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Abstract. The purpose of this note is to make higher mathematics
more accessible to learners who are not necessarily majors in mathematics.
Mathematics is in one aspect a method of classification, which is done by
equivalence relation and in another, uniqueness, which is also accomplished
by the same. Starting from congruence between two triangles and coming
into the underlying principle of reduction modulo an equivalence relation,
advanced high school students could master this essential aspect of math-
ematics. Uniqueness or neutral element is that which works as neutral in
the new world of a quotient space, which is also interpreted as annihilating
those entities which are hard to treat, an example being reduction modulo
measure zero set.

1. Universal algebraic structure

In mathematics, constructing a new object from existing ones rests on two
methods, one is forming a Cartesian product and the other a quotient space.
In [1] we fully used them to simplify many homomorpshism type theorems
appearing in algebra.
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Definition 1.1. Given a certain system R, it is possible to construct a uni-
versal system S with a certain mapping σ : R → S which in a certain sense
preserves the mathematical structure. Universality means that given another
similar system T and a mapping τ : R → T which preserves the relevant
mathematical structure, then there exists a unique mapping t : S → T such
that

(1.1) t ◦ σ = τ.

We call such a system S and σ universal. t is uniquely determined by (1.1) by
its behavior on σ(R).

There is a similar notion in the case of a Cartesian (direct) product and
direct sum and is regarded as duality in a categorical setting (when the product
exists). In [1] we did not make much difference in constructions. However, look
at a universal mapping property given on [3, p. 24]: Let K be a field with
valuation v and Kv be its completion with a natural injection ιv : K → Kv.
Suppose L is a field which is complete with respect to its valuation η and that
there exists an isometric field injection λ : K → L. Then there exists a unique
field injection ρ : Kv → L such that

(1.2) ρ ◦ ιv = λ.

Looking at the proof, one sees that the quotient space is used not only in order
to simplify the proof but to assure the uniqueness of the metric induced by the
valuation. If this aspect is separated, then the above universality is the one for
a direct sum (i.e. Cauchy sequences) and the natural injection.

In this note we will develop the idea that reduction modulo “sim”, a suitable
equivalence relation, will give rise to a universal system, which simplifies quite
a lot of constructions in whole spectrum of mathematics. We call this process
reduction modulo sim yielding universality.

For the quotient space S = R/ ∼ we let π = π∼ : R → S = R/ ∼ be
the canonical projection. In S those elements (their totality being U) of R
satisfying the relation ∼ are a sigleton, symbolically U = o, say which means
that we may treat the elements of S as if they are in R with the neutral element
o. Symbolically, (a+ o) ∗ (b+ o) = a ∗ b+ o, a reminiscent of Bachman–Landau
o-notation. Universality (1.1) accompanies with this. If τ : R → T preserves
the relevant mathematical structure and τ(U) = 0, then there exists a unique
mapping t : S → T such that

(1.3) t ◦ π = τ.

This describes the behavior of t on π(R) by τ and so if it exists, it is unique.
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In a certain algebraic system R, if a certain relation ∼ determines a certain
sub-algebraic system, then the quotient system R modulo U and the canonical
projection π = π∼ : R → S = R/ ∼ is an example. In S, U works as a neutral
element o.

In particular, if U = o is a maximal sub-system satisfying ∼, then in S,
there are only two sub-systems R and o.

Example 1.1. One of the guiding principles of [1] is that the residue classes
are for making a surjective homomorphism f : G → Im f ⊂ G′ injective. In
other words, f(a) = f(b) should imply a = b. For this a natural construction is
reduction modulo ∼: f(a) = f(b) yielding G/ ∼. It turns out that this amounts
to reduction modulo the kernel of f in the case of algebraic homomorphisms,
thus universality arises: Let N � G be a normal subgroup of a group G = R.
Then we let S = G/N and πN = σ : G → G/N . For a group homomorphism
ϕ = τ : G → T such that Kerϕ ⊃ N , there exists a unique ϕ̄N = t : S → T
such that (1.1) is satisfied. Since ϕ̄ : G/Kerϕ

∼→ Imϕ is the homomorphism
theorem, it follows that N = Kerϕ is the threshold normal subgroup for which
ϕ̄N : G/N

∼→ Imϕ for Λ-groups and that the homomorphism theorem is a
special case of universality.

