ON SOME UNIFORMLY DISTRIBUTED FUNCTIONS ON THE SET OF SHIFTED PRIMES

Karl-Heinz Indlekofer* (Paderborn, Germany) Imre Kátai* and Bui Minh Phong* (Budapest, Hungary)

Dedicated to the memory of Professor Gisbert Stoyan

Communicated by Jean-Marie De Koninck

(Received October 30, 2019; accepted January 19, 2020)

Abstract. The uniformly distributed functions on the set of shifted primes is defined and a theorem is proved.

1. Introduction

Let, as usual, \mathbb{N} , \mathbb{Z} , \mathbb{R} be the set of positive integers, integers and real numbers, respectively.

A positive arithmetical function h is said to be uniformly distributed, if

$$\frac{1}{x} \sum_{h(n) \le x} 1 \to A$$
, where $A > 0$.

(see P. Erdős [4])

Key words and phrases: Uniformly distributed function, continuous limit distribution, multiplicative function, shifted primes.

²⁰¹⁰ Mathematics Subject Classification: 11N36, 11N37, 11N64.

^{*} Supported by the DFG project 289386657.

There are several papers on this topics [1]–[8]. It is quite natural to extend the notation of uniformity for subsets of integers. Let \mathcal{B} be an infinite sequence of integers,

$$\mathcal{B}(x) := \# \{ b \le x \mid b \in \mathcal{B} \}.$$

We say that a function $h: \mathcal{B} \to (0, \infty)$ is uniformly distributed on \mathcal{B} , if

$$\lim_{x \to \infty} \frac{1}{\mathcal{B}(x)} \sum_{\substack{h(m) \le x \\ m \in \mathcal{B}}} 1 = A, \text{ where } A > 0.$$

In this short paper we shall consider the case when $\mathcal B$ is the set of shifted primes.

2. Formulation of the theorem

Let \mathcal{P} be the set of primes, g be a multiplicative function, g(n) > 0 for every $n \in \mathbb{N}$. Let $f(n) = \log g(n)$.

Conditions:

(C1): There exists a constant B > 0 for which

(2.1)
$$\frac{1}{(\log \log n)^B} \le g(n) \le (\log \log n)^B \quad \text{if} \quad n > n_0, \ n_0 \in \mathbb{N}.$$

(C2):

(2.2)
$$f(q^r)(\log q^r)^C \to 0 \quad (q^r \to \infty, \ q \in \mathcal{P})$$

holds for every fixed C.

Let

$$S(x) := \# \{ p \in \mathcal{P} \mid (p+1)g(p+1) \le x \}.$$

Theorem 1. Under the conditions (C1) and (C2), we have

$$\lim_{x \to \infty} \frac{S(x)}{\pi(x)} = C_g,$$

where

$$C_g = \prod_{q \in \mathcal{P}} \xi_q,$$

$$\xi_2 = \sum_{\alpha=1}^{\infty} \frac{1}{2^{\alpha} g(2^{\alpha})}, \quad \xi_q = \left(1 - \frac{1}{q-1}\right) \left(1 + \sum_{l=1}^{\infty} \frac{q-1}{(q-2)q^l g(q^l)}\right) \quad \text{if} \quad q > 2.$$

Here q runs over the set of primes.

Remarks. 1) The conditions (C1) and (C2) hold in particular for $g(n) = \left(\frac{\varphi(n)}{n}\right)^{\lambda}$, $\left(\frac{\sigma(n)}{n}\right)^{\lambda}$, where φ is Euler's totient function and σ the sum of divisors functions, with $\lambda \in \mathbb{R}$, and for many other functions.

2) We shall use the Bombieri-Vinogradov inequality. A weaker version is enough for our purpose. With the same method we could prove a more general theorem.

Theorem 2. Let a_1, \ldots, a_k be distinct non zero integers, g_1, \ldots, g_k be multiplicative functions for which the conditions (C1) and (C2) hold. Let

$$s(n) = g_1(n+a_1)\cdots g_k(n+a_k).$$

Then

$$\lim_{x \to \infty} \frac{1}{\pi(x)} \sum_{p_S(p) \le x} 1 = C_s, \quad C_s \ne 0.$$

We shall not prove this assertion.

