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Abstract. Let n �→ g(n) be a positive valued arithmetic function which
tends to infinity as n → ∞. Following [1], we shall say that the values of
g are uniformly distributed in (0,∞) if there exists a positive c such that

N(x, g) := #
{
n : g(n) ≤ x

}
∼ cx

as x → ∞.

In [4] we introduced the class L∗ of uniformly summable functions f ∈ L∗

in case

lim
K→∞

sup
N≥1

1

N

∑
n≤N

|f(n)| < ∞.

Here we investigate the asymptotic behaviour of N(x, g) as x → ∞ for
multiplicative functions g such that the associated function n �→ n/g(n) is
uniformly summable, and compare it with the behaviour of

∑
n≤x n/g(n)

as x → ∞.
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1. Introduction

Following Diamond and Erdös [1] we say that the values of a positive valued
function g are uniformly distributed in (0,∞) if g(n) tends to infinity as n → ∞,
and if there exists a positive c such that

N(x, g) :=
∑

n
g(n)≤x

1 =
(
c+ o(1)

)
x as x → ∞.

In [4] Indlekofer introduced the space L∗ of uniformly summable functions.
Here f ∈ L∗ iff

lim sup
x→∞

x−1
∑
n≤x

|f(n)| < ∞

and

lim
K→∞

sup
N≥1

1

N

∑
n≤N

|f(n)|>K

|f(n)| = 0.

Putting

M(x, h) :=
∑
n≤x

h(n)

for an arithmetical function h : N → C we define the mean-value M(h) by

M(h) := lim
x→∞

1

x
M(x, h)

if the limit exists.

In this paper g always denotes a multiplicative function.

We observe that the generating function for the uniform distribution of
values of g is (s = σ + it and σ > 1)

F1(s) =

∞∫

1

x−sdN(x, g) =
∞∑

n=1

1

g(n)s
=

∏
p

(
1 +

∞∑
k=1

1

(g(pk))s

)
.

Define h = id/g by h(n) = n/g(n). Then the generating function for the mean
value of the function h is

F2(s) =

∞∫

1

x−sdM(x, h) =

∞∑
n=1

h(n)

ns
=

∞∑
n=1

1

g(n)

1

ns−1
=

=
∏
p

(
1 +

∞∑
k=1

1

g(pk)pk(s−1)

)
.
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Obviously F1(s) and F2(s) are formally similar near s = 1.

In [1] Diamond and Erdös proved results which connects uniform distribu-
tion of the values of multiplicative function g with the existence of the mean
value for the associated function h = id/g. Their results are analogous to ones
on mean values of multiplicative functions (cf [2], [3]) and their proofs are based
on the analytic behaviour of the generating function F1(s) near s = 1.

In this paper we use elementary methods from [4], [7]. As a main result
we determine the asymptotic behaviour, as x → ∞, of M(x, 1/f) (f > 0) and
N(x, g) (g = id f) for uniformly summable multiplicative functions 1/f > 0.

2. Results

Here f, f∗ and g∗ := id f∗ always denote positive-valued arithmetical func-
tions.

Theorem 1. Let g∗ be completely multiplicative such that g∗(p) > 1 for all
primes p and g∗(p) ∼ p as p → ∞. Then, as x → ∞

N(x, g∗) = {1 + o(1)}x
∏
p≤x

(
1− 1

p

)(
1− 1

g∗(p)

)−1

.

Theorem 1
′
. Let f∗ be completely multiplicative such that f∗(p) > 1

2 for all
primes p and f∗(p) ∼ 1 as p → ∞. Then, as x → ∞

M(x, 1/f∗) = {1 + o(1)}x
∏
p≤x

(
1− 1

p

)(
1− 1

pf∗(p)

)−1

.

Corollary 1. Let g∗ as in Theorem 1. Then

N(x, g∗) ∼ M(x, 1/f∗) as x → ∞

where g∗ = id f∗.

Remark 1. Suppose g∗ restricted to primes is a 1− 1 mapping of the primes.
Then g∗(N) = N, and g∗ assumes each positive integer value exactly once,
i.e. g∗ is uniformly distributed in (0,∞). Then Diamond and Erdös gave an
example ([1], Example 2) such that 1/f∗ does not have a mean-values.

