
Annales Univ. Sci. Budapest., Sect. Comp. 49 (2019) 219–227

COMPARING COMPUTATIONAL SPEED OF

MATLAB AND MATHEMATICA ACROSS A SET OF

BENCHMARK NUMBER CRUNCHING PROBLEMS

Michael Freitas Gustavo and János Tóth

(Budapest, Hungary)

Communicated by László Szili

(Received March 31, 2019; accepted July 21, 2019)

Abstract. MATLAB and Mathematica are the most widely used mathe-
matical programming tools, each with its associated stereotypical advan-
tages over the other. In order to test these stereotypes and determine where
these advantages truly lie, a set of low-level benchmarking tests, covering
a wide range of numerical and symbolic problems, were constructed and
timed in each language. It was determined thatMathematica still enjoys an
enormous advantage in the solution of symbolic problems, but MATLAB
is better able to import and solve problems which involve large amounts
of numerical data.

1. Introduction

Since the first appearance of mathematical program packages∗, they have
been being compared. Nowadays it is more frequent to find informal compar-
isons in forums on the internet [8, 9, 11, 13, 1, 10], even Wikipedia has a good
systematic comparison of the existing systems [12].

Key words and phrases: CAS, speed comparison, Mathematica, MATLAB.
2010 Mathematics Subject Classification: 65-04.
The Project is supported by the funding from the National Research Development and In-
novation Office (Grant number: SNN T25739). The authors would also like to acknowledge
the assistance of O. Sáfár and the remarks and criticisms of the reviewer.

∗Although algebra pays an important role in creating them, computer algebra is a mis-
leading name for such software; we prefer mathematical program package.
https://doi.org/10.71352/ac.49.219

https://doi.org/10.71352/ac.49.219


220 M.F. Gustavo and J. Tóth

Perhaps the two most popular mathematical software packages used in
academia today are MathWorks’ MATLAB and Wolfram’s Mathematica. Both
systems cover much of the same scope with wide functionality extending from
symbolic programming, differential and integration problems, 3D image gener-
ation and algebraic manipulations. Of course each has their associated areas of
strength; MATLAB is often favoured within the engineering community for its
perceived advantages at numerical calculation, while Mathematica is utilised
by physicists and mathematicians for its symbolic processing abilities [8].

In fact this is a common (and persistent) stereotype surrounding both prod-
ucts, and one that is often cited by users who strongly favour one program over
the other. Given the fact that this generalisation has been around for many
years, and that the packages themselves have been frequently updated, it is
possible that the numerical and symbolic processing speeds of both programs
have improved significantly in that time.

To that end, in this paper both programs (MATLAB R2018b Update 3
and Mathematica 12.0) are speed tested in a variety of symbolic and numerical
problems. The purpose of this is not to further inflame the rivalry between
proponents of either program, but to help users make informed decisions about
their software choices.

2. Methodology

Both packages include built-in benchmarking scripts which, although orig-
inally designed as a way to compare performance between machines, provide
a set of low-level tests which are crucial to any package. These codes are thus
ideal for comparing the number-crunching abilities of each language. The tests
used for the benchmarking comparison were adapted from the built-in Mathe-
matica benchmarking notebook (WolframMark Report.nb), generated by run-
ning BenchmarkReport[] from the Benchmarking package. This script was
selected because the MATLAB benchmarking program did not make its code
available and consists only of six tests, two of which focus on image processing
and the remainder had significant overlap with the Mathematica file.

The core functionality of each of the fifteen tests in the originalMathematica
benchmark were left largely unchanged but several important modifications
were made:

1. Several tests included steps to randomly generate a set of numbers. In
order to ensure repeatability and fair comparison between the packages,
these procedures were replaced with references to a data file. This CSV
data file, generated by Microsoft Excel 365 contains 1 048 576 randomly
generated numbers (each with 6 decimal precision) from a [0,1] uniform



Comparison of MATLAB and Mathematica 221

distribution. This file is read in once by both packages into a data variable
at the beginning of the run. This process is also timed and forms ‘Test 0 :
Import Data’ below.

2. According to the recommendations of McLoone [6] Module, Block and With

were interchanged where possible to help ensure the fastest results. In an-
other effort to save time, the data variable was explicitly flagged as a set
of real values; Mathematica treats all inputs as complex unless otherwise
stated. For similar reasons integer values were switched to floating point
numbers. It is of interest to note, however, that the effect of these changes
was very marginal and often negligible.