This example gives almost all proof of the following

Theorem 1.2. Suppose G,G′ are two Λ-groups and f : G → G′ is a Λ-
homomorphism. Then N = Ker f is a normal Λ-subgroup of G and Im f is a
Λ-subgroup of G′.

(i) A Λ-subgroup H ⊃ N of G and a Λ-subgroup H ′ of Im f is in one-to-one
correspondence under the image and the inverse image of each other:

(1.4) H ′ = f(H), H = f−1(H ′)

and

(1.5) H/N ∼= f(H)

holds true up to H = G.

(ii) H�G and H ′�Im f are equivalent and we have the third homomorphism
theorem

(1.6) G/H ∼= Im f/H ′ = f(G)/f(H) ∼= (G/N)/(H/N).

Proof. If H ′ is a subgroup of Im f , then H := f−1(H ′) ⊃ f−1(e′) = N , so
that the inclusion-order is preserved.

Let f |H be the restriction of f to H. Since Ker f |H ⊂ Ker f = N always
holds, it follows that Ker f |H = Ker f = N in view of H ⊃ N . Hence Exam-
ple 1.1 implies (1.5). Cf. Table 1. (ii) SupposeH ′�Im f . Choose T = f(G)/H ′
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in Example 1.1. Then the kernel of the epimorphism πH′ ◦ f : G → f(G)/H ′

is H and we have

(1.7) G/H ∼= f(G)/H ′.

This proves the first isomorphism in (1.6). Substituting (1.5) with G resp. H
in (1.7) proves the last isomorphism of (1.6). �

proposition group homom N
Example 1.1 G ϕ N
Theorem 1.2 H f |H Ker f |H = Ker f

Table 1. Correspondence of ingredients

Example 1.3. A distance function ρ : X → R is called a pseudo-distance
function if it satisfies the axioms save for the uniqueness: d(a, b) = 0 implies
a = b. In the same vein as in Example 1.1 one considers the equivalence classes
X/ ∼ with ∼: d(a, b) = 0. Then in the equivalence class, uniqueness holds.
More precisely it is stated as the following theorem.

Theorem 1.4. ([5, Theorem 4.15, p. 123]) Let (X, d) be a pseudo-metric
space and for each x ∈ X let [x]− denote the set of all points y ∈ X such
that d(x, y) = 0. Let D be the set of all elements [x]− and for two elements
A,B ∈ D let

ρ(A,B) = d(A,B).

Then (D, ρ) is a metric space whose topology is the quotient topology X/ ∼
for D and the projection of X onto D is an isometry. Here ∼ is the relation
x ∼ y ⇐⇒ d(x, y) = 0.

As is also stated on [3, p. 22], the universality for Cartesian product shows
that there is a unique distance function which keeps uniqueness.

1.1. Ring theory

The following result is ubiquitously used throughout mathematical disci-
plines without much care about its origin.

Corollary 1.1. Suppose R contains the identity 1. Then for any ideal a0 � R,
there exists a maximal ideal a ⊂ R containing a0.

Proof follows from Proposition below with exceptional set E = {1}.

Definition 1.2. A ring with unity is called a simple ring if the only ideals are
0 and R. A commutative ring with unity is called a local ring [resp, semi-local
ring] if it contains a unique [resp. finitely many] maximal ideal.



Reduction modulo sim and universality 187

In [6, p. 11, p. 13] the phrase “by localizing” is used to mean that the
localization at a prime ideal p is a local ring. In the same vein, we propose
to say “by maximizing” to mean that for an ideal in the ring there exists a
maximal ideal (by Corollary 1.1) by which we form a field.

Proposition 1.5. Let E be a non-empty set � R and suppose there is an ideal
a0 of R such that a0 ∩ E = φ. Then there exists a maximal ideal a such that
a ⊃ a0 and a ∩ E = ∅.

For any totally ordered subset {aν} of the family of all ideals of R containing
a0 not meeting E, the union is an upper bound and Zorn’s lemma applies.

Example 1.6. Suppose R is a ring with unity and m is a two-sided maximal
ideal. Then R/m is a skew field. Especially, if further R is commutative, then
it is a field. For if x /∈ m, then Rx = R or xR = R according as it is a left or
right ideal, so that x has the inverse element.