Further, put, for example, g∗(p) = p2 for all primes p. Then g∗ assumes each
square integer value exactly once, i.e. N(x, g∗) = x1/2+O(1) but M(x, 1/f∗) =
=

∑
n≤x

1
n = log x+O(1).
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Next we assume

(2.1) g(p) ∼ p as p → ∞

and

(2.2)
∑

p, k≥2

1

g(pk)
< ∞.

Then we have

Theorem 2. Let g be a multiplicative function satisfying (2.1) and (2.2). Then,
as x → ∞

N(x, g) = {1 + o(1)}x
∏
p≤x

(
1− 1

p

)(
1 +

∞∑
k=1

1

g(pk)

)
.

Theorem 2
′
. Let f be a multiplicative function satisfying (2.1) and (2.2) for

g(p) = pf(p) and g(pk) = pkf(pk), respectively. Then, as x → ∞

M(x, 1/f) = {1 + o(1)}x
∏
p≤x

(
1− 1

p

)(
1 +

∞∑
k=1

1

pkf(pk)

)
.

Corollary 2. Let g be as in Theorem 2. Then

N(x, g) ∼ M(x, 1/f) as x → ∞

where g = id f .

The main result of this paper is

Theorem 3. Let g = id f be multiplicative and assume 1/f ∈ L∗. Then, as
x → ∞

N(x, g) = {1 + o(1)}x
∏
p≤x

(
1− 1

p

)(
1 +

∞∑
k=1

1

g(pk)

)
.

As a well-known result we cite (see [4], [7])

Theorem 3
′
. Let 1/f ∈ L∗ be multiplicative. Then, as x → ∞

M(x, 1/f) = {1 + o(x)}
∏
p≤x

(
1− 1

p

)(
1 +

∞∑
k=1

1

pkf(pk)

)
.

Corollary 3
′
. Let g = id f as in Theorem 3. Then

N(x, g) ∼ M(x, 1/f) as x → ∞.
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3. Proofs of Theorem 1 and Theorem 1
′

Assume that g∗ is completely multiplicative satisfying g∗(p) > 1 for all
primes p and g∗(p) ∼ p as p → ∞. Put

F ∗
1 (s) =

∞∑
n=1

1

(g∗(n))s
=

∏
p

(
1− (g∗(p))−s

)−1

where s > 1. Then

logF ∗
1 (s) =

∑
p

log
1

1− (g∗(p))−s
.

Differentiating with respect to s and observing

d

ds
log

1

1− (g∗(p))−s
= − log g∗(p)

(g∗(p))s − 1

we conclude

−F ∗′

1 (s)

F ∗
1 (s)

=
∑
p

log g∗(p)

(g∗(p))s − 1
=

=
∑
p

log g∗(p)

∞∑
m=1

(g∗(p))−ms.

(3.1)

The double series in (3.1) is absolutely convergent when s > 1. Hence it may
be written as

∑
p,m

(g∗(p))−ms log g∗(p) =
∑
n

Λ∗(n)(g∗(n))−s,

where

Λ∗(n) =

{
log g∗(p), if n = pm

0, if n �= pm

and
∑

k
g∗(n)≤x

log g∗(k) =
∑

m,n∈N
g∗(mn)≤x

Λ(m) =

=
∑
n∈N

g∗(n)≤x

∑
m∈N

g∗(m)≤ x
g∗(n)

Λ(m) =

=:
∑

n
g∗(n)≤x

H(
x

g∗(n)
).
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Obviously,

H(y) =
∑

p
g∗(p)≤x

log g∗(p) +
∑
p,k≥2

g∗(p)≤y1/k

log g∗(p) =

=
∑
1

+
∑
2

.

Since g∗(p) > 1 and g∗(p) ∼ p we conclude, as y → ∞,

∑
1

= {1 + o(1)}y

and ∑
2

= o(
∑
1

) = o(y).

Therefore

H(y) = y + o(y)

and ∑
k

g∗(k)≤x

log g∗(k) = {1 + o(1)}x
∑

g∗(k)≤x

1

g∗(k)
.

Summation by parts yields

∑
k

g∗(k)≤x

1 = {1 + o(1)}x

∑
g∗(k)≤x

1
g∗(k)

log x
=

= {1 + o(1)}x
∏
p≤x

(
1− 1

p

)(
1− 1

g∗(p)

)−1

.

