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Abstract. Given a positive integer k, we construct a binary number
0.a1a2a3 . . . having the property that any sequence am+1 . . . am+k of k con-
secutive digits from its binary expansion appears with a frequency directly
related to the various permutations of the set {1, 2, . . . , k + 1}.

1. Introduction

Given a positive integer k, let Πk be the set of the permutations of the
set {1, 2, . . . , k + 1}. Various interesting aspects of this set Πk can be studied;
see for instance the book of Pemmaraju [1]. Here, we use this set to con-
struct real numbers with an interesting property, as follows. Given π ∈ Πk, let
j1, j2, . . . , jk+1 be defined by π(i) = ji. Further set, for each h = 1, 2, . . . , k,

ρ(jh, jh+1) =

{
1 if jh+1 > jh,

0 if jh+1 < jh.

Moreover, given (δ1, δ2, . . . , δk) ∈ {0, 1}k, set

D(δ1, δ2, . . . , δk) := #{π ∈ Πk : ρ(π(i), π(i+ 1)) = δi for i = 1, 2, . . . , k}
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and

κ(δ1, δ2, . . . , δk) :=
D(δ1, δ2, . . . , δk)

(k + 1)!
.

As we will see in Section 4,

κ(δ1, δ2, . . . , δk) ≥
1

(k + 1)!
(k = 1, 2, . . .).

To illustrate the function κ(δ1, δ2, . . . , δk), if we choose the case k = 4, we
obtain the following table.

(δ1, δ2, δ3, δ4) D(δ1, δ2, δ3, δ4) κ(δ1, δ2, δ3, δ4)

(0,0,0,0) 1 1/120
(0,0,0,1) 4 1/30
(0,0,1,0) 9 3/40
(0,0,1,1) 6 1/20
(0,1,0,0) 9 3/40
(0,1,0,1) 16 2/15
(0,1,1,0) 11 11/120
(0,1,1,1) 4 1/30
(1,0,0,0) 4 1/30
(1,0,0,1) 11 11/120
(1,0,1,0) 16 2/15
(1,0,1,1) 9 3/40
(1,1,0,0) 6 1/20
(1,1,0,1) 9 3/40
(1,1,1,0) 4 1/30
(1,1,1,1) 1 1/120

Our purpose in this short paper is to construct some binary number

α = 0.a1a2a3 . . . ,

that is, where each digit ai ∈ {0, 1}, and such that

lim
N→∞

1

N
#{m ≤ N : am+1 . . . am+k = δ1 . . . δk} = κ(δ1, . . . , δk).

To construct α, we proceed as follows. First we set

FN = [eN , eN+1) and LN = [logN,N ] (N = 1, 2, . . .).
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Let p(n) = pN (n) stand for the smallest prime divisor of n which is located
in the interval LN . Observe that the number of those n ∈ FN which do not
contain any prime divisors in LN is bounded by

ceN
∏

p∈LN
p∈℘

(
1− 1

p

)
≤ ceN

log logN

logN
.

To each number n ∈ FN , we associate the number

εn =

{
1 if p(n+ 1) > p(n) and n+ 1 ∈ FN ,

0 otherwise

for some absolute constant c > 0, where ℘ stands for the set of all primes.
Thus, εn = 0 if p(n + 1) < p(n) or if n < eN+1 < n + 1 or if either p(n) or
p(n+ 1) does not exist. Then, to each N ∈ N, we associate the number

ξN = Concat(εn : n ∈ FN ),

and we then define

(1.1) α = 0.ξ2ξ3ξ4 . . . .

2. The distribution function of ({2nα})n≥1

With α as in (1.1), let 0 < u < 1 written as

(2.1) u =
t1
2
+

t2
22

+
t3
23

+ · · ·

Here, we may assume that tn = 0 for infinitely many n ∈ N. We can prove that

(2.2) lim
N→∞

1

N
#{n ≤ N : {2nα} ≤ u} = F (u) exists.

To see this, we proceed as follows. Let r1 < r2 < · · · be a sequence of integers

such that trj = 0 for some j ∈ N and then set uj :=

rj−1∑
ν=1

tν
2ν

and further define

ũj :=
1

2rj
+ uj . It is clear that

uj ≤ u < ũj (j ∈ N).
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We then introduce the two functions

F1(u) = lim inf
N→∞

1

N
#{n ≤ N : {2nα} < u},

F2(u) = lim sup
N→∞

1

N
#{n ≤ N : {2nα} < u}.

