ELTE logo ELTE Eötvös Loránd University
ANNALES Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
Sectio Computatorica

Volumes » Volume 50 (2020)

https://doi.org/10.71352/ac.50.063

Moyenne de la fonction de Piltz sur les entiers sans facteur premier dans un intervalle

Anaclet Congera and Servat Nyandwi

Abstract. In this work, we study the average behavior of the Piltz function "\(\tau_k\)", where \(k\) is a strictly positive real number, on integers without prime factors in a given interval. This study completes the work of Andreas Weingartner and Gérald Tenenbaum concerning the function \(1(n)=1\). From this work, we deduce the estimate of the function \(\tau_k\) on integers having at most two prime factors in an interval \(\bigl]x^{1/3},x^{1/2}\bigr]\), where \(x\) is a real number \(\geqslant 2\).

Full text PDF
Journal cover