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Abstract. Let M∗
1 stand for the set of completely multiplicative func-

tions f such that |f(n)| = 1 for all positive integers n and let c0, c1, c2 be
three complex numbers such that (c0, c1, c2) �= (0, 0, 0). Given f ∈ M∗

1

and setting s(n) := c0f(n − 1) + c1f(n) + c2f(n + 1), we prove that if
limx→∞

1
x

∑
n≤x |s(n)| = 0, then c0 + c1 + c2 = 0 and there exists a real

number τ such that f(n) = niτ for all positive integers n. Moreover, let
f0, f1, f2 ∈ M∗

1 and consider the sum s(n) := c0f0(n − 1) + c1f1(n) +
+c2f2(n+ 1). Assuming that limn→∞ s(n) = 0 and assuming also that ei-
ther f0(n) = f1(n) or f0(n) = f2(n) or f1(n) = f2(n), then c0+ c1+ c2 = 0
and there exists τ ∈ R such that f0(n) = f1(n) = f2(n) = niτ for all
positive integers n. Further similar results are also proved.

1. Introduction

Let, as usual, N, Z, C stand for the sets of positive integers, the set of
integers and the set of complex numbers, respectively. Let also

T := {z ∈ C : |z| = 1}, U := {z ∈ C : |z| ≤ 1}.

Moreover, let M∗ be the set of completely multiplicative functions and let M∗
1

be the subset of M∗ containing those functions f ∈ M∗ for which |f(n)| = 1
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for every n ∈ N. Finally, given a sequence (an)n∈N of complex numbers, we
denote by {an : n ∈ N} the set of limit points of sequence (an)n∈N.

It is clear that if f(n) = niτ for some τ ∈ R, then f ∈ M∗
1 and ∆f(n) :=

:= f(n + 1) − f(n) → 0 as n → ∞. I. Kátai conjectured [1] that given any
f ∈ M∗

1 such that ∆f(n) → 0 as n → ∞, then f(n) = niτ for all n ∈ N for
some τ ∈ R. This conjecture was proved by E. Wirsing and D. Zagier [12], and
independently by Shao Pin-Tung and Tang Yuan Sheng (see [11]).

Another conjecture of I. Kátai and M. V. Subbarao [3] is the following.

Conjecture 1. Let f ∈ M∗
1 and set S(f) := {f(n+ 1)f(n) : n ∈ N}. Assume

that
#S(f) = k < ∞.

Then, for all n ∈ N, f(n) = niτF (n) for some τ ∈ R and some function F (n)
satisfying F (n)k = 1 for all n ∈ N.

Partial results regarding Conjecture 1 were proved by Kátai and Subbarao
[3], [4], and by Phong [7]. On the other hand, Wirsing [10] proved the following.

Theorem A. If f ∈ M∗
1 and #S(f) = k < ∞, then there exists a real number

τ such that f(n) = niτF (n) for some function F (n) satisfying F �(n) = 1 for
some positive integer �.

The following result is essentially a consequence of Theorem A.

Theorem 1.1. Let f, g ∈ M∗
1. Set S(f, g) := {g(n+ 1)f(n) : n ∈ N},

S(f) := {f(n+ 1)f(n) : n ∈ N} and S(g) := {g(n+ 1)g(n) : n ∈ N}. Assume
that #S(f, g) < ∞. Then, #S(f) < ∞ and #S(g) < ∞. Moreover, f(n) =
= niτF (n), g(n) = niτG(n), F (n)k = 1 and G(n)� = 1 for some functions
F (n) and G(n) and positive integers k and �.