Example 1.7. Let R be a commutative ring with unity 1. Let S ⊂ R be a
multiplicatively closed subset, i.e. a multiplicative semi-group of R containing
1 but not 0. To construct a quotient ring, in the direct product R × S the
equivalence relation is introduced

(1.8) (a1, s1) ∼ (a2, s2) ←→ (a1s2 − a2s1)s = 0 for some s ∈ S.

The equivalence class containing (a, s) is denoted a/s. Then the quotient space
R/S = R/ ∼= {a/s|a ∈ R, s ∈ S}, often written S−1R is such that those
elements which belong to S are 1/1–the identity in S−1R and that addition
and multiplication are defined as usual. (1.8) assures well-defined-ness of these
operations and S−1R becomes a ring. We denote the canonical projection π
by S−1:

(1.9) S−1 : R → S−1R; S−1a = a/s

If we restrict S to be the set of all non zero-divisors of R, then the condition
(1.8) reduces to a1s2 − a2s1 = 0 and S−1R is called the quotient ring denoted
q(R).

Let a ⊂ R be a prime ideal. Then S = R−a is a multiplicatively closed sub-
set and we may form a quotient ring q(R) denoted Ra and called the localization
at a.

Theorem 1.8. If τ : R → R′ is a ring homomorphism such that τ(S) ⊂ U(R′),
where U(R′) is the unit group. Then there exists a unique t : S−1R → R′ such
that t ◦ S−1 = τ .

Definition 1.3. A commutative ring with 1 is called a local ring if there is
only one maximal ideal and is called a semi-local ring if there are only finitely
many maximal ideals.
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Theorem 1.9. Let R be a commutative ring with 1. R is a local ring if and
only if the set m of all non-unis of R forms an ideal.

Proof. Suppose R is a local ring with n its unique maximal ideal. �

2. Modules over a ring

Here we shall elucidate the construction of a tensor product, alternating
algebra etc.

2.1. Tensor product

Let R be a ring with unity. For a right R-module M and a left R-module N ,
a mapping f : M ×N → T , T being an Abelian group, is called a semi-linear
map if it is additive with respect to both variables and f(xa, y) = f(x, ay).

Definition 2.1. For a right R-module M and a left R-module N , their tensor
product M ⊗ N = M ⊗R N = (M ⊗ N,⊗) is an Abelian group satisfying the
following conditions. The map

(2.1) ⊗ : M ×N → M ⊗N, (x, y) → x⊗ y, x ∈ M,y ∈ N

satisfies the semi-bilinearity conditions

(x1 + x2, y) = (x1, y) + (x2, y)(2.2)

(x, y1 + y2) = (x, y1) + (x, y2)

(xa, y) = (x, ay)

and also universality condition (U) is satisfied:

(U) For any semi-bilinear map τ : M ×N → T to an Abelian group, there
exists a unique t : M ⊗N → T such that τ = t ◦ ⊗.

Theorem 2.1. The tensor product M ⊗R N exists and is unique up to a
isomorphism. Its elements are expressed as a finite linear combination

(2.3)
∑

xi ⊗ yi, (xi ∈ M, yi ∈ N).

Proof. Existence. Let F = FM×N be a free Abelian group i.e. a free Z-module
with basis M ×N . The relation ∼ is to be set so as to make the reduction of a
system satisfy the conditions for a tensor product, i. e. semi-bilinearity of the
natural projection π∼. I.e. for x, xi ∈ M,y, yj ∈ N, a ∈ R, the reduction ∼ is
to make (2.2) hold true in F/ ∼. I.e. two elements are equivalent if they differ
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by elements in (2.4), or simply their difference belongs to the subgroup H ⊂ F
generated by elements of the form

(x1 + x2, y)− (x1, y)− (x2, y),(2.4)

(x, y1 + y2)− (x, y1)− (x, y2),

(xa, y)− (x, ay).

Then S = F/ ∼= F/H as a factor group. The canonical projection is π = π∼ :
: F → S. The restriction πM×N is a semi-bilinear map and works as the map
⊗ in the definition. Any semi-bilinear map τ : M × N → T can be extended
to a homomorphism F → T since it maps H to 0. Hence we may define the
map t : F/H → T by t ◦ π∼ = τ . Hence F/H satisfies the defining conditions
in Definition 2.1 and passes as the tensor product M ⊗N .

