
Annales Univ. Sci. Budapest., Sect. Comp. 49 (2019) 317–323

AN INEQUALITY FOR THE AREAS OF

PONCELET TRIANGLES
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Abstract. We prove an inequality for areas of Poncelet triangles, which
holds between the integral mean and the arithmetical mean of the largest
and smallest areas.

1. Introduction

Euler’s theorem [1] states that given a triangle, the circumradius R, the
inradius r and the distance d between their centers satisfy

(1.1) d2 = R(R− 2r).

Conversely, the celebrated theorem of Poncelet [2] guarantees that if discs
D1 ⊂ D2 are given with radii r,R and distance d between their centers, with
Euler’s equality (1.1) holding, then there are infinitely many such triangles,
with an arbitrarily chosen vertex on C2 ≡ ∂(D2), the boundary of D2.

Since the areas of these triangles may be different, it is worth examining
their average measure. To this we parametrize the triangles in question. First
we chose the points of the outer circle (as vertices of the ‘sandwiched’ triangles),
however, then we hit on the paper [3] of Mirko Radić entitled Extreme Areas
of Triangles in Poncelets Closure Theorem. He took the length of the tangent
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from a point of C2 to C1 as parameter, which enabled him to formulate the
results in a simple way, this is why we use here those notations, and also some
of his results.

Note finally that an inequality of the form

1

b− a

b∫

a

f ≤ 1

2

(
f(a) + f(b)

)

is obviously true for convex functions f : [a, b] → R, see e.g. [4], however our
function f = J will not be convex - in fact, it is equioscillating (cf. Figure 2).

2. Preliminaries

We illustrate the Poncelet situation by an example to start with.

Example 2.1. Let our circles be C1 = C([1, 1], 1) and C2 = C([2, 3
2 ],

5
2 ). Then

the distance of the centers is d =
√
5
2 , and Euler’s condition is fulfilled, thus

given any point on C2, drawing the tangent to C1, extending the segment to C2

etc. will take us back to the initial point in three steps. The triangle obtained
in this way has C1 and C2 as incircle and circumcircle, resp.

Figure 1. below shows the shortest and longest tangents tm and tM . Note
that for this we joined the centers of the circles by a straight line and took the
intersection points of this line with the outer circle C2 as starting points. At
the same time we obtain as in [3]

tm =
√
(R− d)2 − r2, tM =

√
(R+ d)2 − r2.

As a surplus, the vertices [0, 0], [4, 0], [0, 3] of the Pythagorean triangle – one of
the sandwiched triangles – are marked with ‘+’ sign. For this one the area is
easy to calculate.

Adopting the notations in [3], let t1 + t2, t2 + t3, t3 + t1 be the sides of a
Poncelet triangle, i.e. of a triangle with C1 and C2 as incircle and circumcircle.
We choose then t1 as parameter, and assign to it the area of the associated
Poncelet triangle, i.e. we define

J(t1) = r (t1 + t2 + t3).

Remark 2.1. Knowing the incenter, the quantities {ti} are easily determined.
Then we apply the known formula “area = inradius · semiperimeter”. To get
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Figure 1. The shortest and longest tangents from C2 to C1.

the right-angled triangle mentioned, we choose the origin as a starting point
laying on C2, then we have t1 = 1, with further parameters 2 and 3, resp.

The author of [3] rewrote the area function J, by calculating t2 and t3, as

J(t1) = r t1

(
1 +

4Rr

r2 + t21

)
,

and proved the following.

Theorem 2.1. ([3]) J(tm) ≤ J(t1) ≤ J(tM ) for tm ≤ t1 ≤ tM .

Observe that the function J(·) has a special graph: given an intermediate
value f∗ with J(tm) ≤ f∗ ≤ J(tM ), there are (including multiplicity) exactly
three arguments ti, with J(ti) = f∗ holding. The reason is that the vertices of a
Poncelet triangle yield the same triangle, hence the same area; in other words,
the function values at t1, t2, t3 are identical. For f∗ = J(tm) and f∗ = J(tM )
two of three values necessarily coincide due to the fact that the actual triangle
is then obviously isosceles.

Figure 2 shows the function J for the quantities given in the Example above.
(To be more informative, we drew the line related to the rectangular triangle.
It is seen that the value 6 is obtained for t = 1, 2, 3. Also, we visualized the
inflection pont with abscissa t = r

√
3 =

√
3 and ordinate 7

2

√
3 ≈ 6.0621778.

