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Abstract. This note observes that the LU -decomposition of narrow-
banded Toeplitz matrices can be modified so that L and U are lower and
upper band Toeplitz matrices plus a low rank correction matrix is added.
The resulting method cannot be considered generally applicable however,
it may be useful in special cases. For solving a system, the operation count
is about half of Dickinson’s algorithm, but the work of data preparation
needs less operations only if the half bandwidth is below 6. For the spe-
cial matrix tridiag (−1, 2,−1) the suggested method of solution needs 4n
additions and one division.

1. Introduction

Matrices whose entries are constant along each diagonal arise in many
applications and are called Toeplitz matrices. A general element of such a
matrix can be given by the relation aij = cj−i, where the 2n − 1 scalars
c−n+1, . . . c0, . . . cn−1 determine the matrix of order n. Toeplitz matrices at-
tracted a wide interest of research in the past years. There are methods avail-
able for general Toeplitz matrices and also, there are efficient procedures for
the symmetric positive definite or band cases. The interested reader may con-
sult the book of Heinig and Rost [4] for an overview of the theory. Practical
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numerical algorithms are given in the textbook of Golub and Van Loan [3], or
in Russian, a good source is the book of Voevodin and Tyrtyshnikov [7].

Here a special class, the band Toeplitz matrices will be considered. One can
find a stability analysis of three algorithms for solving band Toeplitz systems in
[5] and further references therein. However, our approach here for the inversion
of band systems is more resembling that of Trench [6]. There it is observed that
a band matrix is close to a lower (or upper) triangular matrix. Thus the inverse
is approximated by the inverse of the lower (or upper) part of the matrix and
formulae are given for the corrections in terms of the roots of the polynomial
associated with the Toeplitz matrix.

This note will make use of the fact that the LU -decomposition of narrow-
banded Toeplitz matrices can be changed to the sum of two LU products of
lower and upper band Toeplitz matrices, where one of the products may be
considered as a correction of low rank.

With this arrangement there is a similarity to the Gohberg–Semencul for-
mula for the inverse of a Toeplitz matrix. It expresses the inverse by the
difference of two products, where lower and upper triangular Toeplitz matrices
are multiplied.

An n-by-n Toeplitz matrix of total bandwidth 2k + 1, k < n can be given
by

(1.1) C = tn(c−k, c−k+1, . . . , c0, . . . , ck−1, ck),

where element c0 belongs to the main diagonal. If the lower or upper bandwidth
is smaller than k, then it is indicated by zeros. When specifying a band Toeplitz
matrix with (1.1), always odd number of the ci-s will be given, where the mid-
dle element refers to c0. With this notation we have tridiag (−1, δ,−1) =
= tn(−1, δ,−1) and the elementary nilpotent matrix having 1’s in the subdi-
agonal, 0 otherwise is given by N = tn(1, 0, 0). The polynomial of order 2k
associated with the Toeplitz matrix (1.1) is

(1.2) c(t) = tk
k∑

i=−k

cit
i.

2. The method of inversion

Assume that the lower bandwidth is l and the upper bandwith is r, such
that l, r ≤ k. The polynomial c(t) in (1.2) can then be factored into two
polynomials of order l and r. Such polynomials are easily found if the roots of
c(t) are known:

(2.1) c(t) = a(t)b(t).
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Now associate with polynomial a(t) the lower triangular matrix

(2.2) A =




al
al−1 al
...

. . .
. . .

a0
. . .

. . . al
. . .

. . .
. . .

. . .

a0 . . . . . . al




and with polynomial b(t) the upper triangular matrix:

(2.3) B =




b0 b1 . . . br
b0 . . . br−1 br

. . .
. . .

. . .
. . .

b0 . . . . . . br
b0 . . . br−1

. . .
...
b0




It can be checked directly that the matrix product AB will be almost equal to
C if the bandwidths are small. We find missing terms only in the left upper
l × r corner of C. They can be identified by complementing the matrices A
and B. That is, we have to add some columns in front of A and add the same
number of rows on top of B. The necessary number of columns and rows is
min(l, r) and what we have to do is to continue the bands. Assume e.g. that l
is the smaller, than we have to prepare the n× l matrix

(2.4) A0 =




a0 . . . . . . al−1

0 a0 . . . al−2

...
. . .

. . .
...

0
. . .

. . . a0
... . . . . . . 0
0 . . . . . . 0




and the l × n matrix

(2.5) B0 =



bl . . . br 0 . . .
...

. . .
. . .

. . .
. . .

b1 b2 . . . . . . br 0 . . . 0



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giving

(2.6) C =
[
A0 A

] [B0

B

]
= A0B0 +AB.