With these definitions, we easily see that

F (uj) =
∑

a1
2 +

a2
22

+···+
arj

2
rj

≤uj

κ(a1, . . . , arj ) ≤ F1(u),(2.3)

F (ũj) =
∑

a1
2 +

a2
22

+···+
arj

2
rj

≤ũj

κ(a1, . . . , arj ) ≥ F2(u).(2.4)

Moreover,

(2.5) F (ũj)− F (uj) = κ(t1, . . . , trj−1
, 1).

Also, observe that it will follow from Theorem 4.1 below that

(2.6) lim
m→∞

max
δ1,...,δm∈{0,1}m

κ(δ1, . . . , δm) = 0.

It then follows from (2.3), (2.4), (2.5) and (2.6) that F1(u) = F2(u) and there-
fore that F (u) exists, as claimed.

We can even prove that F (u) is a continuous function. To show this, we
first fix u and choose two sequences of numbers (uM )M≥1 and (vM )M≥1 such
that uM < u < vM for each M ≥ 1, and such that uM → u and vM → u as

M → ∞. Then, let s be an integer such that �u·2M� = s and choose uM =
s

2M

and vM =
s+ 1

2M
. We then have

F (uM ) =
∑

a1
2 +···+ aM

2M
≤s/2M

κ(a1, . . . , aM ),

F (vM ) =
∑

a1
2 +···+ aM

2M
≤(s+1)/2M

κ(a1, . . . , aM ),

with
s+ 1

2M
=

b1
2

+ · · ·+ bM
2M

.

Since F (vM ) − F (uM ) = κ(b1, . . . , bM ) → 0 as M → ∞, we therefore have
that limM→∞ F (uM ) = F (u) and limM→∞ F (vM ) = F (u). Thus we proved
that F (u) is continuous at the points u ∈ R \ Q and also continuous from
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the right at those points u ∈ Q of the form u = s/(2R), where s is an odd
integer. Moreover, assuming that K is an integer larger than R and setting
uK = u−1/2K , we have F (u)−F (uK) = κ(t1, t2, . . . , tR−1, 0, 1, 1, . . . , 1) which
tends to 0 as K tends to infinity, thereby establishing that F (u) is continuous
from the left, as well.

3. Main theorem

Theorem 3.1. Given an integer k ≥ 2 and an arbitrary k-tuple (δ1, . . . , δk) ∈
∈ {0, 1}k, we have

lim
M→∞

1

M
#

{
m ≤ M : {2mα} ∈

[
δ1
2

+ · · ·+ δk
2k

,
δ1
2

+ · · ·+ δk
2k

+
1

2k

)}
=

= κ(δ1, . . . , δk).

Proof. Let p1, p2, . . . , pk+1 be distinct primes located in the interval LN . Let
us count those n ∈ FN for which p(n+ j) = pj . Also, let {i1, . . . , ik+1} be that
particular permutation of the set {1, 2, . . . , k + 1} for which pi1 < pi2 < · · · <
< pik+1

. Then, set

QU :=
∏

log N<p<U
p∈℘

p.

Since n + j ≡ 0 (mod pj) for j = 1, 2, . . . , k + 1, it follows that n = m ·
p1p2 · · · pk+1 + r with (r, p1p2 · · · pk+1) = 1. Moreover, (n + i1, Qpi1

) = 1,
(n+ i2, Qpi2

) = 1, . . ., (n+ ik+1, Qpik+1
) = 1. Using standard asymptotic sieve

techniques, we can write these conditions in the form

k+1∏
�=1

(
n+ i�, Qpi1

)
= 1,

k+1∏
�=2

(
n+ i�,

Qpi2

Qpi1

)
= 1, . . . ,

(
n+ ik+1,

Qpik+1

Qpik

)
= 1,

n ≡ r (mod p1p2 · · · pk+1).