Uniqueness. Suppose in addition to (M⊗N,⊗), the pair (T, τ) also satisfies
the universality condition (U) is satisfied, i.e. there exists a t1 : T → M ⊗ N
such that

(t1 ◦ t)(x⊗ y) = (t1 ◦ τ)(x, y) = x⊗ y.

Applying the uniqueness in (U) to T = M ⊗ N and τ = ⊗, we see that
t1 ◦ t = IM⊗N . Changing the role, we have t ◦ t1 = IT . Hence t : M ⊗N � T .
Identifying t : M⊗N and T , the maps⊗ and T are identified and the uniqueness
holds including the semi-bilinear map (2.1).

Linear combination expression. Let T be the set of all elements of the form
(2.3) forms an Abelian group. The map ⊗ in (2.1) induces a semi-bilinear
map M × N → T . Universality implies the existence of a homomorphism
t : M ⊗N → T (⊂ M ⊗N) such that t(x⊗ y) = x⊗ y. By the above argument,
this t must be an isomorphism and T = M ⊗N . �

2.2. Graded algebras

Definition 2.2. Let J be a commutative semi-group with unity 0, we shall
confine to J = {0, 1, 2, · · · }. The direct sum M =

∑
j∈J Mj of R-modules Mj

with index set J is called a graded R-module of type J . Every element in Mj

is called a homogeneous element of degree j. Any submodule N ⊂ M of the
form

∑
j∈J Nj , Nj ⊂ Mj is called a graded R-submodules.

If in a graded module A =
∑

Ak over a commutative ring R the product
is defined so that AkAl ⊂ Ak+l and A forms an algebra with respect to this
product, then A is called a graded algebra.



190 S. Kanemitsu, R.-H. Liu and J. Ma

Definition 2.3. Let R be a commutative ring with unity and let M be an
R-module. Let T k(M) be the k-ple tensor product

(2.5) T k(M) = M ⊗ · · · ⊗M.

There is a natural isomorphism T k(M)⊗T l(M) � T k+l(M). With T 0(M) = R
form the graded module

(2.6) T (M) =
∑
k

T k(M) = R⊗ (M)⊗ (M ⊗M)⊗ (M ×M ×M)⊗ · · · .

The product of x1 ⊗ · · · ⊗ xk ∈ T k(M) and y1 ⊗ · · · ⊗ yl ∈ T l(M) is defined by

(2.7) (x1⊗· · ·⊗xk)⊗ (y1⊗· · ·⊗y1) = x1⊗· · ·⊗xk⊗y1⊗· · ·⊗y1 ∈ T k+l(M)

according to the above natural isomorphism. (2.6) becomes a graded algebra,
called the tensor algebra or a tensor product algebra.

Definition 2.4. A k-ple linear map f : Mk → N is called alternating if it
satisfies one of the following equivalent conditions

(i) If xi �= xj for i �= j then f(x1, · · · , xk) = 0.

(ii) If xi, xj with i �= j are changed, it changes sign:
f(x1, · · · , xj , · · · , xi, · · ·xk)= −f(x1, · · · , xi, · · · , xj , · · ·xk).

In T k(M) we introduce a relation: x ∼ y if they differ by elements x1⊗· · ·⊗
⊗xk in which xi = xj for some i �= j. Or we let ak be the submodule consisting
of those elements x1 ⊗ · · · ⊗ xk in which at least two components coincide and
we define the R-module

(2.8) Λk(M) = T k(M)/ ∼= T k(M)/ak; π∼ : T k(M) → Λk

and write

(2.9) π∼(x1 ⊗ · · · ⊗ xk) = x1 ∧ · · · ∧ xk.

Hence x1 ∧ · · · ∧ xk are alternating.

With a0 = 0, the ideal a = aM =
∑

k ak forms a homogeneous ideal of
T (M) and is generated by all x⊗ x, so that

(2.10) Λ(M) := T (M)/a =

∞∑
k=0

T k(M)/ak

is a graded module whose elements are alternating.
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Theorem 2.2. Every linear map f : M → N from an R-module M to another
R-module N is extended uniquely to an algebra homomorphism

(2.11) T (f) : T (M) → N.

If N is an algebra, then

(2.12) T (f)(x1 ⊗ · · · ⊗ xk) = f(x1) · · · f(xk).

