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Abstract. We show that multiplication based on complex FFT is exact
if usual rounding is used in a k-round FFT (k ≥ 2) with floating point
numbers having m-bit mantissa and we put � bit digits into a floating
point number, whenever the inequality

8.074(k − 2) + 10.978 < 2m−2�−2k

is satisfied.

1. Introduction

1.1. Fast multiplication. Fast multiplication of large numbers has a central
role in computer algebra, primality testing, encryption, etc. Some operations
reduced to fast multiplication:

-Reciprocal

-Quotient

-Logarithm: the series case

-Exponential: the series case

-Power: the series case

-Quotient and remainder

-Continued fraction from fraction

-Remainder tree

-Interpolation

Key words and phrases: Fast Fourier transform, multiplication of large numbers, error esti-
mate, rounding error, IEEE754.
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-GCD

-Coprime base

-Matrix product

-Product tree

-Exponential: modular case

-Exponential: general case

-Small factors of a product

-Fraction from continued fraction

-Polynomial multiplication

-Polynomial division

-Polynomial GCD

-Polynomial factorization

-Multivariate polynomial operations

-etc.

1.2. Multiplication with FFT. As was discovered by V. Strassen, fast
multiplication of large numbers can be based on discrete Fourier transform,
shortly DFT of a real sequence f0, f1, . . . , f2n−1 with 2n terms. For a detailed
treatment of this, see Knuth [2], 4.3.3. By definition, the discrete Fourier
transform is

f̂r =
2n−1∑

s=0

fjω
−rs

for j = 0, 1, . . . , 2n− 1, where ω = e−πi/n = e−2πi/(2n) is a 2n th root of unity.

If we take another sequence g0, g1, . . . , g2n−1, and choose fr = gr = 0 for
n ≤ r < 2n, we may use the sequences f̂r and ĝr to compute the numbers

hr =
r∑

s=0

fsgr−s

for r = 0, 1, . . . , 2n − 2. These numbers are the coefficients of the polynomial∑2n−2
s=0 hsx

s, and this polynomial is the product of the polynomials
∑n−1

s=0 fsx
s

and
∑n−1

s=0 gsx
s. They are hence very useful if we want to compute the prod-

uct of two long numbers represented by f0, f1, . . . , fn−1 and g0, g1, . . . , gn−1 as
digits in a number system with an arbitrary base x. Because the sequence hr is
the convolution of the sequences fr and gr, we may compute hr as the inverse
discrete Fourier transform of ĥr = f̂r ĝr.

Because fr is real, we obtain

f̂2n−r =

2n−1∑

s=0

fsω
(2n−r)s = f̂r,
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where indices are understood modulo 2n. This means that half of the results is
superfluous. This gives the idea to reduce the computation of the n independent
complex f̂r to the computation of the discrete Fourier transform of the complex
sequence Fr = f2r + if2r+1, r = 0, 1, . . . , n− 1, because

(F̂r + F̂n−r)− iωr(F̂r − F̂n−r) = 2f̂r,

and

(ĥr + ĥn−r) + iω−r(ĥr − ĥn−r) = 2Ĥr;

indices understood modulo n.

If n = 2k is a two-power, the calculation of the discrete Fourier transform
and its inverse may be done with 5n log2 n (real) operations using the Fast
Fourier Transform, shortly FFT, algorithm. For a detailed treatment of the
FFT see Knuth [1]. It is done in rounds. During one round, a sequence of
butterfly operations is done in place. The inverse FFT is calculated by doing
reverse butterfly operation in the reverse order of rounds. See the figure. For
a detailed treatment of the ideas of this paragraph see Járai and Járai [1].
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FFT data movement

in C : 1α = e−2πiα;

butterfly : (x, y) ← (x+ wy, x− wy);

inverse butterfly : (x, y) ←
(
(x+ y)w, (x− y)w

)
.

Transform, shortly FFT, algorithm. For a detailed treatment of the FFT see Knuth
[1]. It is done in rounds. During one round, a sequence of butterfly operations is
done in place. The inverse FFT is calculated by doing reverse butterfly operation
in the reverse order of rounds. See the figure. For a detailed treatment of the ideas
of this paragraph see Járai and Járai [1].

1.3. Example. Let us consider IEEE 754 standard double precision floating
point arithmetic where the number of bits in the mantissa is m = 52. Let us divide
a number with less then 22 · 214 binary digit to 214 parts (i. e., k = 14 and n = 214)
each containing 22 bits. Complex Fourier transforms are calculated for a complex
vector with 214 terms. The terms of the resulting vector contain the sum of at
most 214 products each 44 bits at most. Hence roughly 58 bit of the resulting terms
should have to be right. The situation is much better if we use 222 as the base of the
number system (i. e., ℓ = 22) but signed digits between (inclusively) −221 and 221.
These signed digits can get easily. First set a carry to 0. Then cut 22 bits from the
end, sign-extend it to a full word, store its sign bit as the new carry and add the old
carry; repeat this step until all digits are obtained. In this case we have the sum of
214 signed digits between −242 and 242. With some probability we can reconstruct
the product without error. Of course, in general ℓ ≥ 2 have to be satisfied.