Proof. Let α ∈ S(f). Then there exists a sequence of positive integers
(nν)ν∈N with nν → ∞ and such that f(nν)f(nν − 1) → α as ν → ∞. Then,
f(2nν)f(2nν − 2) → α as ν → ∞. Let (m�)�∈N be a subsequence of (nν)ν∈N for

which the sets {g(2m�−1)f(2m� − 2) : � ∈ N} and {g((2m�−1)2)f(4m2
� − 4m�) :

: � ∈ N} have some limit points β1, β2 ∈ S(f, g). Since

β2 = lim
�→∞

g((2m� − 1)2)f(4m2
� − 4m�) =

= lim
�→∞

g(2m� − 1)f(2m� − 2)× lim
�→∞

g(2m� − 1)f(2m�),

we have

lim
�→∞

g(2m� − 1)f(2m�) =
β2

β1
.
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The left hand side can be rewritten as

g(2m� − 1)f(2m� − 2)× f(2m� − 2)f(2m�) → β1α (� → ∞),

and therefore,

β1α =
β2

β1
, so that α = β2

1β2.

This means that α = β2
1β2 ∈ S(f, g), which, since #S(f, g) < ∞, proves that

#S(f) < ∞. Therefore, it follows from Theorem A that, for all n ∈ N, we have

f(n) = niτF (n) for some τ ∈ R and some function F (n) for which F (n)k = 1.

Similarly, we can prove that #S(g) < ∞ and therefore that there exists
τ2 ∈ R and G(n) such that g(n) = eiτ2G(n) with G(n)� = 1 for some positive
integer �. Now, since the set

S(f, g) =

{
(n+ 1)iτ2

niτ1

G(n+ 1)

G(n)
: n ∈ N

}

contains only finite many points, we may conclude that τ1 = τ2, thereby com-
pleting the proof of Theorem 1.1. �

2. The linear expansion of completely multiplicative functions

Another conjecture of I. Kátai is the following.

If f ∈ M∗
1 and

1

x

∑
n≤x

|∆f(n)| → 0 or
1

log x

∑
n≤x

|∆f(n)|
n

→ 0,

then f(n) = niτ for some τ ∈ R for every n ∈ N.

This conjecture was recently proved by O. Klurman [5] and O. Klurman and
A. Mangerel [6].

It is obvious that if f(n) = n� for some (� ∈ N), then with suitable constants
c0, c1, . . . , c�, (c0, c1, . . . , c�) �= (0, 0, . . . , 0), we have

�∑
k=0

ckf(n+ k) = 0 (n ∈ N).

Interestingly, A. Sárközy [9] solved the above equation for multiplicative func-
tions f .
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Conjecture 2.1. Let (c0, c1, . . . , c�) �= (0, 0, . . . , 0). Then

�∑
k=0

ckf(n+ k) → 0 as n → ∞

has a solution f ∈ M∗
1 only if c0 + c1 + · · · + c� = 0, and all solutions are of

the form f(n) = niτ for some τ ∈ N.

Conjecture 2.2. Let (c0, c1, . . . , c�) �= (0, 0, . . . , 0), f0, f1, . . . , f� ∈ M∗
1 and

assume that

(2.1)
�∑

k=0

ckfk(n+ k) → 0 as n → ∞.

Then, (2.1) has a solution only if c0 + c1 + · · · + c� = 0, and in that case all
the solutions are of the form

fj(n) = niτFj(n) for some τ ∈ N,

where F
kj

j (n) = 1 for all n ∈ N, j = 0, 1, . . . , �, and

(2.2)
�∑

k=0

ckFk(n+ k) = 0 (n ∈ N).

Observe that for � = 1 and F0, F1 ∈ M, all the solutions of (2.2) have been
obtained by Kátai and Phong [2].

3. Characterising triplets of completely multiplicative functions

Theorem 3.1. Let c0, c1, c2 be three complex numbers such that (c0, c1, c2) �=
�= (0, 0, 0) and let f ∈ M∗

1. Consider the sum s(n) := c0f(n − 1) + c1f(n) +
c2f(n+ 1).

(i) Assuming that

(3.1) lim
x→∞

1

x

∑
n≤x

|s(n)| = 0,

then c0 + c1 + c2 = 0 and there exists a real number τ such that f(n) = niτ for
all n ∈ N.