Proof. Since T (M) is a graded module, it suffices to consider its (k + 1)th
component T k(M) on which we should have

(2.13) T (f)(x1 ⊗ · · · ⊗ xk) = f(x1, · · · , xk),

whence T (f) is unique. The left-hand side of (2.13) is to be the right-hand
side of (2.12) if N is an algebra. Since (2.12) is a linear map and T (f) exists.
Moreover, by the definition of the product inN , it is an algebra homomorphism.

�

modules linear map, alg homom
(0) N = T (N) (tensor algebra) f
(i) N = A (algebra) f(x1, · · · , xk) = f(x1) · · · f(xk)
(ii) M = Mk f(x1, · · · , xk)
(iii) M = M1 ⊕M2, N = Λ(M1)⊗ Λ(M2) f in (2.15)

Table 2. Special cases

Corollary 2.1. (i) Every linear map f : M → N is extended to a graded
algebra homomoprphism f : T (M) → T (N). This induces an algebra homo-
morphism

Λ(f) : Λ(M) → Λ(N)

given by
Λ(f)(x1 ∧ · · · ∧ xn) = f(x1) ∧ · · · ∧ f(xn).

(ii) A k-ple linear map f : Mk → N viewed as a linear map T (f) : T k(M) →
→ N is alternating if and only if there exists a linear map T̄ (f) : T k(M) → N
such that

(2.14) f(x1, · · · , xk) = T̄ (f)(x1 ∧ · · · ∧ xk).

(iii) The linear map f : M1 ⊕M2 → Λ(M1)⊗ Λ(M2) given by

(2.15) f(x+ y) = x⊗ 1 + 1⊗ y

is extended to a graded algebra homomoprphism T (f) : T (M1⊕M2) → Λ(M1)⊗
Λ(M2), which in turn induces a graded algebra homomoprphism T̄ (f) : Λ(M1⊕
M2) → Λ(M1)⊗ Λ(M2) satisfying
(2.16)
T̄ (f)(x1∧· · ·∧xk∧y1∧· · ·∧yl) = (x1∧· · ·∧xk)⊗(y1∧· · ·∧yl), xi ∈ M1, yj ∈ M2.
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Proof. The cases correspond to (i)–(iii) in Table 1. (i) follows from Theo-
rem 2.2 on viewing f : M → N as f : M → T (N). The second assertion
follows since T (f) maps aM to aN .

(ii) follows from universality. By Theorem 2.2 we may view f as a linear
map T (f) : T k(M) → N . Universality means T (f) = T̄ (f)(π∼), which implies
(2.14) in view of (2.9).

(iii) By Theorem 2.2, f is extended to T (f). By (2.12), we have for z =
= x+ y ∈ M1 ⊕M2, x ∈ M1, y ∈ M2

T (f)(z ⊗ z) = f(z)f(z) = (x⊗ 1 + 1⊗ y)(x⊗ 1 + 1⊗ y)

= (x⊗ 1)(1⊗ y) + (1⊗ y)(x⊗ 1) = 0

by alternating property of the product in Λ(M1) ⊗ Λ(M2). Hence by univer-
sality, T (f) induces T̄ (f) satisfying (2.16). �

Lemma 2.1.

(2.17) Λ(M1 ⊕M2) � M1 ⊗M2.

Proof. The injection

ιj : Mj → M1 ⊕M2, j = 1, 2

induces the algebra homomorphism

Λ(ιj) : Λ(Mj) → Λ(M1 ⊕M2).

Hence the algebra homomorpshim g : Λ(Mj)⊗Λ(M2) → Λ(M1⊕M2) is induced
such that

g((x1 ∧ · · · ∧ xk)⊗ (y1 ∧ · · · ∧ yl)) = (x1 ∧ · · · ∧ xk) ∧ (y1 ∧ · · · ∧ yl).

Since this is the inverse map of T̄ (f), the isomorphism (2.17) is given by T̄ (f).

�

Theorem 2.3. Suppose M is a free R-module with basis {u1, · · · , un}: M =
= Ru1 ⊕ · · · ⊕ Run. Then for k > n, Λk(M) = 0 and for k ≤ n, Λk(M) is a
free R-module of rank

(
n
k

)
with basis {ui1 , · · · , uik}, i1 < · · · < ik. Λn(M) is a

free R-module of rank 2n

Proof. By Lemma 2.1,

Λ(M) � Λ(Ru1)⊗ · · · ⊗ Λ(Run).