FFT data movement

in C : 1α = e−2πiα;
butterfly : (x, y) ← (x+ wy, x− wy);

inverse butterfly : (x, y) ←
(
(x+ y)w, (x− y)w

)
.
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1.3. Example. Let us consider IEEE 754 standard double precision floating
point arithmetic where the number of bits in the mantissa is m = 52. Let us
divide a number with less then 22·214 binary digit to 214 parts (i. e., k = 14 and
n = 214) each containing 22 bits. Complex Fourier transforms are calculated
for a complex vector with 214 terms. The terms of the resulting vector contain
the sum of at most 214 products each 44 bits at most. Hence roughly 58 bit
of the resulting terms should have to be right. The situation is much better if
we use 222 as the base of the number system (i. e., � = 22) but signed digits
between (inclusively) −221 and 221. These signed digits can get easily. First set
a carry to 0. Then cut 22 bits from the end, sign-extend it to a full word, store
its sign bit as the new carry and add the old carry; repeat this step until all
digits are obtained. In this case we have the sum of 214 signed digits between
−242 and 242. With some probability we can reconstruct the product without
error. Of course, in general � ≥ 2 have to be satisfied.

1.4. Error estimate. To be sure that the result calculated as in the example
is right we want to find sufficient condition under which multiplication based
on complex FFT is exact after rounding if k-round FFT is used with floating
point numbers having m-bit mantissa and we put a � bits into a digit.

The only such condition which I know is the condition

(k − 2) + 5.5 < 2m−2�−3k

from Knuth [2], 4.3.3.(C). He use truncation toward zero.

We shall prove that using standard IEEE 754 floating point arithmetic with
usual rounding,

8.074(k − 2) + 10.978 < 2m−2�−2k

is sufficient, if k ≥ 2. This is a weaker condition as Knuth’s for all k > 2.

2. Error estimates for elementary steps

During all the error estimates let a, b, c, d, . . . complex numbers with
approximate values a′, b′, c′, d′, . . . having errors at most εa, εb, εc, εd, i.e., we
have |a − a′| ≤ εa. etc. We suppose that all the numbers has absolute value
at most B2e, where 1 ≤ B � 2. In practice, the bound B is usually

√
2 or 1.

Now we suppose this but during the final estimate we will prove this.

All over the estimates we suppose that floating point numbers are repre-
sented using m bit mantissa. For example, in the IEEE 754 standard for simple
precision numbers m = 23, for double precision numbers m = 52, for quadruple
precision numbers m = 112. For a rounded value r′ of the exact value r of a
floating point machine operation we have that |r− r′| ≤ 2er−(m−1), if we know
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that |r|, |r′| � 2er+1 = 2 · 2er ; here � 2 · 2er simply means that if the exponent
is er, then the mantissa is far from 2, for example around

√
2 or less. For

the approximate values we also suppose that they have absolute value at most
B′2e, where 1 ≤ B ≤ B′ � 2. (This can be proved by induction; see later.)
We suppose an IEEE standard arithmetic, which gives back the exact rounded
value of the exact result of the operation.

2.1. Error estimate for addition and subtraction. If |a|, |b| ≤ B2e,
1 ≤ B � 2, their approximations are a′, b′ with errors at most εa, εb and
|a′|, |b′| ≤ B′2e where 1 ≤ B ≤ B′ � 2, s = a′ ± b′, then for the rounded value
s′ of s we have |s′| � 2e+2 and

|a± b− s′| ≤ |s− s′|+
∣∣a± b− (a′ ± b′)

∣∣.

The second term is at most εa + εb, and the real and imaginary parts of the
first term has absolute value at most 2e−m, hence the error is at most

εa + εb + 2e−m+1/2.

2.2. Error estimate for multiplication. Let |a| ≤ Ba2
ea , |b| ≤ Bb2

eb ,
where 1 ≤ Ba < 2, 1 ≤ Bb < 2, and let their approximations a′, b′ with errors
at most εa, εb. Then |ab| ≤ BaBb2

ea+eb . We shall only investigate the case
1 ≤ BaBb � 2, because we shall use only this. Let p = a′b′ and p′ be the
rounded value of the product. Then we have

|ab− p′| ≤ |ab− a′b′|+ |p− p′| ≤ |p− p′|+ |a||b− b′|+ |b′||a− a′| ≤
≤ |p− p′|+Ba2

eaεb +B′
b2

ebεa,

where 1 ≤ Bb ≤ B′
b � 2 such that |b′| ≤ B′

b2
eb . If ar, br and ai, bi are the real

and the imaginary parts of a and b, respectively, then during the calculation of

pr = a′rb
′
r − a′ib

′
i and pi = a′rb

′
i + a′ib

′
r

the rounding errors of the products are at most 2ea+eb−m−1 and the rounding
errors by the addition and subtraction are also bounded with this bound. Hence
we obtain that the rounding error of the real and the imaginary parts are at
most 3 · 2ea+eb−m−1, hence |p− p′| is at most 3 · 2ea+eb−m−1/2.

