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Abstract. In recent years we have considered various problems related to
Malmquist–Takenaka (MT) functions, which form orthogonal systems on
the torus. We have introduced their discrete versions and applied them
successfully for compression and representation of human ECG signals
[6, 7]. Also we have shown electrostatic interpretation of the discretiza-
tion points. In these investigations we have taken the MT systems on the
torus. In this paper we construct discrete MT type systems by generalizing
our former discretization method applied on the torus to the unit disc.

1. Introduction

It is known that the roots of orthogonal polynomials play special role in
numerical mathematics. They are frequently taken as nodal points of interpo-
lation algorithms and quadrature formulas [4, 11]. Discrete polynomial systems
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can be constructed by means of these roots along with the Christoffel–Darboux
formula. Our paper is related to this classical topic.

The Blaschke–functions

Ba(z) :=
z − a

1− az
(a ∈ D, z ∈ D),

where D := {z ∈ C : |z| < 1} stands for the open, and D = {z ∈ C : |z| ≤ 1}
for the closed unit disc, play fundamental role in our investigations.

Let T denote the one–dimensional torus. It is known that the restrictions
Ba : D → D, and Ba : T → T are both bijections. We note that B−1

a = B−a is
the inverse of Ba. Moreover, Ba can be expressed in the following explicit form
on the torus

Ba(e
it) = ei(α+γr(t−α)),

γr(t) :=

∫ t

0

1− r2

1− 2r cos τ + r2
dτ (t ∈ R, a = reiα ∈ D).

γr : R → R is a strictly increasing function for which γr(t + 2π) = γr(t) + 2π
(t ∈ R) holds, and

γr(t) = 2 arctan(s(r) tan(t/2)) , s(r) :=
1 + r

1− r
.

We will be concerned with finite products of Blaschke–functions of the form

Ba
N (z) : = BN (z) := c

N−1∏
k=0

Bak
(z)

(
z ∈ D, a = (a0, . . . , aN−1) ∈ DN

)
, where the factor c ∈ T will be fixed

according to our need later. Since the numbers ak ∈ D are the zeroes of BN we
have that the numbers a∗k := 1/ak, the mirror image of ak with respect to the
unit circle, are the poles of BN . Therefore, the ak parameters will be called
inverse poles. Ba

N : D → D is an N -fold map on T and can be expressed as

Ba
N (eit) = c · eiNθN (t) , θN (t) :=

1

N

N−1∑
k=0

(αk + γrk(t− αk))

(ak = rke
iαk , θN (t+ 2π) = θN (t) + 2π (t ∈ R)) .

Here the parameter c was taken to make the Ba
N (1) = 1 equation hold.

In our previous works the sets

Ta
N,u := {z ∈ T : u = Ba

N (z)} = {zk : 0 ≤ k < N}
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with N elements were used for discretization, in which the parameter u ∈ T
was a free parameter. It is easy to show that the discretization points can be
expressed as zk = eiτk , where τk = θ−1

N (tk), tk := t0 + 2kπ/N (0 ≤ k < N),
u = eit0 .

In this paper we consider the solutions of equations

i) Ba
N (z) = u (0 ≤ |u| ≤ 1) , ii) (Ba

N )′(w) = 0 .

In the next sections we will show that they can be used in the constructions of
discrete orthogonal and biorthogonal systems. For our previous work see [8].

2. Discrete orthogonal systems

Orthogonal and biorthogonal systems have been very effective in the theory
of approximation, harmonic analysis and in many areas of applied mathematics.
In numerical computations the discrete versions are of particular importance
[3, 5]. In this section we consider discretization processes in which the discrete
system is generated by restricting the original continuous system onto proper fi-
nite sets. There are well-known examples for this type of disretization. Namely,
the taking equidistant subdivisions and the trigonometric system we obtain the
discrete trigonometric system. Similarly, orthogonal polynomial systems and
the set of their roots generate discrete polynomial systems. We note that this
we construct interpolation methods as well.

In the rest of this section we are concerned with discretization of rational
orthogonal systems. The elements of the set

(2.1) Za
N,u := {z ∈ D : Ba

N (z) = u} (0 ≤ |u| ≤ 1)

will be chosen as the nodes of discretization. It is easy too see that the equation
BN (z) = u has exactly N solutions counting with multiplicities. In particular,
if u ∈ T then all of the roots are of multiplicity one, i.e. the equation has N
distinct roots. In what follows we will always take such u ∈ D for which this
condition holds, i.e. the set ZN,u has N elements.

Rational orthogonal systems are generated from basic rational functions by
means of orthogonalization. Let us take a sequence

a = (an, n ∈ N) ∈ D∞

of inverse poles. The sequence of multiplicities in a is defined as follows

ma := (mn, n ∈ N) , where mn :=
∑

k≤n,ak=an

1 (n ∈ N) .
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Let us introduce the following subspaces

Ra
N := span {Ra

k : 0 ≤ k < N} , Ra :=

∞⋃
N=0

Ra
N

generated by the basic rational functions

Ra
k(z) :=

zmk−1

(1− akz)mk
(k ∈ N, z ∈ D) .

