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Abstract. The uniformly distributed functions on the set of shifted primes
is defined and a theorem is proved.

1. Introduction

Let, as usual, N, Z, R be the set of positive integers, integers and real
numbers, respectively.

A positive arithmetical function h is said to be uniformly distributed, if

1

x

∑
h(n)≤x

1 → A, where A > 0.

(see P. Erdős [4])
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There are several papers on this topics [1]–[8]. It is quite natural to extend
the notation of uniformity for subsets of integers. Let B be an infinite sequence
of integers,

B(x) := #
{
b ≤ x | b ∈ B

}
.

We say that a function h : B → (0,∞) is uniformly distributed on B, if

lim
x→∞

1

B(x)
∑

h(m)≤x
m∈B

1 = A, where A > 0.

In this short paper we shall consider the case when B is the set of shifted
primes.

2. Formulation of the theorem

Let P be the set of primes, g be a multiplicative function, g(n) > 0 for
every n ∈ N. Let f(n) = log g(n).

Conditions:

(C1): There exists a constant B > 0 for which

(2.1)
1

(log log n)B
≤ g(n) ≤ (log log n)B if n > n0, n0 ∈ N.

(C2):

(2.2) f(qr)(log qr)C → 0 (qr → ∞, q ∈ P)

holds for every fixed C.

Let
S(x) := #

{
p ∈ P | (p+ 1)g(p+ 1) ≤ x

}
.

Theorem 1. Under the conditions (C1) and (C2), we have

lim
x→∞

S(x)

π(x)
= Cg,

where
Cg =

∏
q∈P

ξq,

ξ2 =

∞∑
α=1

1

2αg(2α)
, ξq =

(
1− 1

q − 1

)(
1 +

∞∑
l=1

q − 1

(q − 2)qlg(ql)

)
if q > 2.

Here q runs over the set of primes.
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Remarks. 1) The conditions (C1) and (C2) hold in particular for g(n) =

=
(ϕ(n)

n

)λ

,
(σ(n)

n

)λ

, where ϕ is Euler’s totient function and σ the sum of

divisors functions, with λ ∈ R, and for many other functions.

2) We shall use the Bombieri–Vinogradov inequality. A weaker version is
enough for our purpose. With the same method we could prove a more general
theorem.

Theorem 2. Let a1, . . . , ak be distinct non zero integers, g1, . . . , gk be multi-
plicative functions for which the conditions (C1) and (C2) hold. Let

s(n) = g1(n+ a1) · · · gk(n+ ak).

Then

lim
x→∞

1

π(x)

∑
ps(p)≤x

1 = Cs, Cs �= 0.

We shall not prove this assertion.

3) We are unable to prove that

(2.3) lim
x→∞

1

π( x
log x )

∑
pτ(p+1)≤x

1 = C, C �= 0,

where τ(n) is the number of divisors of n.

3. Lemma

Let Li (x) :=

∫ x

2

dt

log t
and π(u,m, l) := #

{
p ≤ u | p ≡ l (mod m)

}
.

Lemma 1. (Bombieri–Vinogradov) Let δ > 0 be fixed, A be an arbitrary posi-
tive constant. Then

(3.1)
∑

m≤X1/2−δ

max
(l,m)=1

max
u≤X

∣∣∣π(u,m, l)− Li (u)

ϕ(m)

∣∣∣ ≤ C(δ)
X

(logX)A
.

(See Theorem 17.6 in H. Iwaniec and E. Kowalski [6]).
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4. Proof of Theorem 1

I. Let

y =
1

16
log x and Q =

∏
2<π≤y
π∈P

π.

Let Pα,D be the set of those primes p for which p + 1 ≡ 0 (mod 2αD), and(p+ 1

2αD
, 2Q

)
= 1.

We shall consider only those D’s all prime factors of which divide Q.

II. Let w = 2(log log x)B . From (C1) we have

if (p+ 1)g(p+ 1) ≤ x, then p ≤ 2xw,

if (p+ 1)g(p+ 1) > x, then p >
x

2w
.

III. Let
ΩQ(p+ 1) =

∑
pr|p+1

q|Q

1.

Then, with a suitable constant c,

∑
p≤2xw

ΩQ(p+ 1) ≤
∑
q|Q

∑
r≥1

π(xw, qr,−1) ≤

≤ cxw

log x

∑
r≥1
q|Q

1

ϕ(qr)
≤ 3Cxw log log y

log x
.

(4.1)

Here we used the Brun–Titchmarsh inequality. Thus

(4.2) #
{
p ≤ xw | ΩQ(p+ 1) > w(log log y)2

}
= o(π(x)).

Let R(1) be the set of primes listed in (4.2). For the other primes p,

∏
pr|p+1

q|Q

qr ≤ yw(log log y)2 = exp(w(log y)(log log y)2) ≤

≤ exp
(
c2(log log y)

B+1
)
=: Tx.

(4.3)

Similarly,

(4.4) π (xw, 2ν ,−1) ≤ cxw

2ν log x
if 2ν ≤

√
x.
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Let νx be such an integer for which 2νx ≤ w2 < 2νx+1. Let

R(2) = {p | p ≤ xw, 2νx | p+ 1}.

Then

R(2) = o
(
π(x)

)
.

IV. Let

fy(p+ 1) =
∑
qr≥y

qr|p+1

f(qr).