Since Λ(Ruj) = R1⊕Ruj , the result follows. �
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Remark 2.1. The differential forms can be concisely introduced by the above.
Let R = Cr(Ω) and M = Ru1⊕ · · ·⊕Run be a free R-module of rank n. Then
the k-ple tensor product T k(M) is {ωk =

∑
I aIuI} with I = {i1, · · · , ik} ⊂

⊂ {1, · · · , n}. With ak as above and dxj , the space of k-forms is

(2.18) Λk(M) = T k(M)/ak =

{∑
I

aIdxI

}
,

where dxj ’s have alternating properties.

3. Field theory

The Cartan–Bourbaki proof of the celebrated Tychonoff theorem [2], [5], [8]
depends on multiple use of Zorn’s lemma (or the Axiom of choice, its equiva-
lent). Tsukada [7] is the first who gave a proof which uses Zorn’s lemma only
once. In field theory construction of an algebraic closure is one of the most
fundamental stuff and there are proofs depending on multiple use of Zorn’s
lemma. Our aim in this subsection is to give a slightly simplified proof given
in [4] which used Zorn’s lemma once in the form of maximization.

Lemma 3.1. Let Li/Ki be field extensions i = 1, 2 and let κ : K1 → K2 be
an (injective) isomorphism. There there exists an extension filed M/L2 and an
isomorphism λ : L1 → M which extends κ such that M = λ(L1) · L2.

Proof. Let K = κ(K1)(⊂ K2) ⊂ L2. Define the action of K on L1 by

a(α1) = κ−1(a)α1, a ∈ K, α1 ∈ L1.

Then L1 becomes an algebra over K. Then we form the tensor product
A := L1 ⊗K L2. Since A is a ring containing 1, it follows by Proposition 1.5
that there exists a maximal ideal a. Then by Example 1.6, M = A/a is a
field. By the natural projection π = πm : A → M form a map λ2;L2 → M ;
α2 → π(1⊗ α2) which turns to be an injective isomorphism and we regard L2

as a subfield λ2(L2) ⊂ M . On the other hand, λ1;L1 → M ;α1 → π(α1 ⊗ 1) is
an isomorphism and for a ∈ K, λ1(a) = π(a⊗ 1) = π(1⊗ a) which is a by the
above embedding. Hence λ1 is a K-isomorphism. �

3.1. Inductive limit

We recall basic facts about the inductive and projective limits.

Definition 3.1. A commutative diagram {Xµ, ρ
µ
ν} with a directed set M as

its type which consists of sets Xµ and maps ρµν is called an inductive system or
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a direct system. I.e., suppose for each µ ∈ M, there corresponds a set Xµ and
for every pair (µ, ν) with µ ≤ ν, there exists a map

(3.1) ρµν : Xµ → Xν

satisfying

(3.2) ρµµ = IXµ , ρµν ◦ ρλµ = ρλν (λ ≤ µ ≤ ν)

Then in the disjoint union
·⋃
Xµ we introduce the equivalence relation: two

elements xµ1
∈ Xµ1

and xµ2
∈ Xµ2

are equivalent

(3.3) xµ1
∼ xµ2

if for some ν ≥ µ1, µ2

(3.4) ρµ1
ν xµ1

= ρµ2
ν xµ2

holds true. We denote the canonical projection π by ρµ, ρµ : Xµ → Xµmod ∼.

We call the set of all equivalence classes
⋃
Xµ/ ∼ the inductive limit (or

direct limit) denoted

(3.5) lim
−→

Xµ =
⋃
µ∈M

ρµ(Xµ).

Theorem 3.1. Suppose the set {fµ : Xµ → X|µ ∈ M} satisfies the condition

(3.6) fµ ◦ ρµν = fν (µ ≤ ν).

Then there exists a unique f : lim
−→

Xµ → X such that

(3.7) f ◦ ρµ = fµ.

(1.3) reads f(ρµ(xµ)) = fµ(xµ).