(ii) Assuming that c0 + c1 + c2 = 0 and that there exists a real number τ
such that f(n) = niτ for all n ∈ N, then limn→∞ s(n) = 0.
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Proof. First consider the case when c1 �= 0 and set

D0 =
c0
c1

, D1 =
c2
c1

,

S(n) =
s(n)

c1f(n)
= D0

f(n− 1)

f(n)
+D1

f(n+ 1)

f(n)
+ 1, α(n) =

f(n+ 1)

f(n)
,

these last two definitions implying that

S(n) = D0α(n− 1) +D1α(n) + 1.

Then, let (γ1, δ1) and (γ2, δ2) be the two couples of numbers located on the
unit circle for which {

D0γ1 +D1δ1 + 1 = 0,

D0γ2 +D1δ2 + 1 = 0.

It is clear that if |S(n)| < ε, then

min(|δ1 − α(n)|, |δ2 − α(n)|) + min(|γ1 − α(n− 1)|, |γ2 − α(n− 1)|) < c ε

for some positive constant c. Now, observe that, given any positive integer d,

n+ 1

n
=

dn+ 1

dn
· dn+ 2

dn+ 1
· · · dn+ d

dn+ d− 1
(n = 1, 2, . . .).

Written otherwise, this means that

α(n) = α(dn)α(dn+ 1) · · ·α(dn+ d− 1).

On the other hand, it follows from (3.1) that for every ε > 0, we have

1

x

∑
min(|α(n)−δ1|,|α(n)−δ2|)>ε

1 → 0 as x → ∞.

This motivates the definition

κ(n) :=

{
δ1 if |α(n)− δ1| ≤ |α(n)− δ2|,

δ2 if |α(n)− δ1| > |α(n)− δ2|.

Consequently,
κ(n) = κ(dn)κ(dn+ 1) · · ·κ(dn+ d− 1)

holds for every d ∈ N, provided n is large enough.

For the rest of the proof, we consider four distinct cases, namely the follow-
ing.
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Case I: δ21 �= 1 and δ22 �= 1. In this case, each of the two relations δ1 = δ1δ2
and δ2 = δ1δ2 does not hold, which implies that

1

x
#{n ≤ x : κ(2n) �= κ(2n+ 1)} → 0 as x → ∞.

It follows from this observation that with the exception of o(x) integers n ≤ x,
if κ(n) = δ1, then κ(2n) = κ(2n+1) = δ2 and therefore δ1 = κ(n) = δ41 . Hence,
as x → ∞,

1

x
#{n ≤ x : κ(n) = δ1 and κ(4n)κ(4n+ 1)κ(4n+ 2)κ(4n+ 3) �= δ41} → 0

and similarly

1

x
#{n ≤ x : κ(n) = δ2 and κ(4n)κ(4n+ 1)κ(4n+ 2)κ(4n+ 3) �= δ42} → 0.

In light of these observations, we may conclude that δ31 = 1 and δ32 = 1.
Therefore, δ2 = δ1. In this case, we have γ1 = δ1 and γ2 = δ2 = δ1. Now, if
α(n) → δ1, then α(n− 1) → δ1, whereas if α(n) → δ2, then α(n− 1) → δ2 for
almost all n. Hence, in light of a result of Klurman [5], we may conclude that
f(n) = niτ for some τ ∈ R.

Case II: δ1 = 1 and δ2 �= −1. For this case, we introduce the quantities

A(x) = #{n ∈ [x/2, x) : κ(n) = 1} and B(x) = #{n ∈ [x/2, x) : κ(n) = δ2},

so that in light of (3.1), we have that A(x) + B(x) = x/2 + o(x) as x → ∞.
Hence (in this case), with the exception of no more than o(x) of those integers
n ∈ [x/2, x), we have that

κ(n) = 1 implies κ(2n) = κ(2n+ 1) = 1

and
κ(n) = δ2 implies κ(2n) · κ(2n+ 1) = δ2 · 1 or 1 · δ2.