3) We are unable to prove that

(2.3)
$$\lim_{x \to \infty} \frac{1}{\pi(\frac{x}{\log x})} \sum_{p_{\mathcal{T}}(p+1) \le x} 1 = C, \quad C \neq 0,$$

where $\tau(n)$ is the number of divisors of n.

3. Lemma

Let
$$\operatorname{Li}(x) := \int_2^x \frac{dt}{\log t}$$
 and $\pi(u, m, l) := \#\{p \le u \mid p \equiv l \pmod m\}.$

Lemma 1. (Bombieri–Vinogradov) Let $\delta > 0$ be fixed, A be an arbitrary positive constant. Then

(3.1)
$$\sum_{m \leq X^{1/2-\delta}} \max_{(l,m)=1} \max_{u \leq X} \left| \pi(u,m,l) - \frac{\operatorname{Li}(u)}{\varphi(m)} \right| \leq C(\delta) \frac{X}{(\log X)^A}.$$

(See Theorem 17.6 in H. Iwaniec and E. Kowalski [6]).

4. Proof of Theorem 1

I. Let

$$y = \frac{1}{16} \log x$$
 and $Q = \prod_{\substack{2 < \pi \le y \\ \pi \in \mathbb{Z}}} \pi$.

Let $\mathcal{P}_{\alpha,D}$ be the set of those primes p for which $p+1 \equiv 0 \pmod{2^{\alpha}D}$, and $\left(\frac{p+1}{2^{\alpha}D}, 2Q\right) = 1$.

We shall consider only those D's all prime factors of which divide Q.

II. Let $w = 2(\log \log x)^B$. From (C1) we have

if
$$(p+1)g(p+1) \le x$$
, then $p \le 2xw$,
if $(p+1)g(p+1) > x$, then $p > \frac{x}{2w}$.

III. Let

$$\Omega_Q(p+1) = \sum_{\substack{p^r \mid p+1\\ a \mid Q}} 1.$$

Then, with a suitable constant c,

(4.1)
$$\sum_{p \le 2xw} \Omega_Q(p+1) \le \sum_{q|Q} \sum_{r \ge 1} \pi(xw, q^r, -1) \le \frac{cxw}{\log x} \sum_{\substack{r \ge 1 \ q \neq Q}} \frac{1}{\varphi(q^r)} \le \frac{3Cxw \log \log y}{\log x}.$$

Here we used the Brun-Titchmarsh inequality. Thus

(4.2)
$$\# \{ p \le xw \mid \Omega_Q(p+1) > w(\log \log y)^2 \} = o(\pi(x)).$$

Let $\mathcal{R}^{(1)}$ be the set of primes listed in (4.2). For the other primes p,

(4.3)
$$\prod_{\substack{p^r \mid p+1 \\ q \mid Q}} q^r \le y^{w(\log \log y)^2} = \exp(w(\log y)(\log \log y)^2) \le$$
$$\le \exp\left(c_2(\log \log y)^{B+1}\right) =: T_x.$$

Similarly,

(4.4)
$$\pi(xw, 2^{\nu}, -1) \le \frac{cxw}{2^{\nu} \log x}$$
 if $2^{\nu} \le \sqrt{x}$.

Let ν_x be such an integer for which $2^{\nu_x} \leq w^2 < 2^{\nu_x+1}$. Let

$$\mathcal{R}^{(2)} = \{ p \mid p \le xw, \ 2^{\nu_x} \mid p+1 \}.$$

Then

$$\mathcal{R}^{(2)} = o(\pi(x)).$$

IV. Let

$$f_y(p+1) = \sum_{\substack{q^r \ge y \\ q^r \mid p+1}} f(q^r).$$

By using the Brun–Titchmarsh inequality, we have

$$\sum_{p \le xw} |f_y(p+1)| \le \frac{cxw}{\log x} \sum_{u \le q^r \le \sqrt{x}} \frac{|f(q^r)|}{q} + O(x^{\frac{4}{5}}) \le \frac{cxw}{\log x} \frac{1}{(\log \log x)^C},$$

where C is an arbitrary constant and c depends on C. Consequently

(4.5)
$$\frac{1}{\pi(x)} \# \{ p \le xw \mid |f_y(p+1)| > (\log \log x)^{-C'} \} \to 0 \text{ as } x \to \infty.$$

C' is an arbitrary large constant.