By using the Brun–Titchmarsh inequality, we have

∑
p≤xw

|fy(p+ 1)| ≤ cxw

log x

∑
y<qr≤

√
x

|f(qr)|
q

+O(x
4
5 ) ≤ cxw

log x

1

(log log x)C
,

where C is an arbitrary constant and c depends on C. Consequently

(4.5)
1

π(x)
#{p ≤ xw | |fy(p+ 1)| > (log log x)−C′

} → 0 as x → ∞.

C ′ is an arbitrary large constant.

Let R(3) be the set of prime counted in (4.5). Then #R(3) = o(π(x)).

V. Let

(4.6) Π
(
X, 2αD

)
= #

{
p ≤ X | p ∈ Pα,D

}
.

It is clear that

(4.7) Π
(
X, 2αD

)
=

∑
δ|2Q

µ(δ)π
(
X, 2αDδ,−1

)

We are interested only on those D which are smaller than Tx and those α
which are less than νx.

From Lemma 1 we can deduce that

Π
(
X, 2αD

)
=

(
Li (X)

) ∑
δ|2Q

µ(δ)

ϕ(2αDδ)
+O

(
X

(logX)A

)
,

where A is arbitrary large. Thus

Π
(
X, 2αD

)
=

(
Li (X)

)�(D)

2αD
SQ,
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where � is the multiplicative function defined on prime powers πl by

(4.8) �
(
π�
)
= �(π) =





π − 1

π − 2
if π | Q

1 if π � Q,

(4.9) SQ :=
∏
π|Q

1

�(π)
.

For every p ∈ Pα,D, let

κy(p+ 1) :=
g(p+ 1)

g(2αD)
.

If p �∈ R(3), then |κy(p+1)−1| ≤ 2

(log log x)C′ , (C
′ is arbitrary large), therefore

the number of primes p ∈ Pα,D for which p ∈ Pα,D is in between

Π

(
x± 2x

(log log x)C′

g(2α)g(D)

∣∣∣2αD
)
.

VI. Let

(4.10) R =
∑

1≤α≤νx
D≤Tx

max
u≤xw

∣∣∣Π(
u|2αD

)
− �(D)

2αD
SQLi (u)

∣∣∣.

Starting from (4.7) and Lemma 1, and letting τ stand for the number of divisors
function, we have

R ≤
∑

1≤α≤νx

∑
k≤TxQ

τ(k)
{
max
u≤xw

∣∣∣Π(u, 2αk,−1)− Li (u)

ϕ(2αk)

∣∣∣+

+ max
u≤xw

∣∣∣Π(u, 2α+1k,−1)− Li (u)

ϕ(2α+1k)

∣∣∣
}
= Σ1 +Σ2.

Here we observed that for odd k the number of those D, δ for which Dδ = k
is at most τ(k). Since δ is either odd, or 2|δ, therefore Dδ = 2k holds for at
most τ(k) distinct cases. In Σ1 we sum over those k for which τ(k) ≤ (log x)E ,
and in Σ2 over those k for which τ(k) > (log x)E . Here E is an appropriate
large constant. From Lemma 1,

Σ1 = O

(
x

(log x)C1

)
,

C1 is arbitrary large.
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Since

Σ2 ≤ c

(log x)E

∑
α≤νx

∑
k≤TxQ

τ2(k)Li (x)

ϕ(2αk)
≤ cx

(log x)E+1

∑
k≤TxQ

τ2(k)

ϕ(k)
,

we have

∑
k≤TxQ

τ2(k)

ϕ(k)
≤

∏
π|Q

(
1+

22

π − 1
+

32

π(π − 1)
+· · ·

)
≤ c exp(4 log log y) ≤ c1(log y)

4,

therefore
Σ2 = o

(
π(x)

)
.

Consequently
R = o

(
π(x)

)
.

It remains to estimate

U(x) :=
∑
α≤νx
D≤Tx

Π

(
x

g(2αD)

∣∣∣2αD
)
.

We have

U(x) =
∑

1≤α≤νx
D≤Tx

Li

(
x

g(2αD)

)
�(D)

2αD
SQ + o

(
π(x)

)
.

Since

Li

(
x

g(2αD)

)
=

(
1 + ox(1)

) Li (x)

g(2αD)
,

we easily obtain that

lim
U(x)

Li (x)
=

( ∞∑
α=1

1

2αg(2α)

) ∏
q∈P
q �=2

(
1− 1

q − 1

)(
1 +

∞∑
l=1

q − 1

q − 2

1

qlg(ql)

)
.

The product on the right hand side is clearly convergent, since

1− g(q) = 1− ef(q) = −f(q) +O(f2(q)) = O

(
1

(log q)2

)
.

Thus

lim
U(x)

Li (x)
= Cg.

Since

|S(x)− U(x)| ≤
∣∣∣U

(
x+

2x

(log log x)C

)
− U

(
x− 2x

(log log x)C

)∣∣∣+ o
(
π(x)

)
,

the theorem follows. �
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5. Final remark

Theorem 3. Under the conditions of Theorem 1,

1

Li (x)

∑
p≤x

1

g(p+ 1)
→ Cg.

This can be proved easily, applying the method of proof of Theorem 1.

References

[1] Balasubramanian, R. and K. Ramachandra, On the number of inte-
gers n such that nd(n) ≤ x, Acta Arithmetica, 49 (1988), 313–322.

[2] Bateman, P. T., The distribution of values of the Euler function, Acta
Arithmetica, 21 (1972), 329–345.

[3] Dressler, R. E., An elementary proof of a theorem of Erdős on the sum
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Eötvös Loránd University
H-1117 Budapest, Pázmány Péter sétány 1/C
Hungary
katai@compalg.inf.elte.hu

bui@compalg.inf.elte.hu






