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Abstract. Given a positive integer k, we construct a binary number
0.a1a2as3 ... having the property that any sequence apm+1 ... Gmk of k con-
secutive digits from its binary expansion appears with a frequency directly
related to the various permutations of the set {1,2,...,k+ 1}.

1. Introduction

Given a positive integer k, let II; be the set of the permutations of the
set {1,2,...,k+ 1}. Various interesting aspects of this set II; can be studied;
see for instance the book of Pemmaraju [1]. Here, we use this set to con-
struct real numbers with an interesting property, as follows. Given w € IIj, let
1592, Jrk+1 be defined by 7 (i) = j;. Further set, for each h = 1,2,...,k,

1 if jh+1 > Jn,

p(ns Jny1) = {

0 if  jpy1 <Jn
Moreover, given (81,02, ...,0;) € {0,1}*, set

D(61,02,...,0) :=#{m €y : p(n(i),n(i + 1)) =6; for i =1,2,...,k}
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and

D(61,09,...,0
K(01,02,...,0k) ;:W

As we will see in Section 4,

1
(k+1)!

Iﬁl((sl,ég,...,(sk)z (k:1,2,)

To illustrate the function x(d1,ds,...,0d5), if we choose the case k = 4, we
obtain the following table.

[ (81,02,03,04) | D(61,02,03,04) | r(61,02,03,04) |

(0,0,0,0) 1 1/120
(0,0,0,1) 4 1/30
(0,0,1,0) 9 3/40
(0,0,1,1) 6 1/20
(0,1,0,0) 9 3/40
(0,1,0,1) 16 2/15
(0,1,1,0) 11 11/120
(0,1,1,1) 4 1/30
(1,0,0,0) 4 1/30
(1,0,0,1) 11 11/120
(1,0,1,0) 16 2/15
(1,0,1,1) 9 3/40
(1,1,0,0) 6 1/20
(1,1,0,1) 9 3/40
(1,1,1,0) 4 1/30
(1,1,1,1) 1 1/120

Our purpose in this short paper is to construct some binary number
a = 0.a1a0a3 ...,

that is, where each digit a; € {0,1}, and such that

lim %#{mﬁN:am+1...am+k =01...0k} = K(01,...,0).

N—o0
To construct a, we proceed as follows. First we set

Fn=[eV, N and Ly =[logN, N] (N=1,2,...).
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Let p(n) = pn(n) stand for the smallest prime divisor of n which is located
in the interval £5. Observe that the number of those n € Fx which do not
contain any prime divisors in Ly is bounded by

1 loglog N
N H N
e (l_p) s ce logN

pEL N
PEYP

To each number n € Fy, we associate the number

{ 1 ifp(n+1)>pn)andn+1e Fy,
€n =

0 otherwise
for some absolute constant ¢ > 0, where p stands for the set of all primes.
Thus, €, = 0 if p(n +1) < p(n) or if n < eN*t!1 < n 41 or if either p(n) or
p(n + 1) does not exist. Then, to each N € N, we associate the number
&n = Concat(e, : n € Fy),

and we then define

(11) o = 0.625364 e

2. The distribution function of ({2"a})n>1

With a as in (1.1), let 0 < u < 1 written as
(2.1) u=—_—+-5+5+

Here, we may assume that t,, = 0 for infinitely many n € N. We can prove that

1
(2.2) lim —#{n < N:{2"a} <u} = F(u) exists.
N—oco N
To see this, we proceed as follows. Let r; < ro < --- be a sequence of integers

Tj—l
(22
such that ¢,, = 0 for some j € N and then set u; := Z o and further define
v=1
. 1

Uj = o + u;. It is clear that

u; <u < uj ( €eN).
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We then introduce the two functions

1
Fi(u) = lgninf N#{n < N :{2"a} < u},
—00
1
Fy(u) = li]rvn sup N#{n < N :{2"a} < u}.
—00

With these definitions, we easily see that

(2.3) Fluj) = > k(a,...,ar,) < Fi(u),
G+ Bt L <u

(2.4) F(a;) = > Kk(a, ... ar,) > Fa(u).

ar;

2"

BB+

<uj

Moreover,

(2.5) F(uj) — F(uj) = k(ty, ... te, 1, 1).
Also, observe that it will follow from Theorem 4.1 below that

(2.6) lim max K01y, 0m) = 0.

M—0061,...,0m €{0,1}™

It then follows from (2.3), (2.4), (2.5) and (2.6) that F(u) = F>(u) and there-
fore that F'(u) exists, as claimed.

We can even prove that F'(u) is a continuous function. To show this, we
first fix u and choose two sequences of numbers (ups)ar>1 and (var)ar>1 such

that up; < u < vy for each M > 1, and such that up; — v and vy — u as
5
M — co. Then, let s be an integer such that |u-2" | = s and choose uy; =

oM
s+1
and vy = o We then have
F(uy) = Z k(at,...,an),
G g <s/2M
Foy) = Z k(at, ..., an),
Gt i S(s+1)/2M
with +1 b b
5 — L, IM
oM T o +---+ R
Since F'(var) — F(ua) = £(b1,...,bar) = 0 as M — oo, we therefore have

that limps oo F(upr) = F(u) and limpys o0 F(vpr) = F(u). Thus we proved
that F(u) is continuous at the points v € R\ Q and also continuous from
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the right at those points u € Q of the form u = s/(2), where s is an odd
integer. Moreover, assuming that K is an integer larger than R and setting
ug = u—1/2% we have F(u) — F(ug) = k(t1,ta,...,tp_1,0,1,1,...,1) which
tends to 0 as K tends to infinity, thereby establishing that F'(u) is continuous
from the left, as well.

