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Abstract. Recently R.S.Vieira [18] found sufficient conditions for self-inversive
polynomials to have some of their zeros on the unit circle. We extend his results
by giving the location of those zeros. In case of fourth degree real reciprocal poly-
nomials we compare Vieira’s sufficient conditions with the necessary and sufficient
conditions obtained by help of Chebyshev transformation.

1. Introduction

Let Pm(z) =
m∑

k=0

Akz
k = Am

m∏
k=0

(z − zk) ∈ C[z] be a polynomial of degree

m with zeros z1, . . . , zm. Further let P ∗
m be the polynomial defined by P ∗

m(z) :=

:= zmP̄ (1/z) =
m∑

k=0

Ākz
n−k = Ā0

m∏
k=0

(z − z∗k) whose zeros are z∗k = 1/z̄k,

k = 0, . . . ,m (the inverses of zk with respect to the unit circle {z ∈ C : |z| = 1}).

Definition 1.1. A polynomial Pm(z) of degree m is said to be self-inversive if there
exists an ε ∈ C, |ε| = 1 such that P ∗

m(z) = εPm(z).

There are several equivalent definitions of self-inversive polynomials. It is well-

known (see e.g. [14]) that for a polynomial Pm(z) =
m∑

k=0

Akz
k of degree m the

following statements are equivalent
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1. Pm is self-inversive,

2. Āk = εAm−k, k = 0, . . . ,m, where |ε| = 1,

3. for the zeros zk of Pm we have {z1, z2, . . . , zm} = {1/z̄1, 1/z̄2, . . . , 1/z̄m}.

It follows that the zeros of a self-inversive polynomial of degree m can be divided into
three groups: 0 ≤ l ≤ m/2 zeros inside the complex unit circle, the same number of
zeros outside the unit circle, and m− 2l zeros on the unit circle.

If a polynomial with real coefficients is self-inversive then ε is necessarily real
hence either ε = 1 our polynomial is called reciprocal, or ε = −1 and our polynomial
is called antireciprocal.

There is an extensive literature dealing with polynomials all of whose zeros are
on the unit circle. There are necessary and sufficient conditions by Cohn [2] (see
also [14] p.14, Theorem 2.1.6) and several sufficient conditions (Chen [1], DiPippo
and Howe [3], Lakatos [7], Schinzel [16], Lakatos and Losonczi [8], [9], [10],
Losonczi and Schinzel [13], Kim and Park [4], Petersen and Sinclair [15], Sinclair
and Vaaler [17], Kwon [5], [6]) for the coefficients of reciprocal and self-inversive
polynomials to have all their zeros on the unit circle.

Our starting point is the paper of R. S. Vieira [18] who proved the following nice
result (the notations and formulations are slightly changed).

Theorem 1.1. (Vieira) Let Pm(z) =
m∑

k=0

Akz
k ∈ C[z] be a m-degree self-inversive

polynomial. If the inequality

(1.1) |Al| >
1

2

(
m

m− 2l

) m∑
k=0

k �={l,m−l}

|Ak|, l < m/2

holds then Pm has exactly m − 2l simple zeros on the unit circle. Moreover if m is
even and l = m/2 then Pm has no zeros on the unit circle if the inequality

(1.2) |Am/2| > 2
m∑

k=0,k �=m/2

|Ak|

is satisfied.

For l = 0 (1.1) goes over into |Am| > 1/2
∑m

k=0 |Ak| which (with > replaced by
≥) is exactly the sufficient condition of Lakatos and Losonczi [9] for Pm to have all
of its zeros on the unit circle. Moreover in [9] the location of the zeros and conditions
for multiple zeros were given. Vieira proved another sufficient condition which we
formulate as
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Theorem 1.2. (Vieira) Let Pm(z) =
m∑

k=0

Akz
k ∈ C[z] be a m-degree self-inversive

polynomial. If the inequality

(1.3) |Al| >
1

2

m∑
k=0

k �={l,m−l}

|Ak|, l < m/2

holds then Pm has at least m− 2l zeros on the unit circle.