Note, however, that a rectangular Poncelet triangle does not always exist.)
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Figure 2. The area function for the above data.

3. The main theorem

Hereby we are ready to formulate our main statement.

Theorem 3.1. With the previous notations we have

1

tM − tm

tM∫

tm

J ≤ 1
2

(
J(tm) + J(tM )

)
,

i.e. the integral mean of J does not exceed the arithmetic mean of the extrema.

Remark 3.1. Before proving the theorem, observe that we do not integrate
with respect to the angle of rotation, as usual, but with respect to the length
t of the tangent drawn from the actual point of C2 to the circle C1, while this
actual point runs along the larger circle C2.

Proof. We will prove the theorem in the multiplied form

(3.1)

tM∫

tm

J ≤ 1
2 (tM − tm)

(
J(tm) + J(tM )

)
,

while, for simplicity, we write t for t1. The primitive function (in other words,
the antiderivative) of J is determined to be

1
2rt

2 + 2Rr2 ln(r2 + t2).
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Thus, integrating between the limits tm and tM , we obtain

tM∫

tm

J = r
2 (t

2
M − t2m) + 2Rr2

(
ln(r2 + t2M )− ln(r2 + t2m)

)

with first term

r
2 (t

2
M − t2m) = r

2

([
(R+ d)2 − r2

]
−

[
(R− d)2 − r2

])
= 2Rrd.

The other term also can be simplified, owing to an elementary property of the
logarithm function, yielding

tM∫

tm

J = 2Rrd+ 4Rr2 ln
R+ d

R− d
.

Next we examine the right hand side of (3.1). Note that multiplying by the
length (tM − tm) of the integration interval is practical because then quadratic
terms in tm and tM will occur:

t2M =
(R+ d)3(3R− d)

4R2
, t2m =

(R− d)3(3R+ d)

4R2
.

At the same time we calculate

(tM tm)2 = t2M t2m =
(R2 − d2)3(9R2 − d2)

16R4
.

By definition of J it holds that

J(tM ) + J(tm) = r(tM + tm) + 4Rr2
(

tM
(R+ d)2

+
tm

(R− d)2

)
,

therefore a multiplication through 1
2 (tM − tm) gives

1
2 (tM − tm)

(
J(tm) + J(tM )

)
= r

2 (t
2
M − t2m)+

+2Rr2(tM − tm)

(
tM

(R+ d)2
+

tm
(R− d)2

)
.

The first term r
2 (t

2
M −t2m) is identical with the first term of the integral in (3.1),

hence our statement simplifies to proving

2 ln
R+ d

R− d
≤ (tM − tm)

(
tM

(R+ d)2
+

tm
(R− d)2

)
.
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The right hand side here can be rewritten as

t2M
(R+ d)2

− t2m
(R− d)2

+ tM tm

(
1

(R− d)2
− 1

(R+ d)2

)
=

=
(R+ d)(3R− d)− (R− d)(3R+ d)

4R2
+

4Rd
√
9R2 − d2

4R2
√
R2 − d2

=

=
d

R

(
1 +

√
9R2 − d2

R2 − d2

)
.

Thus our task reduces to showing the inequality

2 ln
R+ d

R− d
≤ d

R

(
1 +

√
9R2 − d2

R2 − d2

)
.

Using its homogeneity, we can substitute

x =
d

R

to arrive at the problem of proving the one-variable inequality

ϕ(x) = x

(
1 +

√
9− x2

1− x2

)
− 2 ln

1 + x

1− x
≥ 0, 0 < x < 1.

Since ϕ(0) = 0, it suffices to show that ϕ is monotone increasing. We have

ϕ′(x) =
x4 − 2x2 + 9 +

√
9−x2

1−x2

(
x4 + 2x2 − 3

)

(1− x2)2
√

9−x2

1−x2

.

The denominator is positive, and the positivity of the numerator is equivalent
with the validity of

x4 − 2x2 + 9

3− 2x2 − x4
>

√
9− x2

1− x2
.

Squaring this – and rearranging the terms – gives

(1− x2)(x4 − 2x2 + 9)2 > (9− x2)(3− 2x2 − x4)2,

where the difference of the left and right hand sides is just

64x4(1− x2),

which is positive for 0 < x < 1. The theorem is proved. �
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Question. We wonder if a similar inequality theorem holds for quadrilat-
erals, pentagons, etc., i.e. for (convex) Poncelet polygons in general.
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