The last equation holds, since c−1 ≤ g∗(p)
p ≤ c and

|
∑

g∗(p)≤x

1

g∗(p)
−

∑
p≤x

1

g∗(p)
| ≤

∑
x
c ≤p≤cx

c

p
= o(1)

as x → ∞.

Using the same method as in [4], pp. 266-267, one can show Theorem 1
′
.

The proof is left to the reader. �
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4. Proofs of Theorem 3 and Theorem 3
′

Let us come back to the positive valued multiplicative functions 1/f ∈ L∗

(cf. [7]).

There exists w(p) : P → [9,∞] such that w(p) ↗ ∞ and

∑
p

w(p)

p

(
1

f(p)
− 1

)2

< ∞.

Put

E :=
{
p ∈ P :

( 1

f(p)
− 1

)2

>
1

w(p)

}
.

Then ∑
p∈E

1

p
< ∞ and

∑
p∈E

1

pf(p)
< ∞.

Define f∗ completely multiplicative by

f∗(p) =

{
f(p), if p /∈ E
1, p ∈ E.

Then
1

f
=

1

f∗ � h

and

F2(s) =
∞∑

n=1

1

f(n)ns
=

∏
p

(
1 +

∞∑
k=1

1

f(pk)pks

)
=

=

∞∑
n=1

1

f∗(n)ns

∞∑
n=1

h(n)

ns
=

=
∏
p

(
1− 1

f∗(p)ps

)−1 ∏
1

(s)
∏
2

(s),

where

∏
1

(s) =
∏
p∈E

(
1− 1

ps

)(
1 +

∞∑
k=1

1

f(pk)pks

)
,

∏
2

(s) =
∏
p/∈E

(
1− 1

f(p)ps

)(
1 +

∞∑
k=1

1

f(pk)pks

)
.
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Observe that

(4.1)

∞∑
n=1

|h(n)|
n

< ∞

since ∑
p∈E

(
1

p
+

1

pf(p)

)
< ∞

and

(4.2)
∑
p,k≥2

1

f(pk)pk
< ∞.

Then we obtain, by using the same method as in [4], pp. 266–267 (cf. [7]),

∑
n≤x

1

f∗(n)
= {1 + o(1)}x

∏
p≤x

(
1− 1

p

)(
1− 1

pf∗(p)

)−1

as x → ∞. From this we conclude by (4.2)

∑
n≤x

1

f(n)
= {1 + o(1)}x

∏
p≤x

(
1− 1

p

)(
1 +

∞∑
k=1

1

f(pk)pk

)

which shows Theorem 3
′
. �

Define g∗ by
g∗(n) = nf∗(n) (n ∈ N).

Then

F1(s) =
∞∑

n=1

1

(g(n))s
=

∏
p

(
1 +

∞∑
k=1

1

(g(pk))s

)
=

=
∏
p

(
1− 1

(g∗(p))s

)−1

.
′∏
1

(s)
′∏
2

(s),

where

∏′
1(s) =

∏
p∈E

(
1− 1

ps

)(
1 +

∞∑
k=1

1
(g(pk))s

)
,

∏′
2(s) =

∏
p/∈E

(
1− 1

(g(p))s

)(
1 +

∞∑
k=1

1
(g(pk))s

)
.

Obviously the products
∏′

1(s) and
∏′

2(s) are absolutely convergent for s = 1.
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Denote by G the semigroup generated by

Xp∈E{1, pk, g(pk), pg(pk) : k ≥ 1}Xp/∈E{1, (g(p))k, g(pk), g(p)g(pk) : k ≥ 1}.

Then
∞∑

n=1

1

(g(n))s
=

∞∑
n=1

1

(g∗(n))s

∑
a∈G

h′(a)

(a)s

with

(4.3)
∑
a∈G

|h′(a)|
a

< ∞.

Therefore
∑

n
g(n)≤x

1 =
∑

a∈G,m∈N
ag∗(m)≤x

h(a) =(4.4)

=
∑
a≤x

h(a)
∑
m

g∗(m)≤ x
a

1(4.5)

(4.6)

and by (4.3), and Theorem 1

∑
n

g(n)≤x

1 = {1 + o(1)}x
∑
a∈G

h(a)

a

∏
p≤x

(
1− 1

p

)(
1− 1

g∗(p)

)
.

Thus Theorem 3 holds. �
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