2.3. Error estimate for weights. During FFT and inverse FFT only mul-
tiplications with weights, with 2k = n’th roots of the unity are used. Among
these are ±1 and ±i; in these cases the representation as floating point number
is exact. The real and imaginary parts of all other n’th roots of unity are irra-
tional. This is clear for the eighth’s roots (±1± i)/

√
2. Suppose that for some

2j ’th root of unity there are some with rational real or imaginary part, which
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is not a 2j−1’th root of unity. Let us choose the minimal such j. Then some
other would have rational real part. But because of cos(2α) = 2 cos2 α− 1, we
obtain that j can be only two.

This means that high precision interval arithmetic calculation can give the
truly rounded values of the real and imaginary parts of any n’th root with error
at most 2−(m+2) in the real and imaginary parts, too. This means that the
error of these complex values is at most

√
2 · 2−(m+2). The estimate for the

approximation w′ of the weight is

|w′| ≤ |w|+ |w − w′| = (1 +
√
2 · 2−(m+2)) =: f.

This factor f is fairly common in the calculations below, so we shall fix this
value for f in what follows. By our experiments some hundred binary digit
precision is enough to obtain a fairly large table of roots: see [1].

2.4. Error estimate for multiplication with a weight. Let a and w be
the exact values with |a| ≤ B2e, |a′| ≤ B′2e, where 1 ≤ B ≤ B′ � 2. Let
p = a′w′ with rounded value p′. Then

|aw − p′| ≤ |p− p′|+ |aw − a′w′| = |p− p′|+ |a||w − w′|+ |a− a′||w′|.

If |a − a′| ≤ ε, then the last term is at most εf . The term before is at most
B2e−(m+3/2). To estimate the first term on the right hand side consider the
real and imaginary parts pr = arwr−aiwi and pi = aiwr+arwi. The rounding
errors of the real products are at most 2e−(m+1). The rounding error by the
addition or subtraction also the same, because |a′w′| � 2e+1, hence this is true
for the real and imaginary parts, too. Hence the real and imaginary parts of
p−p′ has absolute value at most 3 ·2e−(m+1). Note that by w = ±1 and w = ±i
the multiplication is exact.

2.5. Sharper error estimate for multiplication with a weight. Let us
consider a special case: if B = 1 and hence B′ ≤ 1 + ε2−e can be chosen,
moreover for each weight which is not ±1 and not ±i we have

B′
(
1−

∣∣�(w)
∣∣
)
<

(
1− 2−(m+2)

)
and B′

(
1−

∣∣�(w)
∣∣
)
<

(
1− 2−(m+2)

)
,

a better estimate can be given. The conditions means, roughly speaking, that
the weights are not very close to ±1 and ±i and it is clear that equivalent to

(2e + ε)
(
1−

∣∣�(w)
∣∣
)
< 2e−1

(
2− 2−(m+1)

)

and

(2e + ε)
(
1−

∣∣�(w)
∣∣
)
< 2e−1

(
2− 2−(m+1)

)
.
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In this case the rounding errors of the real products are at most 2e−(m+2) and
the rounding errors by the addition and subtraction are at most 2e−(m+1).
Hence the real and imaginary part of p − p′ has absolute value at most 2 ·
2e−(m+1).

Note that multiplication and addition/subtraction considered as separate
operation. Today several processor capable the do fused multiplication and
addition/subtraction. (Earlier this was typical only for IBM processors, for
example for the Power family and predecessors.) In this case somewhat better
error estimate can be given. Of course, which instructions and in which order
are done is depends on the assembly code. Hence such estimates are valid
only for given assembly code, and not a high level language code, where the
corresponding assembly code depends on the compiler.

2.6. Error estimate for butterfly operation. Let a, b be the exact values
with |a|, |b| ≤ B2e, |a′|, |b′| ≤ B′2e, where 1 ≤ B ≤ B′ � 2. Let w be a weight.
We want to calculate the results of the butterfly operation a±bw. Let p = b′w′

the product with rounded value p′, and let r = a′ ± p′. Then

|a± bw − r′| ≤
∣∣a± bw − (a′ ± b′w′)

∣∣++
∣∣r′ − (a′ ± b′w′)

∣∣ ≤
≤ |a− a′|+ |bw − b′w′|+

∣∣r′ − (a′ ± b′w′)
∣∣ ≤

≤ εa + |b||w − w′|+ |b− b′||w′|+
∣∣r′ − (a′ ± b′w′)

∣∣ ≤
≤ εa +B2e−(m+3/2) + εbf +

∣∣r′ − (a′ ± b′w′)
∣∣.

As we explained by the estimation of the error of the product with weight, the
real and imaginary part of the product has rounding error at most 3 ·2e−(m+1).
During addition or subtraction a rounding error at most 2 · 2e−(m+1) is added
in the real and imaginary parts, too. Hence the complete rounding error is at
most ∣∣r′ − (a′ ± b′w′)

∣∣ ≤ 5 · 2e−(m+1/2).