This formula can be identified as the matrix representation of multiplying two
polynomials, cf. Sect. 0.3 of [4]. The product A0B0 may be thought to be a
low rank modification to AB thus the inverse of C can be computed by the
Sherman–Morrison–Woodbury formula, which is given for matrices A, U and
V by (2.1.4) of [3]:

(2.7)
(
A+ UV T

)−1
= A−1 −A−1U

(
I + V TA−1U

)−1
V TA−1.

With a substitution into (2.7), one has for the inverse of (2.6)

(2.8) C−1 = B−1A−1
[
In −A0F

−1B0B
−1A−1

]
,

where

(2.9) F = Il +B0B
−1A−1A0.

If matrix F is not invertible then it indicates the singularity of C.

When applying (2.8), one has to prepare data at first. That means to
calculate the roots of the associated polynomial and the LU -decomposition
of F .

The two polynomials a(t) and b(t) have altogether l+ r+2 coefficients. As
there are l+ r + 1 nonzero bands, we may choose al = 1 of a(t). We also have
freedom in grouping the roots among the polynomials. The coefficient b0 is in
the diagonal and plays the role of a pivot. It is equal to the product of the
roots, thus the largest roots may be chosen into b(t).

The other task at the beginning is to compute the entries of F and perform
an LU -decomposition. When computing the necessary number of operations,
observe that multiplying with A or A−1 to a vector needs ln multiplications
and additions and we have the number rn for matrix B−1, rl− l2/2 for B0 and
l2/2 for A0. Thus the final operation count for F is nl(l + r) + rl2 + l3/3.

Having these data at hand, the computation of y = C−1x may be done in
three steps:

1) y1 = B−1A−1x,

2) y2 = x−A0F
−1B0y1

3) y = B−1A−1y2.

These operations need altogether (r+l)(2n+l) multiplications and additions
assuming that always matrix-by-vector type operations are done and the LU -
decomposed form of F is available. Compare this number e. g. to that of
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Dickinson [2] for Toeplitz band matrices: (6(l + 1) + 4r)n. To prepare data in
Dickinson’s version needs (5(l+r)+6)n+O((l+r)2) operations. It is seen that
preparation of data may need less operations at Dickinson, and computing the
solution needs more. Hence, the method suggested here is advantageous if we
have to solve the same Toeplitz band system for many right hand sides or if
preparation work is simple or it can be done by a paper-and-pencil work.

For the other case of l > r, one can proceed similarly, so that matrix B0 will
have a full lower triangular block and A0 will have a truncated upper triangular
pattern. It is seen that the suggested method can be used theoretically for any
Toeplitz matrices. But it is of practical value only if the matrix is banded with
sufficiently narrow bands.

It is still worth mentioning that C may differ from a Toeplitz matrix in
the region, where the elements of A0B0 are located, for example, because of
boundary conditions. Those differences may be taken into account by recalcu-
lating A0B0 and the method of solution is otherwise the same. Other minor
differences can be incorporated similarly.

3. Example

Consider the n-by-n tridiagonal matrix T (δ) = tn(−1, δ,−1). Its associated
polynomial is quadratic having discriminant

√
δ2 − 4. The roots are real if

δ ≥ 2 and their product is equal to −1. Denote by α one of the roots then
the polynomial takes the form of (t− α−1)(α− t) and with the notation N =
= tn(1, 0, 0), T (δ) can be written in the form:

(3.1) T (δ) =
(
I − 1

α
N
) (

αI −NT
)
+

1

α
e1e

T
1 ,

where e1 is the first Cartesian unit vector. Introduce vector e by

(3.2) e =
(
I − 1

α
N
)−1

e1

then the inverse of T (δ) is expressible as

(3.3) T−1(δ) =
(
αI −NT

)−1
(
I − eeT

α2 + eT e

)(
I − 1

α
N

)−1

.

Although the entries of T−1(δ) are available explicitly – e.g. in [8], this
formula is more adequate for computational purposes. If δ = 2 then α = 1
and the solution of T (2)x = b needs only 4n additions and one division. It is
known, cyclic reduction (see Sect 4.5.4 of [3] or [1]) or block cyclic reduction
with block size q has a better complexity q3 log n. We have done running time
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comparison for T (2) between the method given here and that of [1]. To our
surprise, the running time was the same. An explanation may be that cyclic
reduction needs more organizational work that is not taken into account when
giving the complexity number.

T (2) comes from a difference scheme for the second derivative. Observe that
the coefficients in an mth order difference scheme are proportional to those of
the polynomial (t−1)m if equal spacing is used. If we have a difference scheme
that can be associated with a known polynomial then the resulting Toeplitz
matrix is easily invertible with the above suggested method. It is also possible
to use such easily invertible Toeplitz matrices for the preconditioning of more
complicated schemes.
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Department of Numerical Analysis
Faculty of Informatics
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