In the proof also the positions of those m− 2l zeros were described.

2. Results

Here we study the case of equality in (1.3), show that in this case Pm also has at
least m−2l zeros on the unit circle, give the location of these zeros and the conditions
for multiple zeros. As we mentioned, the (ii)-1 part of the next theorem was essentially
proved by Vieira but for the sake of completeness we give the complete proof here.

Theorem 2.1. (i) Let Pm(z) =
m∑

k=0

Akz
k be a m-degree self-inversive polynomial. If

(2.1) |Al| ≥
1

2

m∑
k=0

k �={l,m−l}

|Ak|, l < m/2

then Pm has at least m− 2l zeros on the unit circle.

Let

(2.2)
βk : = arg

((
Am

A0

)− 1
2

Ak

)
(k = 0, . . . ,m),

ϕs : =
2(sπ − βl)

m− 2l
(s = 0, . . . ,m− 2l).

Let us call the points eiϕs (s = 0, . . . ,m−2l) division points on the unit circle, clearly
eiϕm−2l = ei(2π+ϕ0) = eiϕ0 . Thus there are m− 2l division points on the unit circle
forming a regular m− 2l-gon.

(ii)-1 If (2.1) holds with strict inequality then Pm has at least one zero on each
open arc between two neighboring division points eiϕs−1 and eiϕs (s = 1, . . . ,m−2l)
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i.e. Pm has at least m− 2l (not necessarily simple) zeros eius (s = 1, . . . ,m− 2l) on
the unit circle such that

(2.3) ϕs−1 < us < ϕs (s = 1, . . . ,m− 2l).

(ii)-2 If (2.1) holds with equality then some division points may become (necessarily
multiple) zeros of Pm. In particular eiϕs (s = 1, . . . ,m−2l) is (necessarily multiple)
zero of Pm if and only if the coefficients of Pm satisfy the conditions

(2.4) cos
(
βk +

(m
2

− k
)
ϕs

)
+ (−1)s = 0

for all k = 0, 1, . . . , [m/2], k �= l for which Ak �= 0.

(ii)-3 If (2.1) holds with equality and two neighboring division points eiϕs−1 and
eiϕs (s = 1, . . . ,m− 2l) are not zeros of Pm then in the open arc between them there
is a zero of Pm.

(ii)-4 If (2.1) holds with equality then two neighboring division points eiϕs−1 and
eiϕs (s = 1, . . . ,m− 2l) cannot both be (necessarily multiple) zeros of Pm.

Proof. In the proof we follow the arguments of [9] with suitable changes. Let ε =

= Am

A0
, Bk = ε−

1
2Ak, then Bk = Bm−k (k = 0, . . . ,m). If m = 2n + 1 is odd,

z = eiϕ then

ε−
1
2 z−

m
2 Pm(z) =

n∑
k=0

(
Bm−kz

m
2 −k +Bm−kz

m
2 −k

)
=

=
n∑

k=0

2|Bm−k| cos
(
βm−k +

(
m
2 − k

)
ϕ
)
=

=
n∑

k=0

2|Bk| cos
(
βk +

(
m
2 − k

)
ϕ
)
,

where βk = arg Bk = arg ε−
1
2Ak (k = 0, . . . ,m).

For even m = 2n we have similarly

ε−
1
2 z−

m
2 Pm(z)=

n−1∑
k=0

2|Bk| cos
(
βk+

(m
2
−k

)
ϕ
)
+|Bn| cosβn

where βn = 0 or π as Bn is real.