Hence the total error is at most

εa +B2e−(m+3/2) + εbf + 5 · 2e−(m+1/2).

2.7. Sharper error estimate for the butterfly operation. On the same
way as by the multiplication with a weight, in the case B = 1 a sharper error
estimate can be given, if for each weight which is not ±1 and not ±i we have

(1 + εb2
−e)

(
1−

∣∣�(w)
∣∣
)
< 1− 2−(m+2)

and

(1 + εb2
−e)

(
1−

∣∣�(w)
∣∣
)
< 1− 2−(m+2).
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Then, as we have seen, the rounding errors of the real and imaginary parts of the
complex product are at most 2 · 2e−(m+1). During the addition or subtraction
the rounding errors are at most 2 · 2e−(m+1) in the real and imaginary parts,
too. Hence the complete rounding error is at most

∣∣r′ − (a′ ± b′w′)
∣∣ ≤ 4 · 2e−(m+1/2),

and the total error is at most

εa +B2e−(m+3/2) + εbf + 4 · 2e−(m+1/2).

If we, additionally, know that the result has absolute value � 2e, then the
rounding error during the addition or subtraction is at most 2e−(m+2) in the
real and the imaginary part, hence the complete rounding error is

∣∣r′ − (a′ ± b′w′)
∣∣ ≤ 5 · 2e−(m+3/2),

and the total error is at most

εa +B2e−(m+3/2) + εbf + 5 · 2e−(m+3/2).

2.8. Error estimate for double round butterfly operation. If we do two
rounds, then supposing that εa = εb = εc = εd = ε for the four numbers and
taking into consideration that during the second round we have to substitute
e1 = e+ 1 to the place of e, we obtain the error bound

(1 + f)ε1 +B2e1−(m+3/2) + 5 · 2e1−(m+1/2),

where
ε1 = (1 + f)ε+B2e−(m+3/2) + 5 · 2e−(m+1/2).

This results the total error bound

(1 + f)2ε+ (1 + f)B2e−(m+3/2) + (1 + f)5 · 2e−(m+1/2)+

+ 2B2e−(m+3/2) + 10 · 2e−(m+1/2) =

= (1 + f)2ε+ (3 + f)B2e−(m+3/2) + (3 + f)5 · 2e−(m+1/2).

Let us estimate the error by two-round butterfly operations using less arith-
metic operations (see [1]). By these the exact results are calculated as

(a± cw2)± i(bw1 + dw3),

where w1, w2, w3 are appropriate weights. Let r′ be the rounded result. Then
∣∣(a± cw2)± i(bw1 + dw3)− r′

∣∣ ≤
≤

∣∣∣(a± cw2)± i(bw1 + dw3)−
(
(a′ ± c′w′

2)± i(b′w′
1 + d′w′

3)
)∣∣∣+

+
∣∣∣r′ −

(
(a′ ± c′w′

2)± i(b′w′
1 + d′w′

3)
)∣∣∣.
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For the first term on the right hand side, similarly as by the butterfly operation,
for the absolute value we obtain the upper bound

ε(1 + 3f) + 3B2e−(m+3/2).

The second term is the rounding error. During the calculation of the products
the rounding error in the real and in the imaginary parts are at most 3·2e−(m+1).
By addition or subtraction in the small parenthesizes we get errors at most
2 ·2e−(m+1) and by the final addition or subtraction at most 4 ·2e−(m+1) in the
real and imaginary parts, too. Hence the error of the real and imaginary parts
is at most 17 · 2e−(m+1) and the total rounding error is at most 17 · 2e−(m+1/2).
Hence the total error is at most

ε(1 + 3f) + 3B2e−(m+3/2) + 17 · 2e−(m+1/2).

This is somewhat less, than the error of two separated rounds.

2.9. Error estimate for triple round butterfly operation. About
these see [1]. Here the last operation is a butterfly a ± wb, where w = 1, i,
(1 + i)/

√
2, (1 − i)/

√
2. The value a is obtained from 4 starting value and 3

weights on the same way as above, hence we have

|a− a′| ≤ ε(1 + 3f) + 3B2e−(m+3/2) + 17 · 2e−(m+1/2).

The value b is obtained similarly, but all the four starting value is multiplied
by a weight. Hence similar calculation as above shows that

|b− b′| ≤ 4εf + 4B2e−(m+3/2) + 20 · 2e−(m+1/2).

Because the last operation is a butterfly operation, but with e2 = e+2 instead
of e, the error of the result is at most

εa +B2e2−(m+3/2) + εbf + 5 · 2e2−(m+1/2) =

= ε(1 + 3f) + 3B2e−(m+3/2) + 17 · 2e−(m+1/2)+

+ 4εf2 + 4Bf2e−(m+3/2) + 20f · 2e−(m+1/2)+

+ 4B2e−(m+3/2) + 20 · 2e−(m+1/2) =

= ε(1 + 3f + 4f2) +B(7 + 4f)2e−(m+3/2) + (37 + 20f)2e−(m+1/2).