From this, it follows that

A(x) ≥ 2A(x/2) +B(x/2)− o(x) and B(x) ≤ B(x/2) + o(x)

and therefore,

(3.2)
B(x)

x/2
≤ 1

2

B(x/2)

x/4
+ o(x)/x.

Letting ξ := lim supx→∞
B(x)
x/2 , it follows from (3.2) that ξ ≤ ξ

2 and therefore

that ξ = 0, implying that

f(n+ 1)

f(n)
→ 1 for almost all n.
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With these conditions, we may conclude from Klurman’s theorem [5] that
f(n) = niτ for some τ ∈ R.

Case III: δ1 �= 1 and δ2 = −1. In this case, κ(2n) �= κ(2n + 1) and κ(n) =
= κ(2n)κ(2n + 1) would imply that κ(n) is equal to κ(2n) or to κ(2n + 1).
Therefore, 1 ∈ {κ(2n), κ(2n + 1)}, implying that δ1 = 1. The case κ(2n) =
= κ(2n + 1) = −1 implies that κ(n) = 1(= δ1), and similarly, κ(2n) =
= κ(2n + 1) = δ1 implies that δ1 = δ21 , and so δ1 = 1. This allows us to
conclude that Case III cannot occur.

Case IV: δ1 = 1 and δ2 = −1. In this case, we have that

f2(n+ 1)

f2(n)
→ 1 for almost all n,

and therefore, by Klurman’s theorem [5], we may conclude that f(n) = n2iτ .
Hence, f(n) = niτF (n) with F 2(n) = 1. Consequently, the relation

(3.3) D0F (n− 1) +D1F (n+ 1) + F (n) = 0

holds for every integer n ≥ n0 for some n0 ∈ N. Now, relation (3.3) implies
that F (n + 1)/F (n) is a constant and that this constant is either 1 or −1.
There are two possibilities. If F (n + 1) = F (n) for all n ≥ n0, then F (n) = 1
for all n ∈ N. On the other hand, if F (n + 1) = −F (n) for all n ≥ n0, then
F (2n) = −F (2n + 1) = F (2n + 2), implying that F (n) = F (n + 1), which is
impossible.

In conclusion, we have covered all the possible cases, except when f(n) =
= niτ and D0 +D1 +1 = 0, which occurs if and only if c0 + c1 + c2 = 0, which
proves item (ii) of the Theorem.

It remains to consider the case when c1 = 0, that is when

s(n) = c0f(n− 1) + c2f(n+ 1),

which is equivalent to

s(2n+ 1)

c2f(2n)
=

c0
c2

+
f(n+ 1)

f(n)
,

which, in light of (3.1), implies that, with A = c0/c2,

1

x

∑
n≤x

∣∣∣∣A+
f(n+ 1)

f(n)

∣∣∣∣ → 0 as x → ∞.
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Therefore, since α(n) = α(2n)α(2n+1), we have that α(n) → −A for almost all
n. This implies that −A = A2 and therefore that A = −1. We can then again
apply Klurman’s theorem [5]. This completes the proof of Theorem 3.1. �

Using the same kind of technique, we could also prove the following result.

Theorem 3.2. Let c0, c1, c2 be three complex numbers such that (c0, c1, c2) �=
�= (0, 0, 0), let f ∈ M∗

1 and consider the sum s(n) := c0f(n − 1) + c1f(n) +
+c2f(n+ 1). Assuming that

lim
x→∞

1

log x

∑
n≤x

|s(n)|
n

= 0,

then c0+ c1+ c2 = 0 and there exists τ ∈ R such that f(n) = niτ for all n ∈ N.

We also have the following.

Theorem 3.3. Let c0, c1, c2 be three complex numbers such that (c0, c1, c2) �=
�= (0, 0, 0), let f0, f1, f2 ∈ M∗

1 and consider the sum s(n) := c0f0(n − 1) +
+c1f1(n) + c2f2(n + 1). Assume that limn→∞ s(n) = 0 and assume also that
either f0(n) = f1(n) or f0(n) = f2(n) or f1(n) = f2(n). Then c0 + c1 + c2 = 0
and there exists τ ∈ R such that f0(n) = f1(n) = f2(n) = niτ for all n ∈ N.