Let Fl(ϕ) :=
ε−

1
2

2|Bl|
z−

m
2 Pm(z)|z=eiϕ then we have

Fl(ϕ) = cos
(
βl +

(m
2

− l
)
ϕ
)
+ fl(ϕ),
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where
(2.5)

fl(ϕ)=




n∑
k=0

k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣ cos (βk+
(
m
2 − k

)
ϕ
)

ifm = 2n+ 1

n−1∑
k=0

k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣ cos (βk+
(
m
2 − k

)
ϕ
)
+

∣∣∣ Bn

2Bl

∣∣∣ cosβn ifm = 2n.

It is easy to check that

(2.6) Fl(ϕ+ 2π) =

{
−Fl(ϕ) if m = 2n+ 1
Fl(ϕ) if m = 2n.

Next we rewrite (2.1) as

(2.7) 1 ≥




n∑
k=0

k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣ if m = 2n+ 1

n−1∑
k=0

k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣+
∣∣∣ Bn

2Bl

∣∣∣ if m = 2n.

(ii)-1 Suppose now that there is strict inequality in (2.1) then the same true for (2.7).
From (2.5) and (2.7) we have |fl(ϕ)| < 1. Therefore we have for s = 0, . . . ,m− 2l
(2.8)

Fl(ϕs) = cos
(
βl +

(m
2

− l
)
ϕs

)
+ fl(ϕs) = (−1)s + fl(ϕs)

> 0 if s is even
< 0 if s is odd.

By (2.8) Fl assumes values of different signs at the endpoints of each of the inter-
vals ]ϕs−1, ϕs[ (s = 1, . . . ,m− 2l). This is also true for the last interval since using
(2.6)

Fl(ϕm−2l−1)
< 0 if m is even,
> 0 if m is odd,

Fl(ϕm−2l)
= Fl(2π + ϕ0) = Fl(ϕ0) > 0 if m is even,
= Fl(2π + ϕ0) = −Fl(ϕ0) < 0 if m is odd.

By the intermediate value theorem it follows that each interval contains at least
one zero us of Fl which means that eius (s = 1, . . . ,m− 2l) are zeros of Pl proving
(ii)-1.

(ii)-2 Assume now that equality holds in (2.1) then there is also equality in (2.7)
and we have

(2.9) Fl(ϕs) = cos
(
βl +

(m
2

− l
)
ϕs

)
+ fl(ϕs) = (−1)s + fl(ϕs) = 0,
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or using the form (2.5) of fl and replacing (−1)s by (−1)s multiplied by the right
hand side of (2.7) we get
(2.10)

Fl(ϕs)=




n∑
k=0

k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣[cos (βk+
(
m
2 − k

)
ϕs

)
+(−1)s

]
=0 if m = 2n+ 1

n−1∑
k=0

k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣[cos (βk+
(
m
2 − k

)
ϕs

)
+(−1)s

]

+
∣∣∣ Bn

2Bl

∣∣∣[cosβn+(−1)s]=0 if m = 2n.

Since all expressions of (2.10) in brackets are non-negative for even s (and non-
positive for odd s) and the same is true for Fl(ϕs), we conclude that (2.10) i.e.
Fl(ϕs) = 0 can hold if and only if the all expressions in brackets are zero provided
that in their coefficients Bk �= 0 proving (2.4).