This is somewhat better as the estimate for three separate round:

(1 + f)3ε+ (1 + f)(3 + f)B2e−(m+3/2) + (1 + f)(3 + f)5 · 2e−(m+1/2)+

+ 4B2e−(m+3/2) + 20 · 2e−(m+1/2) =

= (1 + f)3ε+B(7 + 4f + f2)2e−(m+3/2)+

+ (35 + 20f + 5f2) · 2e−(m+1/2).
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3. Error estimate for the complete FFT

We shall consider only the basic case: high-precision multiplication using
FFT. We only consider the case of single round butterfly operations.

3.1. Error estimate for the FFT. We suppose that by starting the
n/2 = 2k−1 complex numbers in the lower part of the array has absolute value
of the real and imaginary parts at most 2�−1, other elements of the array are
zero. After one round all the array contains complex numbers having absolute
value at most 2�−1/2, and all they are exact. After the second round they are
still exact if � ≤ m and they have absolute value at most 2�+1/2, i.e., B2e2 ,
where B = sqrt2 and e2 = l. After j ≥ 2 rounds the absolute value of the
exact values is at most B2ej , where B =

√
2, ej = � + j − 2. For the error

estimates we know that ε0 = ε1 = ε2 = 0. Using the error estimate of the
butterfly operation for j > 2 we have

εj+1 = (1 + f)εj +B2ej−(m+3/2) + 5 · 2ej−(m+1/2) =

= (1 + f)εj + (5
√
2 + 1)2l+j−m−3.

Hence

ε3 = (5
√
2 + 1)2l−m,

ε4 = (1 + f)(5
√
2 + 1)2l−m + (5

√
2 + 1)2l−m+1 =

= (3 + f)(5
√
2 + 1)2l−m,

ε5 = (5
√
2 + 1)

(
(1 + f)2 + 2(1 + f) + 4

)
2l−m.

By induction we have

εj = (5
√
2 + 1)2l−m

j−3∑

t=0

(1 + f)t2j−3−t.

From this

εj ≤ (5
√
2 + 1)2l−m(j − 2)(1 + f)j−3 =

=

(
1 + f

2

)j−3

2l+j−m 5
√
2 + 1

8
(j − 2),

whenever j > 2.

3.2. Bound for exact results of the FFT. By the previous calculation we
have |F̂j | ≤ 2l+k−3/2. Hence we have 2|f̂j | ≤ 2l+k+1/2. A sharper bound can be
obtained if we consider what would happen during the FFT of the array fj . We
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would start with 2k real numbers having absolute value at most 2l−1 and with
2k zero. After the first round we would obtain 2k+1 real number with absolute
value at most 2�−1, after the second round we would obtain complex numbers
having absolute value at most 2�, etc. Finally after k + 1 rounds we may get
the numbers f̂j having absolute value at most 2l+k−1, i.e., 2|f̂j | ≤ 2�+k.

This results the bounds 4|ĥj | ≤ 22l+2k. From this we may obtain the bound

8|Ĥj | ≤ 22l+2k+2, but this later is not optimal. In the next point we shall obtain
better bound, considering the properties of the array h.

3.3. Bound for all exact partial results during inverse FFT. After
the inverse FFT we obtain the convolution sums hj =

∑j
s=0 fsgj−s. Because

|fs|, |gs| ≤ 2l−1 we obtain that

|hj | ≤
{
(j + 1)22�−2, if 0 ≤ j < n,

(2n− 1− j)22�−2, if n ≤ j < 2n.

From the complex numbers Hj = h2j + ih2j+1, 0 ≤ j < n after one round of
FFT we would obtain complex numbers having real and imaginary parts with
absolute value at most 22�+k−2; indeed the absolute value of the real part of
Hj ±Hj+n/2 is at most

(2j + 1)22�−2 +
(
2n− 1− 2(j + n/2)

)
22�−2 = n22�−2,

and the same is true for the imaginary part. This means that the absolute
value of these complex numbers is at most 22�+k−3/2. Using this, during the
FFT, after j rounds we obtain that the absolute value of the numbers is at
most 22�+k+j−5/2. Hence |8Ĥj | ≤ 22�+2k+1/2. Moreover, during the inverse
FFT, this is true after each round, except the last one, because the inverse
FFT rounds are the reverse of the FFT rounds, except we does not divide by
2. The same is true for the results of the two, three, etc. rounds inverse FFT
steps, including all results off addition/subtraction, because each weight has
absolute value at most 1.

4. Error estimate for further elementary operations

4.1. Error estimate for F̂ → f̂ conversion. F̂ → f̂ denotes the conversion
of the DFT of the complex sequence Fj to the DFT of the real sequence fj .

Let us suppose that |F̂j | ≤ B2e, where 1 ≤ B � 2 and the error of the

approximation of each F̂j is at most ε. We should like to obtain an error

estimate εr for |2f̂j − 2f̂ ′
j |. The error of the approximation of F̂j ± F̂n−j is at
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most 2ε + 2e−m+1/2. Using the error estimate for the butterfly operation we
obtain that

εr ≤ (1 + f)(2ε+ 2e−m+1/2) +B2e−m+1/2 + 5 · 2e−m+1/2.

