103

It is seen that apart from the first two cases the number of terms in the
polynomials g1 g1 — g is constant! As for the transformed polynomials - which
all have positive coefficients - the sequence comes from the formula 2k2 +k — 2.

We also display the less fortunate results for gf — g;., demonstrating why
the above choice is preferred. The ‘lengths’ of the transformed polynomials are
the same, however, the size of the form g¢¥ — g grows with k :

k 2 3 4 5 6 7
original 12 | 28 | 45 | 66 | 91 | 120
transformed | & | 19 | 34 | 33 | 76 | 103

Finally we describe the proof for the general case.

5. The proof of Theorem 1.1 for arbitrary k

First we observe that the polynomial gi1gx_1 — gx, where g is defined via
(1.2), can be represented as

(5.1) [ =2map — 2mop_1,1 + Mar—2.2 — Mak—2,1,1—

—2Mpq1 k=1 — Mp e +4Mp 11 — Mg—1,k—1,2-
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Owing to the fixed number of terms (always 8, independently of k), this can
be proved immediately. Next we split f into four terms

fi =mok_20 — Mog—21,1 — Mk k + 2Mg g—1,1 — ME—1,k—1,2,
fo =mo — 2mog_22 — Map_211 + 2Maok_32,1,
[z =mao — 2mog_11 + Mmar—21.1,

fa =2mog_22 — 2Mop_321 — 2Mp41 k-1 + 2Mp k1,1

The equality f = f1 + fo + f3 + f4 can be checked by means of the table

1[2[3[4]5]6]7]8]9
Fl2l=2(1[1fof[21]4]1
AoJo [T ][1]JoJo][-1]2]-1
ATl o 21 2]o0o]o]olo0
Gt =2(o]t1][ofo]o]o|o0
Allolo 2 o] 2]=2]0o]20

where the coefficients correspond to the basis elements
1:imop, 2:mop_11, 3:Mag_22, 4: Mar_21,1, 5: Map_321,

6 Mpy1 k-1, 7 Mpky 8 Mp—1,1, 9 M1 k—1,2-

Notice the (bold) zero in the row of f, belonging to the monomial symmetric
polynomial mgg_321. Although a corresponding term is not present in the
original f, it is contained in both fy and fj.

We prove that all four components are nonnegative over Ri. It holds that

f; : The first summand is a square of a k-th degree polynomial:

fi = (h—s(a—b)(b—c)(c—a))?,

where h; = h;(a, b, c) denotes the i-th complete homogeneous symmetric poly-
nomial in three variables, see 4.4 in [3].

f5 : For the second polynomial we have
fa=2(a+ b+ c)Sch(2k — 3),

where Sch is defined in (3.2).
f3 : The third summand is easy to handle by the help of (2.2). We have

f3 = Sch2(2k - 2, 1).
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fy : After a little calculation we get
%f4 = (a —b)c? (ak(ak_3 A I ol (e bk_3)>+
+ (b —c)a? (bk(bk_3 —a" )+ FaF I - ck_?’))—f—
+(c— a)b? (Ck(ckf?y C B3 gk (R s - ak73)>'

To be able to apply the nonnegativity of (3.2), more precisely, its generalization,
we factorize the differences above. Denoting j = k — 3, we have e.g.

o — - i j—1—i %)
—— = > aicd =30 =%,..
=0

Using a similar modification for the remaining five differences we arrive at

%f4 =(a—b)(a—rc) a® (CQZM + bQZab)—i—
+(b—c)(b—a)b" (azzab ¥ c22b6)+
+ (¢ —a)(c—1b)cF (szbc + azEac).

At this point we utilize the Vornicu—Schur, or generalized Schur inequality
[6, Theorem 1]: Let a;b;c be three reals, and let x;y;z be three nonnegative
reals. Then, the inequality

z(a—b)la—c)+ylb—c)(b—a)+z(c—a)(c—b) >0

holds if one of the following (sufficient) conditions is fulfilled:
(a) We have a >b>c and x >y,
(b) etc.

There are ten further conditions in that theorem, however, we need only (a).
Note that due to symmetry, a > b > ¢ can be assumed. We have to show that

ak (C2Eac + bZEab) > b* (GQZab + 022b0)7
which follows from
a3, > b, and  dFBPE. > bEa?Y .
The first is true due to a > b, while the second can be divided by a?b?, giving
(5.2) AR YD N YIS

which also holds true for k£ > 2.
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With this the proof for f; > 0 and hence the proof of the inequality in
Theorem 1.1 is complete.

As for equality, the “if” part immediately follows from the fact that in case
of a = b = ¢ we have g = a®*. (Note the additional benefit of the term-
normalization: to check if (5.1) vanishes for these values, it is enough to show
that the coefficients sum up to zero!)

As regards the “only if” part, it suffices to consider fi, keeping in mind that
the complete homogeneous symmetric polynomials are positive definite, cf. [9],
or [10]. The proof is herewith complete. [ |

Corollary 5.1. The proof for fy > 0 makes possible a slight generalization.
Replacing in fy the squares (a? b, c?) by (a®,b°,c®) yields a three-parameter
homogeneous symmetric polynomial

Fy(k,j,8) = (a —b)(a —¢)a® (CsEajc) + szaJl-))>+
+(b—c)(b—a)b” (aszg,'} + CSZISJ;))JF
+ (c—a)(c—b)c" (bsEl()i) + asZgjc)),
which form coincides with

(5.3) Mt jt1,s — Mk+1,5+s T Mk jts 1 — Mips,1-

(The special case above corresponds to the choice j = k—3,s = 2.) The relevant
part of proving Fy(k,j,s) > 0 is the analogue of (5.2) with s instead of 2, i.e.

ak_szab > bk_szaba
which obviously holds for s < k.

Remark 5.1. More is true: Fy(k,j,s) > 0 for s < k + 1. To see this, observe
that for s = k + 1 (5.3) reduces t0 Mpyyj+1,k1 — M+ k+1,1, i which case
Muirhead’s inequality (see [7] or [8]) can be applied. Accordingly, for the
monotone decreasing sequences (p;)3 and (g;)? the inequality

Mpy,pa.ps = Mai,q2,03
holds, if the majorization inequalities
PL=q, PLtp22qitq, prtp2tp3s=qtqtags
are fulfilled - which is now the case, for we have

k+j+1>k+j 2%k+j+1=2k+j+1, 2k+j+2=2k+j+2.
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