Corollary 3.1. For direct systems (Xµ, ρ
µ
ν ), (Yµ, σ

µ
ν ), the set of mappings

{fµ : Xµ → Yµ|µ ∈ M} satisfying the condition is called a morphism:

(3.8) fν ◦ ρµν = σµ
ν ◦ fµ (µ ≤ ν).

For a morphism, there exists a unique f∞ : lim
−→

Xµ → lim
−→

Yµ such that

(3.9) f∞ ◦ ρµ = σµ ◦ fµ (µ ∈ M).
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Example 3.2. Let X be a topological space [resp. the complex plane]. Let
U(x) denote the fundamental system of neighborhoods of x or a subsystem
thereof. Defining the order V � U by U ⊂ V , U(x) becomes a directed set.
The space C(U) [resp. A(U)] of all complex-valued continuous [resp. analytic]
functions on U forms an Abelian group with respect to addition. For V � U let
ρUV = ιU : C(U) → C(V ) be the restriction map of the domain, then {C(U)}
forms a direct system. The inductive limit lim

−→
C(U) [resp. lim→ A(U)] is the

space of all (equivalence classes of) functions which are regarded as the same if
they coincide in some (small enough) neighborhoods. lim

−→
C(U) [resp. lim

−→
A(U)]

is called the germ of continuous [resp. analytic] functions at the point x.

Example 3.3. Let D ⊂ C be a domain. We denote the germ lim
−→

A(U) of

analytic functions at ζ by fz. The set of all germs fz, z ∈ D is called a sheaf
and denoted S = SD. Theorem 3.1 reads as follows. (f, ζ) = (f, ζ, U) = XU

and the canonical projection is ρU : U → fζ . Given a map fU : XU → XV ,
there exists a unique map f : fζ → XV such that f ◦πU = fV , i.e. f(ρ

U (xU )) =
= fV (xU ).

A sheaf S = SD on D in general is a topological space with the projection
π : S → D which is a local homeomorphism. The canonical projection ρU

above is π−1|U restriction to U called a section.

(3.9) reads

(3.10) f∞ ◦ ρU = σU ◦ fU (U ∈ M)

and f∞ : f ζ → gζ .

3.2. Some facts from category theory

Definition 3.2. A category C consists of the following three ingredients.

(i) A domain Ob(C) consisting of objects of C.
(ii) Given two objects (M,N) of C, there exists a set hom(M,N) =

= homC(M,N) of morphisms.

(iii) Given three objects (M,N,L) of C, there exists a map h : hom(M,N)×
× hom(M,L) → hom(N,L) called a composition.

They satisfy the conditions.

(iv) If (M,N) �= (M ′, N ′), then hom(M,N) ∩ h hom(M ′, N ′) = ∅.
(v) For any M ∈ C there exists an IM : M → M satisfying

IM ◦ f = f for f : L → M(3.11)

g ◦ IM = g for g : M → N.

(iv) The composition satisfies the associative law.
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Example 3.4. If a category C′ satisfies the following conditions, then it is
called a subcategory of S: any M ∈ Ob(C′) also belongs to Ob(C).
homC′(M,N) ⊂ homC(M,N). IM and composition in C′ coincide with those in
C. Reversing the order of all arrows in the definition of a category, we obtain
a dual category C∗.

Definition 3.3. A mapping T between two categories C and D which maps
M ∈ Ob(C) to T (M) ∈ Ob(C) and f ∈ hom(M,N) to T (f) ∈ hom(f(M), f(N)
is called a covariant functor if it satisfies the following conditions

(i) T (IM ) = IT (M).

(ii) T (g ◦ f) = T (g) ◦ T (f).
If in the above conditions, the morphism part is changed by f ∈ hom(M,N)

to T (f) ∈ hom(f(N), f(M) and (ii) by (iii) T (g ◦ f) = T (f) ◦ T (g), then it is
called a contravariant functor. A contravariant functor C → D may be treated
as a covariant functor C → D∗.

Example 3.5. Let Ob(S) be a domain of any sets and let hom(M,N) be any
mappings. Then S is a category.

Let (M, <) be a patially ordered set. Let Ob(C) = M. If µ ≤ ν, then let
hom(M,M) be a singleton fµ

ν . µ � ν, then hom(M,M) = ∅. This defines a
category (M, <).

A covariant functor (M, <) → S is an inductive system. A contravariant
function (M, <) → S is a projective system
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