Because B =
√
2 and e = �+ k − 2, we have

εr ≤ (1 + f)(2ε+ 2l+k−m−3/2) + 2�+k−m−3/2 + 2�+k−m−1 + 5 · 2l+k−m−3/2 ≤

≤ 1 + f

2

(
4ε+ 2�+k−m−2(7

√
2 + 2)

)
.

If k = 2 and � < m, then the calculation of F̂j ± F̂n−j is exact, hence we have

εr ≤ 2�+k−m−2(5
√
2 + 2).

4.2. Error estimate for digit-by-digit multiplication. Let us denote by
εx the error bound for 4ĥ′

j . Using the error estimate for complex multiplication
we obtain

εx ≤ 3 · 22�+2k−m−1/2 + 2�+kεr + (2�+k + εr)εr.

4.3. Error estimate for ĥ → Ĥ conversion. The exact value of 4ĥj±4ĥn−j

is bounded by 22�+2k+1 and the error by

2εx + 22�+2k−m+1/2.

Hence using the error estimate for the butterfly operation we obtain for the
error bound εc of 8Ĥ ′

j that

εc ≤ (1 + f)(2εx + 22�+2k−m+1/2) + 22�+2k−m−1/2 + 5 · 22�+2k−m+1/2 ≤

≤ 1 + f

2

(
4εx + 22�+2k−m−2(8

√
2 + 2

√
2 + 20

√
2)
)
≤

≤ 1 + f

2
(4εx + 15

√
2 · 22�+2k−m−1).

If we prove that the sharper estimate can be used by the butterfly operation
than we have that

εc ≤ (1 + f)(2εx + 22�+2k−m+1/2) + 22�+2k−m−1/2 + 5 · 22�+2k−m−1/2 ≤

≤ 1 + f

2
(4εx + 5

√
2 · 22�+2k−m).

4.4. Error estimate for inverse butterflies. Let |a|, |b| ≤ B2e, where
1 ≤ B � 2 and suppose that |a ± b| ≤ B2e also satisfied. Let s = a′ + b′ and



Error estimates for multiplication 271

p = s′w′. Then
∣∣(a± b)w − p′

∣∣ ≤
∣∣(a± b)w − (a′ ± b′)w′∣∣+

∣∣p′ − (a′ ± b′)w′∣∣ ≤
≤ |a− a′||w′|+ |b− b′||w′|+ |a||w − w′|+ |b||w − w′|+
+
∣∣p′ − (a′ ± b′)w′∣∣ ≤

≤ (εa + εb)f +B2e−m−1/2+
∣∣p′ − (a′ ± b′)w′∣∣.

Here

∣∣p′ − (a′ ± b′)w′∣∣ ≤ |p− p′|+ |s′w′ − sw′| ≤ |w′||s− s′|+ |p− p′|.

Because |p − p′| is the rounding error of the multiplication, it is at most
3 · 2e−m−1/2. The other term is at most f2e−m−1/2. Hence the complete
error is at most

(εa + εb)f +B2e−m−1/2 + 3 · 2e−m−1/2 + f2e−m−1/2.

Using that B =
√
2, e = 2�+ 2k and εa = εb = ε, the total error is at most

2fε+ 22�+2k−m−1
(
2 + (3 + f)

√
2
)
.

In the last round |a ± b| ≤ B2e not satisfied, but there is no multiplication.
Hence the same estimate remains valid.

5. Sufficient conditions from the estimates

5.1. Sufficient condition from the error estimate for the inverse FFT.
Let ε denote the error bound by starting the inverse FFT, and let

δ = 22�+2k−m−1
(
2 + (3 + f)

√
2
)
.

After one round of inverse FFT the error bound is 2fε+ δ, after two rounds of
inverse FFT the error bound is

2f(2fε+ δ) + δ = 4f2ε2 + 2fδ + δ,

etc., after k rounds of inverse FFT at most

2kfkε+ δ(1 + 2f + 4f2 + · · ·+ 2k−1fk−1) ≤ (2f)k(ε+ δ).

Because after the inverse FFT we divide by 2k+3, and the error of the result
have to be less then 1/2, the condition (2f)k(ε+δ) < 2k+2 have to be satisfied,
which is equivalent to fk(ε + δ) < 4. To obtain an upper estimate for fk we
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shall use Bernoulli’s inequality (1+x)j ≥ 1+ jx, if x > −1, j = 0, 1, . . . . From
this inequality we obtain

( 1

f

)j

≥ 1 + j
( 1

f
− 1

)
= 1− j

(
1− 1

f

)
,

whence

f j ≤ 1

1− j
(
1− 1

f

) =
1

1− j
(
f−1
f

) ≤ 1

1− j2−(m+3/2)
.

Hence the condition fk(ε+ δ) < 4 is certainly satisfied if

ε+ δ

1− k2−(m+3/2)
< 4,

i.e. if
ε+ δ < 4− k2−m+1/2.

This results for ε the condition

ε < 4− k2−m+1/2 − 22�+2k−m−1
(
2 + (3 + f)

√
2
)
.