Proof. Without any loss of generality, we can assume that f1(n) = f2(n) (=:
=: f(n)). We will first assume that c1 �= 0. Then,

s(n)

c1f(n)
=

c0
c1

f0(n− 1)

f(n)
+

c2
c1

f(n+ 1)

f(n)
+ 1 → 0 as n → ∞.

Further set

γ(n) :=
f0(n− 1)

f(n)
, δ(n) :=

f(n+ 1)

f(n)
, D0 :=

c0
c1

, D1 :=
c2
c1

.

Recalling that T stands for the unit circle, D0T + D1T + 1 = 0 has no more
than two solutions, say (γ1, δ1) and (γ2, δ2), that is, satisfying

D0γ1 +D1δ1 + 1 = 0 and D0γ2 +D1δ2 + 1 = 0.

Now, assume that the sequence (δ(n))n∈N has two limits points, say δ1 and
δ2. Then, by the theorem of Kátai and Subbarao [3], we obtain that there
exists a real number τ such that f(n) = niτF (n) with F 2(n) = 1 for all n ∈ N.
Consequently, δ1 = 1 and δ2 = −1, so that we obtain successively

D0γ1 +D1 + 1 = 0, D0γ2 −D1 + 1 = 0,

D0γ1 = −D1 − 1, D0γ2 = D1 − 1,

|D0|2 = |D1|2 + 1 + (D1 +D1), |D0|2 = |D1|2 + 1− (D1 +D1),
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from which we may conclude that �(D1) = 0 and therefore that D1 = iV for
some V ∈ R.

Now, since

f0(n+ 1)

f0(n− 1)
=

γ(n2)

γ(n)2
and

f0(n+ 1)

f0(n)
=

γ((2n+ 1)2)

γ(2n+ 1)2
,

we obtain that S(f0) ⊆ {1/γ1, 1/γ2, γ1/γ2
2 , γ2/γ

2
1}, implying that #S(f0) ≤ 4.

Consequently,

f0(n) = niτF0(n) with F k
0 (n) = 1, where k ≤ 4.

We may then conclude that

D0
F0(n− 1)

F (n)
+ iV

F (n+ 1)

F (n)
+ 1 = 0,

that is,
D0F0(n− 1) + iV F (n+ 1) + F (n) = 0,

so that

(3.4) F0(n− 1) =
−F (n)− iV F (n+ 1)

D0
.

If F (n) takes on two values, that is, F (n) = −1 holds once, then F (n) = −1
for infinitely many n’s, implying that the right hand side of (3.4) takes on four
distinct values, namely the values 1, −1, i and −i. Writing D0 = U + iQ,
relation (3.4) can be written as

(U + iQ)F0(n− 1) = −F (n)− iV F (n+ 1).

Hence, if F0(n − 1) = 1, we have that U ∈ {1,−1}, whereas if F0(n − 1) = i,
we have that V ∈ {1,−1}.

Since D2
0 = ±2i, it follows that either

(3.5) F 2
0 (n− 1) = F (n)F (n+ 1)

or

(3.6) F 2
0 (n− 1) = −F (n)F (n+ 1).

Now, let G(n) := F 2
0 (n). Observe that G(n) ∈ {1,−1} for all n ∈ N.

We first consider the case when (3.5) holds. In light of (3.4), we have that

G(n) = F (n+ 1)F (n+ 2) and G(2n) = F (2n+ 1)F (2n+ 2),
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from which it follows that

G(2) =
F (2n+ 1)F (2n+ 2)

F (n+ 1)F (n+ 2)
= F (2)

F (2n+ 1)

F (n+ 2)
.