There have several Euclidean spaces been studied that contain Ra as a proper
subspace. They include the Hardy– and [12, 13, 14, 15] Bergman–spaces [1, 9]
and their variant with weight functions. Here we take the Hardy–space H2(T)
with the scalar product

〈f, g〉 := 1

2π

∫ 2π

0

f(eit)g(eit) dt (f, g ∈ H2T) .

Applying Gram–Schmidt orthogonalization on the system {Ra
n : n ∈ N} we

receive the MT orthonormed system φn = φa
n (n ∈ N) .

Let us fix a. Then we may simplify our notations above by omitting a from
them, i.e. we will use RN instead of Ra

N , Bn instead of Ba
n etc.

Below we give a list of some of the most important properties of the MT–
systems [10]:

i) 〈φn, φm〉 = δmn (m,n ∈ N) ,
ii) RN = span {φn : 0 ≤ n < N} (N ∈ N) ,

iii) φn(z) =

√
1− |an|2
1− anz

Bn(z) (z ∈ C, n ∈ N) ,

iv) KN (z, ζ) :=

N−1∑
k=0

φk(z)φk(ζ) =
1−BN (z)BN (ζ)

1− zζ
,

(z, ζ ∈ D, zζ �= 1) ,

v) KN (z, z) :=

N−1∑
k=0

1− |ak|2

|1− akz|2
(z ∈ D) ,

vi) φ0
n(z) = zn (n ∈ N,0 := (0, 0, . . . )) .

(2.2)

The relation in iv) can be viewed as the MT–analogues of the Christoffel-
Darboux formula, and can be utilized in the discretization of MT–systems.
Indeed, taking the nodal points

ZN,u := {z ∈ D : BN (z) = u} (0 ≤ |u| ≤ 1),
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the weight function

ρN (z) :=
1

KN (z, z)
(z ∈ T),

and the discrete scalar product

[
f, g

]
N

:=
∑

z∈ZN,u

f(z)g(z)ρN (z)

the orthogonality relation

[
φn, φm

]
N

= δmn (0 ≤ m,n < N)

holds for u ∈ T.
Here we will generalize the above results for biorthogonal systems taking

parameters u ∈ D. Recall (see (2.1)) that according to assumption Ba
N (z) = u

has N distinct solutions. Let Q denote the set of rational functions. For any
f ∈ Q the domain will be extended to C := C ∪ {∞} by: f(a) = ∞, if a is a
pole of f, and f(∞) := limz→∞ f(z). The following two types inversions will
be defined on the set of rational functions by taking inversions of values and
arguments of the functions:

f∗(z) := (f(z))∗ , f�(z) := f(z∗) (z ∈ C, f ∈ Q).

It is obvious that

z = z∗ , f∗(z) = f�(z) = f(z) (f ∈ Q)

hold for any z ∈ T. Moreover in case of Blaschke–functions the two operations
coincide

B∗
N (z) = B�

N (z) = BN (z∗) (z ∈ C).

The system Φ� := ((φn)
�, n ∈ N) is called the dual of the MT–system Φ =

= (φa
n, n ∈ N).

Let us apply the Christoffel–Darboux formula in (2.2) iv) and v) for ζ
instead of ζ∗ to obtain

KN (z, ζ∗) =

N−1∑
k=0

φk(z)φk(ζ∗) =
1−BN (z)/BN (ζ)

1− z/ζ
(z �= ζ),

and

KN (z, z∗) =

N−1∑
k=0

φk(z)φk(z∗) =

N−1∑
k=0

z(1− |ak|2)
(z − ak)(1− akz)

.
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The following surprising relation deserves special attention

d

dz
(logBN (z)) = zKN (z, z∗) (z ∈ D).

Let us recall that the parameter u satisfies the conditions, that the set ZN,u

has exactly N elements ZN,u = {zk : 0 ≤ k < N} ⊂ D, i.e. BN (z) = u has N
solutions. This implies that B′

N (z) �= 0 at these points. Then by the relation
above we have that KN (z, z∗) �= 0 for z ∈ ZN,u. Consequently,

(2.3)

N−1∑
k=0

φk(z)φk(ζ∗)

KN (z, z∗)
= δz,ζ (z, ζ ∈ Za

N,u).

Then introducing the matrices

A =
[
aik

]N−1

i,k=0
, aik = φk(zi)/KN (zi, z

∗
i )

B =
[
bjk

]N−1

j,k=0
, bkj = φk(z

∗
j ) = φ�

k (zj)

(2.3) can be written in the form

AB∗ = E ⇐⇒ A = (B∗)−1 ⇐⇒ B∗A = E.

Here B∗ stands for the adjoint of B, and E denotes the identity matrix of CN .

An equivalent form is

δij =

N−1∑
k=0

bkjaki =

N−1∑
k=0

φ�
j (zk)φi(zk)/KN (zk, z

∗
k) (0 ≤ i, j < N).

As a conclusion we have the following theorem which is the generalization of
the result on discrete orthogonality of MT–systems.

Theorem 2.1. Let u be a parameter for which the condition Zu∩K = ∅ holds.
Then the φn, φ

�
n (0 ≤ n < N) systems are biorthogonal

[
φn, φ

�
m

]
a,u

:=
∑

z∈Za
N,u

φn(z)φ
�
m(z)/Ka

N (z, z∗) = δmn (0 ≤ m,n < N).
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