Let $\mathcal{R}^{(3)}$ be the set of prime counted in (4.5). Then $\#\mathcal{R}^{(3)} = o(\pi(x))$.

V. Let

(4.6)
$$\Pi(X, 2^{\alpha}D) = \#\{p \le X \mid p \in \mathcal{P}_{\alpha, D}\}.$$

It is clear that

(4.7)
$$\Pi(X, 2^{\alpha}D) = \sum_{\delta \mid 2O} \mu(\delta)\pi(X, 2^{\alpha}D\delta, -1)$$

We are interested only on those D which are smaller than T_x and those α which are less than ν_x .

From Lemma 1 we can deduce that

$$\Pi(X, 2^{\alpha}D) = \left(\operatorname{Li}(X)\right) \sum_{\delta \mid 2O} \frac{\mu(\delta)}{\varphi(2^{\alpha}D\delta)} + O\left(\frac{X}{(\log X)^A}\right),$$

where A is arbitrary large. Thus

$$\Pi(X, 2^{\alpha}D) = (\operatorname{Li}(X)) \frac{\varrho(D)}{2^{\alpha}D} S_Q,$$

where ϱ is the multiplicative function defined on prime powers π^l by

(4.8)
$$\varrho\left(\pi^{\ell}\right) = \varrho(\pi) = \begin{cases} \frac{\pi - 1}{\pi - 2} & \text{if } \pi \mid Q\\ 1 & \text{if } \pi \nmid Q, \end{cases}$$

$$(4.9) S_Q := \prod_{\pi \mid Q} \frac{1}{\varrho(\pi)}.$$

For every $p \in \mathcal{P}_{\alpha,D}$, let

$$\kappa_y(p+1) := \frac{g(p+1)}{g(2^{\alpha}D)}.$$

If $p \notin \mathcal{R}^{(3)}$, then $|\kappa_y(p+1)-1| \leq \frac{2}{(\log \log x)^{C'}}$, (C' is arbitrary large), therefore the number of primes $p \in \mathcal{P}_{\alpha,D}$ for which $p \in \mathcal{P}_{\alpha,D}$ is in between

$$\Pi\left(\frac{x\pm\frac{2x}{(\log\log x)^{C'}}}{g(2^{\alpha})g(D)}\Big|2^{\alpha}D\right).$$

VI. Let

$$(4.10) R = \sum_{\substack{1 \le \alpha \le \nu_x \\ D \le T}} \max_{u \le xw} \left| \Pi(u|2^{\alpha}D) - \frac{\varrho(D)}{2^{\alpha}D} S_Q \operatorname{Li}(u) \right|.$$

Starting from (4.7) and Lemma 1, and letting τ stand for the number of divisors function, we have

$$R \leq \sum_{1 \leq \alpha \leq \nu_x} \sum_{k \leq T_x Q} \tau(k) \left\{ \max_{u \leq xw} \left| \Pi(u, 2^{\alpha}k, -1) - \frac{\operatorname{Li}(u)}{\varphi(2^{\alpha}k)} \right| + \max_{u \leq xw} \left| \Pi(u, 2^{\alpha+1}k, -1) - \frac{\operatorname{Li}(u)}{\varphi(2^{\alpha+1}k)} \right| \right\} = \Sigma_1 + \Sigma_2.$$

Here we observed that for odd k the number of those D, δ for which $D\delta = k$ is at most $\tau(k)$. Since δ is either odd, or $2|\delta$, therefore $D\delta = 2k$ holds for at most $\tau(k)$ distinct cases. In Σ_1 we sum over those k for which $\tau(k) \leq (\log x)^E$, and in Σ_2 over those k for which $\tau(k) > (\log x)^E$. Here E is an appropriate large constant. From Lemma 1,

$$\Sigma_1 = O\left(\frac{x}{(\log x)^{C_1}}\right),\,$$

 C_1 is arbitrary large.