5.2. Sufficient condition for the number of rounds. Summarizing our
estimates we obtain that

εr ≤
(1 + f

2

)k−2

2�+k−m−1
(
(5
√
2 + 1)(k − 2) + 7/

√
2 + 1

)
,

and in the case k = 2 this is true without the factor (1 + f)/2. From this

εx ≤ 2�+k+1εr + ε2r + 3 · 22�+2k−m−1/2 ≤

≤
(1 + f

2

)k−2

22�+2k−m−2 ·
(
4(5

√
2 + 1)(k − 2) + 20

√
2 + 4+

+ 2−m
(1 + f

2

)k−2(
(5
√
2 + 1)(k − 2) + 7/

√
2 + 1

)2
)
.

The last term in the large parenthesis is very small. To obtain an upper bound
we use again Bernoulli’s inequality:

( 2

1 + f

)j

≥ 1 + j
( 2

1 + f
− 1

)
= 1− j

(
1− 2

1 + f

)
,

whence

(1 + f

2

)j

≤ 1

1− j
(
1− 2

1+f

) =
1

1− j
(
f−1
f+1

) ≤ 1

1− j2−(m+5/2)
.
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From this if k ≤ m then the last term in the large parenthesis is at most

(1) 0 ≤ c(k,m) :=
2−m

(
(5
√
2 + 1)(k − 2) + 7/

√
2 + 1

)2

1− (k − 2)2−(m+5/2)
.

Hence finally we obtain the estimate

εx ≤
(1 + f

2

)k−2

22�+2k−m−2
(
4(5

√
2 + 1)k − 20

√
2− 4 + c(k,m)

)
.

From this

εc ≤
(1 + f

2

)k−1

22�+2k−m−2
(
16(5

√
2 + 1)k − 50

√
2− 16 + 4c(k,m)

)
.

So it is enough if the following condition is satisfied:

(1 + f

2

)k−1

22�+2k−m
(
4(5

√
2 + 1)k − 25/

√
2− 4 + c(k,m)

)
<

< 4− k2−m+1/2 − 22�+2k−m
(
1 + (3 + f)/

√
2
)
.

This certainly satisfied if k ≥ 2 and

(1 + f

2

)k−1

22�+2k−m
(
4(5

√
2+1)k−22/

√
2+f/

√
2−3+c(k,m)

)
< 4−k2−m+1/2.

Using again the estimate from Bernoulli’s inequality we obtain that for this it
is enough if

22�+2k−m
(
4(5

√
2 + 1)k − 22/

√
2 + f/

√
2− 3 + c(k,m)

)
<

< (4− k2−m+1/2)
(
1− (k − 1)2−(m+5/2)

)
,

i. e., if

22�+2k−m
(
4(5

√
2 + 1)k − 22/

√
2 + f/

√
2− 3 + c(k,m)

)
<

< 4− k2−m+1/2 − (k − 1)2−m−1/2 + k(k − 1)2−2m−2.

To this it is clearly enough if

22�+2k−m
(
4(5

√
2 + 1)k − 22/

√
2 + f/

√
2− 3 + c(k,m)

)
<

< 4− k2−m+1/2 − (k − 1)2−m−1/2.

Rearranging this inequality we obtain

(5
√
2+1+3·2−2�−2k−5/2)k−2−2�−2k−5/2−11

4

√
2+

f

8

√
2−3

4
+
c(k,m)

4
< 2m−2�−2k.
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Because � ≥ 2 supposing that k ≥ 2 we obtain the semifinal form of our
sufficient condition:
(2)

(5
√
2+1+3·2−17/2)(k−2)+3·2−19/2+

29

4

√
2+

f

8

√
2+

5

4
+
c(k,m)

4
< 2m−2�−2k.

5.3. Sharper error estimates and weaker sufficient condition for the
number of rounds. We may obtain a sharper estimate if we use the sharper
estimate of the butterfly operation during the computation of 8Ĥj , using that

4|ĥj | ≤ 22�+2k, and hence the absolute value of (exact) incoming data of the

butterfly are at most 22�+2k+1 and that |8Ĥj | ≤ 22�+2k+3/2. But the sharper
estimate of the butterfly operation can be used only if the condition

(1 + ξ)(1− η) < 1− ζ

is satisfied, where ξ = εb2
−2�−2k−1, 1−η is supremum of the absolute values of

all real and imaginary parts of the weights w = e2πij/2
k+1

which are different
from ±1 and ±i, i.e., cos(π/2k), and ζ = 2−(m+2). Because ξ, η and ζ are
positive quantities less then 1, the inequality is satisfied if ξ + ζ ≤ η.

Let us substitute η with a lower estimate. Because

cosx = 1− x2

2!
+

x4

4!
− · · · ,

we obtain that

η = 1− cos
π

2k
≥ π2

22k+1

(
1− π2

12 · 22k
)
≥

≥ π2

22k+1

(
1− π2

12 · 24
)
≥ π2

22k+1

(
1− 10

192

)
≥

≥ 91π2

192
2−2k > 4 · 2−2k.