Hence,

(3.7)
G(2)

F (2)
=

F (2m− 3)

F (m)
,

so that
G(2)

F (2)
=

F (6m− 3)

F (3m)
=

F (2m− 1)

F (m)
,

implying that

G(2) =
F (2m− 1)

F (2m)
,

which in turn implies that

G(2) =
F (4m2 − 1)

F (4m2)
=

F (2m− 1)

F (2m)
· F (2m+ 1)

F (2m)
= G(2)

F (2m+ 1)

F (2m)
,

which itself implies that

F (2m+ 1)

F (2m)
= 1 and therefore that F (2m+ 1) = G(2)F (2m− 1).

Now, since G2(2) = 1, it follows that F (n+ 4) = F (n) if n is odd. Since there
obviously exist infinitely many odd integers m for which 2m− 3 ≡ m (mod 4),
it follows from (3.7) that

F (2m+ 3)

F (2m+ 1)
=

F (2m− 1)

F (2m− 2)
,

so that F (2m−2) = F (2m+2), implying that F (m−1) = F (m+1) and there-
fore that F (n) is a constant for n sufficiently large and that this constant is 1.
From this, we easily see that F (n) = 1 for all positive integers n. Consequently,
f(n) = niτ for all n ∈ N.

It follows that D0F0(n− 1) +D1 + 1 = 0, implying that F0(n) is constant
and therefore that F0(n) = 1 for all positive integers n.

It remains to consider the case when (3.6) holds. Since G(n) = F 2
0 (n), we

have that G(n) = −F (n + 1)F (n + 2) and G(2n) = −F (2n + 1)F (2n + 2).
Hence,

G(2) =
F (2n+ 1)F (2n+ 2)

F (n+ 1)F (n+ 2)
= F (2)

F (2n+ 1)

F (n+ 2)
=

F (2n+ 1)

F (2n+ 4)
=

F (2m− 3)

F (2m)
.
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Then, the rest of the proof in the case when (3.6) is similar to the one for the
case when (3.5) holds. We will therefore skip it.

It remains to consider the case when one of the ci’s is 0, say c1 = 0. In fact,
this case is much easier to handle. By hypothesis, we have that

c0f0(n) + c2f(n+ 2) → 0 as n → ∞,

which implies that

c0f0(2)f0(n) + c2f(2)f(n+ 1) → 0 as n → ∞,

from which It follows that

f(n+ 1)

f0(n)
→ 1 as n → ∞, where A = −c2f(2)

c0f(2)
.

Now,

(3.8)
f(n2)

f0(n− 1)
=

f(n)

f0(n− 1)
· f(n)

f0(n+ 1)
.

Since each of the quotients
f(n2)

f0(n− 1)
and

f(n)

f0(n− 1)
tend to A as n → ∞, it

follows from (3.8) that

f(n)

f0(n+ 1)
→ 1 and

f(n− 1)

f0(n)
→ 1 (n → ∞),

and therefore that

f(n+ 1)

f0(n− 1)
→ 1 and

f(2n+ 2)

f(2n)
=

f(n+ 1)

f(n)
→ 1 (n → ∞).

From this, we may conclude that there exists τ ∈ R such that f(n) = niτ for
all positive integers n. �

We can also prove an even more general result, namely the following.

Theorem 3.4. Let a, b ∈ N, f ∈ M∗
1 and S(n) = c0f(n − a) + c1f(n) +

+c2f(n + b). Assume that limn→∞ S(n) = 0. If (c0, c1, c2) �= (0, 0, 0), then
c0 + c1 + c2 = 0 and there exists τ ∈ R such that f(n) = niτ for all positive
integers n. On the other hand, if c0 + c1 + c2 = 0, then c0(n− a)iτ + c1n

iτ +
+c2(n+ b)iτ → 0 as n → ∞.

Proof. The proof is similar to that of the preceding theorem and we will
therefore omit it. �
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[9] Sárközy A., On multiplicative arithmetic functions satisfying a linear
recursion, Studia Sci. Math. Hung., 13 (1989), 79–104.
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Québec
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