3. Main theorem

Theorem 3.1. Given an integer k > 2 and an arbitrary k-tuple (61,...,0x) €
€ {0,1}*, we have

g1 Ok 01 Ok 1
1 _ < M 277L - v T _r _
N #{m {2ma} € sttt g Tttt

= /4:(51, .. -75k)-

Proof. Let p1,ps,...,pry1 be distinct primes located in the interval Ly. Let
us count those n € Fy for which p(n+ j) = p;. Also, let {iy,..., i1} be that
particular permutation of the set {1,2,...,k + 1} for which p;; < p;, < - <

< Pij.,- Then, set
Q= ] »

log N<p<U
pPEP

Since n + j = 0 (mod p;) for j = 1,2,...,k + 1, it follows that n = m -
pip2 - Pr+1 + 1 with (r,pipa---pry1) = 1. Moreover, (n +1i1,Qp, ) = 1,
(n+iz,Qp,) =1, ..., (n+igy1, Qpik+1) = 1. Using standard asymptotic sieve
techniques, we can write these conditions in the form

k+1 k+1 Q. . Q..
H(n"‘%qu ) =1, H n—i—zg,Q =1,...,(n+igs1, 0 =1,
Piy Piy,

{=1 (=2

n=r (mod pips---Pks1)-

Thus the number of such numbers n € Fy is, as N — oo,

ey EE T (1R,

Pip2 - Pk+1 q
qEP

k 1

. H (1_)... H (1_>:
i, <a<p; q pi, <a<p; 4q
i1 i2 ik k41

qEp qEp

k+1 1

- 1+ logloglog N - [ —————
(1+0(1))#Fn - logloglog szloglogp,
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The important observation here is that this asymptotic behavior does not de-
pend on the particular permutation of the primes pi,pa,...,pr+1 We choose.
We may therefore conclude that, as N — oo,

1 ) Sp O B 1
M#{me}'N:{Qma}e 21+...+2]§,21+...+k+>}:

= (14 0o(1))k(51, ..., 5%).

Now, we need to count those {2™a} (m = 1,2,...,|z]) not only for the par-
ticular values # = e, but also for the more general values = € (eV, eN*1).

So, let ¢ > 0 be an arbitrarily small number and set z = eN*? with
0 < 0 < 1. We now examine two separate cases. If § < ¢, then

#{n:eN <n <z} <elN(ef —1) < 2.

On the other hand, if 6 > ¢, setting S := [eV,eN*?), we may then repeat the
above argument for the interval S instead of Fn and obtain the same result.
Therefore, in both cases, the proof is complete. |

4. The size of kK(d1,...,0k)
Theorem 4.1. Let k > 2 and let ay,as,...,a; € {0,1} be given. Then,

1L 1
Gy iy = rlenaz ) < S

Proof. First, we prove the first inequality, namely

1
(4.1) k(ay,ag,...,ar) > Sk
To do so, we let ji,...,j, be the indices of those a;’s for which a;, = 0
(v=1,...,7) and let ty,...,t; be the indices of those a;’s for which a;, = 1

(u=1,...,5). The case where one of the two sets {j1,..., .} or {t1,...,ts} s
empty is much more simple. So,let S ={1,...,7r}and M = {r+1,...,k+1}.
Now, let {u(1),...,u(k + 1)} be a permutation of {1,2,...,k+ 1} satisfying

1. {u(ji + 1),u(j2 + 1),...,u(j + 1)} is a permutation of S satisfying the
condition

If joy1 = je+ 1 for some ¢ € {1,...,r}, then wu(je+1) > u(jre1 +1).

Observe that such a permutation clearly exists.
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2. {u(ty + 1),u(te + 1),...,u(ty—r + 1)} is a permutation of M satisfying
the condition

Ift,41 =1t, + 1 for some v € {1,...,s}, then wu(t, +1) <u(ty41 +1).
Such a permutation also clearly exists.

For such a permutation {u(1),...,u(k-+1)}, we have that p(u(f),u({+1)) = a,
for £ = 1,...,k. The special case S = () is very simple, because in this case,
u(j) =j for each j =1,...,k + 1. On the other hand if M = (}, then

ul)=k+1, u@2) =k, ..., u(k+1)=1.

This completes the proof of (4.1).

We will now prove the second inequality in Theorem 4.1, namely

1
(4.2) k(ay,ag, ... a5) < STl

Assume that {ji,j2,...,jrk+1} is a permutation of {1,2,...,k + 1} satisfying
p(Jesjes1) = ag for £ = 1,... k. Assume first that k + 1 is even and consider
the pairs
(J1,92)s (3 da)s vy (ks Jtn)-

If a; = 1, then j; < jo; if a; = 0, then jo > ji; if ag = 1, then j3 < jg; if
as = 0, then j3 > j4, and so on, up to if ap = 1, then ji < jr41; if ap = 0, then
Jet1 < Jk-

To sum up, this means that the number of associated permutations is no
(k+1)!
o(k+1)/2"

The case where k£ + 1 is odd can be treated in a similar manner, since we
then have that k is even, in which case we consider the k/2 4+ 1 numbers

larger than

(jlaj2>7 (j37j4>7 DR (jk*hjk)a jk+17
which allows us in the end to conclude that the number of associated permu-
fons is 10 1 L (k+1)!
tations 1s no larger than k)2

In both cases, we have proved (4.2) and the proof of Theorem 4.1 is com-
plete. |
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