If (2.4) holds then eiϕs is a multiple zero as in this case

F ′
l (ϕs) = −

(
m
2 − l

)
sin

(
βl +

(
m
2 − l

)
ϕs

)
−

−
[m−1

2 ]∑
k=0

k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣ (m
2 − k

)
sin

(
βk +

(
m
2 − k

)
ϕs

)
= 0

since all sin factors (or Bk’s) are zero. For the second derivative we have

F ′′
l (ϕs) = −

(
m
2 − l

)2
cos(βl+(m2 −l)ϕs)−

−
[m−1

2 ]∑
k=0

k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣ (m
2 −k

)2
cos

(
βk+

(
m
2 −k

)
ϕs

)
=

= −
(
m
2 −l

)2
(−1)s−

[m−1
2 ]∑

k=0
k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣ (m
2 −k

)2
(−1)s+1 =

= (−1)s+1
[ (

m
2 −l

)2−
[m−1

2 ]∑
k=0

k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣ (m
2 −k

)2 ]
=

=




(−1)s+1
n∑

k=0
k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣
[(

m
2 −l

)2−(
m
2 −k

)2]
ifm=2n+1

(−1)s+1

[ ∣∣∣ Bn

2Bl

∣∣∣ (m
2 −l

)2
+

n−1∑
k=0

k �={l,m−l}

∣∣∣Bk

Bl

∣∣∣
[(

m
2 −l

)2−(
m
2 −k

)2]
]

ifm=2n.

Since sgn
((

m
2 − l

)2 − (
m
2 − k

)2)
= sgn (k − l)(m− (k + l) = sgn (k − l) the

second derivative F ′′
l (ϕs) may become zero and then eiϕs is at least a triple zero.
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(ii)-3 Suppose that (2.1) holds with equality, eiϕs−1 and eiϕs are not zeros of Pm

for some s ∈ {1, . . . ,m− 2l}. Then Fl(ϕs−1) �= 0, Fl(ϕs) �= 0 thus

Fl(ϕs−1) �= 0 and by (2.10) (−1)s−1Fl(ϕs−1) = 1 + (−1)s−1fl(ϕs−1) ≥ 0

since |fl(ϕs−1)| ≤ 1 implying that (−1)s−1Fl(ϕs−1) > 0. Arguing similarly we get
that (−1)sFl(ϕs) > 0 therefore

sgn Fl(ϕs−1) �= sgn Fl(ϕs).

By intermediate value theorem there is at least one zero us strictly between ϕs−1 and
ϕs and thus eius is a zero of Pm.

(ii)-4 For l = 0 the statement (ii)-4 has been proved in [9], Lemma 1, therefore in
the following we may suppose that 0 < l < m/2.

Assume that contrary to (ii)-4 there is equality in (2.1), eiϕs−1 and eiϕs are both
zeros of Pm for some s ∈ {1, . . . ,m − 2l}. Then |B0| = |Bm| �= 0 and 0 �= l
therefore (2.4) holds for s− 1, s and for k = 0:

(2.11)
cos

(
β0 +

m
2 ϕs−1

)
+ (−1)s−1 = 0

cos
(
β0 +

m
2 ϕs

)
+ (−1)s = 0.

Case 1: If m = 2n + 1 is odd or 0 < l < n − 1 then using the equality ϕs−1 =
= ϕs +

2π
m−2l it follows from (2.11) that

(−1)s+1 = cos
(
β0 +

m
2 ϕs

)
= cos

(
β0 +

m
2 ϕs−1

)
cos 2π

m−2l = (−1)s cos 2π
m−2l

thus cos 2π
m−2l = −1 which is a contradiction since the previous equality holds if and

only if m− 2l = 2, m = 2(l + 1) = 2n i.e. if m is even and l = n− 1.

Case 2: If m = 2n is even and l = n− 1 then the equations (2.11) are equivalent
to

β0 + nϕs−1 =

{
2pπ if s is even
(2p+ 1)π if s is odd

β0 + n
(
ϕs−1 +

π
n−l

)
=

{
(2q + 1)π if s is even
2qπ if s is odd

with some p, q ∈ Z. Subtracting the first equation from the second and dividing by π
we get

n

n− l
= 2r + 1 or (2r + 1)l = 2rn,

where r = p − q − 1 if s is even and r = p − q if s is odd. In both cases we get a
contradiction since in the last equality one side is odd the other is even,
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Summarizing: in the case of equality in (2.1) some pairs of zeros eius , eius+1

(s = 1, . . . ,m − 2l) (with us+1 = u1) satisfying (2.3) pull together to the (at least
double) zero eiϕs while other zeros remain in the same position. �

Since m
m−2l > 1 (1.1) clearly implies (1.3) and by Theorem 2.1 we get

Theorem 2.2. (Extension of Vieira’s Theorem 1.1) Let Pm(z) =
m∑

k=0

Akz
k ∈ C[z]

be a m-degree self-inversive polynomial. If the inequality (1.1) holds then Pm has
exactly m− 2l simple zeros eius (s = 1, . . . ,m− 2l) on the unit circle such that

ϕs−1 < us < ϕs (s = 1, . . . ,m− 2l).

where ϕs is given by (2.2).