Thus the number of such numbers n ∈ FN is, as N → ∞,

(1 + o(1))
#FN

p1p2 · · · pk+1
·

∏
log N<q<pi1

q∈℘

(
1− k + 1

q

)
·

·
∏

pi1
<q<pi2
q∈℘

(
1− k

q

)
· · ·

∏
pik

<q<pik+1
q∈℘

(
1− 1

q

)
=

= (1 + o(1))#FN · log log logN ·
k+1∏
i=1

1

pi log log pi
.
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The important observation here is that this asymptotic behavior does not de-
pend on the particular permutation of the primes p1, p2, . . . , pk+1 we choose.
We may therefore conclude that, as N → ∞,

1

#FN
#

{
m ∈ FN : {2mα} ∈

[
δ1
2

+ · · ·+ δk
2k

,
δ1
2

+ · · ·+ δk
2k

+
1

2k

)}
=

= (1 + o(1))κ(δ1, . . . , δk).

Now, we need to count those {2mα} (m = 1, 2, . . . , �x�) not only for the par-
ticular values x = eN , but also for the more general values x ∈ (eN , eN+1).

So, let ε > 0 be an arbitrarily small number and set x = eN+θ with
0 < θ < 1. We now examine two separate cases. If θ < ε, then

#{n : eN ≤ n < x} < eN (eε − 1) < 2εeN .

On the other hand, if θ > ε, setting S := [eN , eN+θ), we may then repeat the
above argument for the interval S instead of FN and obtain the same result.
Therefore, in both cases, the proof is complete. �

4. The size of κ(δ1, . . . , δk)

Theorem 4.1. Let k ≥ 2 and let a1, a2, . . . , ak ∈ {0, 1} be given. Then,

1

(k + 1)!
≤ κ(a1, a2, . . . , ak) <

1

2�k/2�
.

Proof. First, we prove the first inequality, namely

(4.1) κ(a1, a2, . . . , ak) ≥
1

(k + 1)!
.

To do so, we let j1, . . . , jr be the indices of those ai’s for which ajν = 0
(ν = 1, . . . , r) and let t1, . . . , ts be the indices of those ai’s for which atµ = 1
(µ = 1, . . . , s). The case where one of the two sets {j1, . . . , jr} or {t1, . . . , ts} is
empty is much more simple. So, let S = {1, . . . , r} and M = {r+1, . . . , k+1}.
Now, let {u(1), . . . , u(k + 1)} be a permutation of {1, 2, . . . , k + 1} satisfying

1. {u(j1 + 1), u(j2 + 1), . . . , u(jr + 1)} is a permutation of S satisfying the
condition

If j�+1 = j� + 1 for some � ∈ {1, . . . , r}, then u(j� + 1) > u(j�+1 + 1).

Observe that such a permutation clearly exists.
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2. {u(t1 + 1), u(t2 + 1), . . . , u(tk−r + 1)} is a permutation of M satisfying
the condition

If tν+1 = tν + 1 for some ν ∈ {1, . . . , s}, then u(tν + 1) < u(tν+1 + 1).

Such a permutation also clearly exists.

For such a permutation {u(1), . . . , u(k+1)}, we have that ρ(u(�), u(�+1)) = a�
for � = 1, . . . , k. The special case S = ∅ is very simple, because in this case,
u(j) = j for each j = 1, . . . , k + 1. On the other hand if M = ∅, then

u(1) = k + 1, u(2) = k, . . . , u(k + 1) = 1.

This completes the proof of (4.1).

We will now prove the second inequality in Theorem 4.1, namely

(4.2) κ(a1, a2, . . . , ak) <
1

2�k/2�
.

Assume that {j1, j2, . . . , jk+1} is a permutation of {1, 2, . . . , k + 1} satisfying
ρ(j�, j�+1) = a� for � = 1, . . . , k. Assume first that k + 1 is even and consider
the pairs

(j1, j2), (j3, j4), . . . , (jk, jk+1).

If a1 = 1, then j1 < j2; if a1 = 0, then j2 > j1; if a3 = 1, then j3 < j4; if
a3 = 0, then j3 > j4, and so on, up to if ak = 1, then jk < jk+1; if ak = 0, then
jk+1 < jk.

To sum up, this means that the number of associated permutations is no

larger than
(k + 1)!

2(k+1)/2
.

The case where k + 1 is odd can be treated in a similar manner, since we
then have that k is even, in which case we consider the k/2 + 1 numbers

(j1, j2), (j3, j4), . . . , (jk−1, jk), jk+1,

which allows us in the end to conclude that the number of associated permu-

tations is no larger than
(k + 1)!

2k/2
.

In both cases, we have proved (4.2) and the proof of Theorem 4.1 is com-
plete. �
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Québec
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