Using that the error of 4ĥj ± 4ĥn−j is at most

2εx + 22�+2k−m+1/2,

the sharper error estimate for the multiplication can be used if

2εx + 22�+2k−m+1/2

22�+2k+1
+ 2−(m+2) ≤ 4 · 2−2k,

i. e., if

(1 + f

2

)k−2

2−m
(
(5
√
2 + 1)k − 4

√
2− 1 + c(k,m)/4

)
+ 2−m−2 ≤ 4 · 2−2k.
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Using the upper estimate to power of (1+f)/2 from Bernoulli’s inequality, this
is certainly satisfied if

(5
√
2 + 1)k − 4

√
2− 1 + c(k,m)/4

1− (k − 2)2−(m+5/2)
+

1

4
≤ 4 · 2m−2k

i. e., if

(5
√
2 + 1)k − 4

√
2− 1 +

c(k,m)

4
+

1

4
− k − 2

4
2−(m+5/2) ≤

≤ 4 · 2m−2k − 4(k − 2)2−2k−5/2.

This is certainly satisfied if

5
√
2 + 1

4
k −

√
2− 3

16
+

c(k,m)

16
+ (k − 2)2−2k−5/2 ≤ 2m−2k.

If k ≥ 2 then k − 2 ≤ 2k−3, from which

(k − 2)2−2k−5/2 ≤ 2(k−3)−2k−5/2 = 2−k−11/2 ≤ 2−15/2.

Hence our condition is satisfied if

(3)
5
√
2 + 1

4
(k − 2) +

3

2

√
2 +

5

16
+

c(k,m)

16
+ 2−15/2 ≤ 2m−2k.

If this condition is satisfied then the sharper estimate can be used for the
ĥ → Ĥ conversion, and we obtain

εc ≤
1 + f

2
(4εx + 5

√
2 · 22�+2k−m).

Using the estimate for εx from the previous paragraph we obtain that

εc ≤
(1 + f

2

)k−1

22�+2k−m
(
4(5

√
2 + 1)k − 15

√
2− 4 + c(k,m)

)
.

Similar calculations as in the previous paragraph result the sufficient condition
(4)

(5
√
2+1+3·2−17/2)(k−2)+5·2−19/2+

27

4

√
2+

f

8

√
2+

5

4
+
c(k,m)

4
< 2m−2�−2k

if k ≥ 2. Because � ≥ 2, this condition is much stronger as condition (3), so
we have to consider only (4). On the left hand side c(k,m) and (f − 1)/

√
2

are small quantities. To make the condition nicer let us estimate their sum.
Because (f − 1)/

√
2 = 2−(m+2), we obtain

f − 1√
2

+ c(k,m) ≤ 2−m

(
5
√
2 + 1)(k − 2) + 7/

√
2 + 1

)2
+ 1/4

1− (k − 2)2−(m+5/2)
.
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From (4) we obtain that 6
√
2 < 2m−2�−2k. Hence the integer m − 2� − 2k is

at least 4, and because of � ≥ 2 we obtain 2k ≤ m− 8 and by k ≥ 2 also that
m ≥ 12. The left hand side is at most

(
(5
√
2 + 1)(k − 2) + 7/

√
2 + 3/2

)2

2m − (m/2− 6)2−5/2
<

(5
√
2 + 1)2k2

2m − (m/2− 6)2−5/2
≤

≤

(
5
√
2+1
2

)2

(m− 8)2

2m − (m/2− 6)2−5/2
<

4.12(m− 8)2

2m − (m/2− 6)2−5/2
.

We shall investigate the function g defined by the right hand side and prove by
induction that it is strictly monotonic for m ≥ 12. Indeed,

g(m+ 1) =
4.12(m− 7)2

2m+1 −
(

m
2 − 11

2

)
2−5/2

<
2 · 4.12(m− 8)2

2m+1 − (m− 12)2−5/2
= g(m)

is proved if we prove that the nominator is larger and the denominator is smaller
on the right hand side. But

2(m− 8)2 − (m− 7)2 = m2 − 18m+ 79 = (m− 9)2 − 2,

which is positive if m ≥ 11. Similarly

2m+1 −
(m
2

− 11

2

)
2−5/2 > 2m+1 − (m− 12)2−5/2,

if m > 11. The final upper estimate is given by g(12) which is less then 0.066.

6. Final results

Substituting the numerical values in (4) and rounding up we obtain the
condition

8.074(k − 2) + 10.978 < 2m−2�−2k

for the case k ≥ 2. Although not important, we remark that in the case k = 0
the computation is exact if 2� ≤ m+ 3 and in the case k = 1 the computation
is exact if 2� ≤ m+ 2.

Probably the only processor today having quadruple precision floating point
arithmetic in hardware is the Power9 of IBM. On this, choosing � = 16 we may
choose k = 35 and multiply numbers shorter than 239 bit, or we may choose
� = 8 and k = 43 and multiply numbers shorter than 246 bit. But using only
the high speed of double precision floating point SIMD operations we may do
exact multiplication of shorter numbers on this or on more common processors.
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