3. Comparison of Vieira’s conditions to necessary and sufficient conditions by
degree four reciprocal polynomials

Here we consider the reciprocal polynomial P4(z) := z4+A1z
3+A2z

2+A1z+1
(A1, A2 ∈ R) of degree four with real coefficients. Using the method of Chebyshev
transforms (see Lakatos [7]) we find criteria for the coefficients of P4 to have all
zeros, two zeros or no zeros on the unit circle, and we compare these with the sufficient
conditions given by Vieira’s theorem, and also the conditions given by Theorem 3.

The Chebyshev transform of P4 is (see [7] p.659)

T P4(x) = x2 +A1x+A2 − 2

whose zeros are

x1 =

(
−A1 +

√
A2

1 − 4(A2 − 2)

)
/2, x2 =

(
−A1 −

√
A2

1 − 4(A2 − 2)

)
/2

By Corollary 1 of [12]

(i) all zeros of P4 are on the unit circle if and only if x1, x2 are both real and lie in
the interval [−2, 2],

(ii) exactly two zeros of P4 are on the unit circle if and only if x1, x2 are both real
and one of them is in the interval [−2, 2] and the other is not,

(iii) P4 has no zeros on the unit circle if and only if x1, x2 are both real and none of
them lie in the interval [−2, 2] or if x1, x2 are both complex.

It is easy to see that the zeros are real if and only if |A1| ≥ ∆ :=
√

max{A2 − 2, 0}.
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The case (i) has been settled in [7] pp. 659-660, proving that both zeros are in
[−2, 2] if and only if

2
√
max{A2 − 2, 0} ≤ |A1| ≤ min{4, (A2 + 2)/2}.

(ii) holds exactly if |A1| ≥ ∆ and either −2 ≤ x2 ≤ 2 and x1 > 2 or −2 ≤
≤ x1 ≤ 2 and x2 < −2. An elementary but a bit long calculation shows that these
hold exactly if

|A1| ≥
1

2
|A2 − 2| except the line segments |A1| =

1

2
|A2 − 2|, A2 ∈]− 2, 6[.

(iii) holds exactly if either x1, x2 are real (i.e. |A1| ≥ ∆) and x2 > 2 or x2 < −2
and x1 > 2 or x1 < −2 or x1, x2 are complex (i.e. |A1| < ∆). An elementary
calculation gives that these conditions (in the above order) are satisfied exactly if

|A1| < 1
2 |A2 − 2| if A2 < −2

or |A1| <
√
A2 − 2 if 2 ≤ A2 ≤ 6 and |A1| < 1

2 |A2 − 2| if 6 < A2.

By Vieira’s inequalities (1.1) and (1.2) we get the following sufficient conditions for
P4 to have 4, 2 and no zeros on the unit circle

|A1| < 1− 1
2 |A2|,

|A1| > 2 + |A2| and

|A1| > 1
4 |A2| − 1,

respectively. Finally the condition which ensures that P4 has at least two zeros on the
unit circle is by (2.1)

|A1| ≥ 1 +
1

2
|A2|.

In figures C4, C2, C0 and S4, S2, S0 we draw the domains in the (A2, A1) plane which
give criteria and Vieira’s sufficient conditions for P4 to have four, two, or none zeros
on the unit circle respectively. The last figure L2 gives the domain where P4 has at
least two zeros on the unit circle.
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C4 S4

C2 S2

C0 S0
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