Since

$$\Sigma_2 \le \frac{c}{(\log x)^E} \sum_{\alpha \le \nu_n} \sum_{k \le T, O} \frac{\tau^2(k) \operatorname{Li}(x)}{\varphi(2^{\alpha}k)} \le \frac{cx}{(\log x)^{E+1}} \sum_{k \le T, O} \frac{\tau^2(k)}{\varphi(k)},$$

we have

$$\sum_{k \le T_x Q} \frac{\tau^2(k)}{\varphi(k)} \le \prod_{\pi \mid Q} \left(1 + \frac{2^2}{\pi - 1} + \frac{3^2}{\pi(\pi - 1)} + \cdots \right) \le c \exp(4 \log \log y) \le c_1(\log y)^4,$$

therefore

$$\Sigma_2 = o(\pi(x)).$$

Consequently

$$R = o(\pi(x)).$$

It remains to estimate

$$U(x) := \sum_{\substack{\alpha \le \nu_x \\ \alpha \le \nu_x}} \Pi\left(\frac{x}{g(2^{\alpha}D)} \middle| 2^{\alpha}D\right).$$

We have

$$U(x) = \sum_{\substack{1 \le \alpha \le \nu_x \\ D < T}} \operatorname{Li}\left(\frac{x}{g(2^{\alpha}D)}\right) \frac{\varrho(D)}{2^{\alpha}D} S_Q + o(\pi(x)).$$

Since

$$\operatorname{Li}\left(\frac{x}{g(2^{\alpha}D)}\right) = \left(1 + o_x(1)\right) \frac{\operatorname{Li}(x)}{g(2^{\alpha}D)},$$

we easily obtain that

$$\lim \frac{U(x)}{\operatorname{Li}(x)} = \left(\sum_{\alpha=1}^{\infty} \frac{1}{2^{\alpha} g(2^{\alpha})}\right) \prod_{q \in \mathcal{P} \atop Q} \left(1 - \frac{1}{q-1}\right) \left(1 + \sum_{l=1}^{\infty} \frac{q-1}{q-2} \frac{1}{q^{l} g(q^{l})}\right).$$

The product on the right hand side is clearly convergent, since

$$1 - g(q) = 1 - e^{f(q)} = -f(q) + O(f^{2}(q)) = O\left(\frac{1}{(\log q)^{2}}\right).$$

Thus

$$\lim \frac{U(x)}{\operatorname{Li}(x)} = C_g.$$

Since

$$|S(x) - U(x)| \le \left| U\left(x + \frac{2x}{(\log\log x)^C}\right) - U\left(x - \frac{2x}{(\log\log x)^C}\right) \right| + o(\pi(x)),$$

the theorem follows.

5. Final remark

Theorem 3. Under the conditions of Theorem 1,

$$\frac{1}{\operatorname{Li}(x)} \sum_{p \le x} \frac{1}{g(p+1)} \to C_g.$$

This can be proved easily, applying the method of proof of Theorem 1.

References

- [1] Balasubramanian, R. and K. Ramachandra, On the number of integers n such that $nd(n) \le x$, $Acta\ Arithmetica$, 49 (1988), 313–322.
- [2] Bateman, P. T., The distribution of values of the Euler function, Acta Arithmetica, 21 (1972), 329–345.
- [3] **Dressler**, **R. E.**, An elementary proof of a theorem of Erdős on the sum of divisors function, *Journal of Number Theory*, 4 (1972), 532–536.
- [4] Erdős, P., Some remarks on Euler's function and some related problems, Bull. Amer. Math. Soc., 51 (1945), 540–544.
- [5] Indlekofer, K.-H., On the uniform distribution and uniform summability of positive valued multiplicative functions, *Annales Univ. Sci. Budapest.*, Sect. Comp., 49 (2019), 249–258.
- [6] Iwaniec, H. and E. Kowalski, Analytic Number Theory, AMS, Colloquium Publications, (2004) Vol. 53.
- [7] Smati, A. and J. Wu, Distribution of values of Euler's function over integers free of large prime factors, *Acta Arithmetica*, 77 (1996), 139–155.
- [8] Wooldridge, K., Mean value theorems for arithmetic functions similar to Euler's phi function, *Proc. of the Amer. Math. Soc.*, **58** (1976), 73–78.

K.-H. Indlekofer

Faculty of Computer Science Electrical Engineering and Mathematics University of Paderborn D-33098 Paderborn, Warburger Str. 100 Germany k-heinz@math.uni-paderborn.de

I. Kátai and B. M. Phong

Department of Computer Algebra Faculty of Informatics Eötvös Loránd University H-1117 Budapest, Pázmány Péter sétány 1/C Hungary katai@compalg.inf.elte.hu bui@compalg.inf.elte.hu