3. In order to reproduce the tests exactly in MATLAB, some tests† had to
be simplified so that the answer did not exceed its maximum number value
(1.7977 × 10308). Mathematica’s maximum number is theoretically unlim-
ited, but is a function of the computer system being used; for this work the
maximum number was 1.605 216 761 933 662× 101 355 718 576 299 609.

4. Finally, in terms of timing methodology, each test was measured indepen-
dently using MATLAB’s timeit function or Mathematica’s RepeatedTim-
ing function. Both functions ran the test multiple times, the first returned
the median time taken, the second returned the mean of the times in the sec-
ond and third quartiles. Both methods use wall-clock time and the repeated
nature of the timings help avoid first-time costs and obviously add statistical
significance. Although the approaches of the two are slightly different we
accept them as comparable. To focus the timing on the important elements
of each test only the core operation was timed, preparatory operations like
reshaping the data into matrices was excluded.

The modified Mathematica code was replicated in MATLAB as closely as
possible by using corresponding built-in functions where available. In the few
cases where this could not be done, the code was written as efficiently as pos-
sible. The source code used in each program is included in [2].

In total sixteen tests were conducted; below follows a short description of
each:

Test 0: Data Importing Reads numbers from a CSV into a variable for use
in the other tests.

Test 1: Data Fitting Finds the optimal parameters a, b and c which fit the
function

f(x, y, z) := ln(ax)−

∣∣∣∣∣
cos

(
z
b

)
cy

∣∣∣∣∣ ,

†Specifically, ‘Test 6: Gamma Function’ and ‘Test 7: Large Integer Multiplication’.



222 M.F. Gustavo and J. Tóth

from a 4D array of x, y, z and g(x, y, z) values where x, y, z ∈ {0.2k|k =
= 1, 2, 3, . . . , 44} and

g(x, y, z) := ln(120x)−

∣∣∣∣∣
cos

(
z

300

)
140y

∣∣∣∣∣ .

Test 2: Digits of Pi Finds and lists the first one million digits of π.

Test 3: Discrete Fourier Transform Finds the discrete Fourier transform
of a vector and repeats the process eleven times.

Test 4: Eigenvalues of a Matrix For a a 420×420 matrix and b a diagonal
matrix containing a 420 element column vector (both are extracted from
data), then this finds the eigenvalues of matrix m, where m := a · b · a−1.
The process is repeated six times.

Test 5: Elementary Functions Applies ex, sinx and tanx to each element
of data sixty times each.

Test 6: Gamma Function data is adjusted to range between [160, 170] and
the Gamma function of each element is found 1 000 times.

Test 7: Large Integer Multiplication data elements are first multiplied
by 1000, cubed and then rounded to integer values. The Mathematica de-
fault is to round the midpoint to the nearest even number. In MATLAB
this is done with the convergent function. This vector is then reshaped
into two column vectors of 524 288 elements‡. Each corresponding pair
of elements is then multiplied by one another.

Test 8: Matrix Arithmetic Reshapes a subset of data into an 840 × 840
matrix m and applies f(x) := (1 + 0.5x)127 to each of its elements.

Test 9: Matrix Multiplication Performs matrix multiplication on two iden-
tical 1024× 1024 matrices constructed from data and repeats this twelve
times.

Test 10: Matrix Transpose Finds the transpose of data, reshaped into a
1024× 1024 matrix, eighty times.

Test 11: Numerical Integration Finds the numerical integral of f(x, y) :=
:= sin

(
x2 + y2

)
where x, y ∈ [−2.6π, 2.6π].

‡Note that the two packages are reshaped slightly differently in this case (2 × 524 288 in
Mathematica and 524 288×2 in MATLAB) simply to better fit the actual multiplication step.
Since these reshaping steps are not included in the timing, the differences are negligible.



Comparison of MATLAB and Mathematica 223

Test 12: Polynomial Expansion Symbolically evaluates the expression

f(x) :=

350∏
c=1

(x+ c)3.

Test 13: Random Number Sort Multiplies each element of data by 50 000
and then sorts the vector, from smallest to largest, fifteen times.

Test 14: Singular Value Decomposition Finds the Singular Value Decom-
position of data reshaped into a 1024× 1024 matrix.

Test 15: Solving a Linear System Finds x in the linear equation m ·x = v
where m is data reshaped into a 1024 × 1024 matrix and v is a vector
filled with the values of data between indices 51 814 and 52 837.

To compare the results of the two packages, every element of each test result
was exported to CSV and then compared in Microsoft Excel 365 by taking the
difference between each result and then finding the minimum, maximum and
average of the differences.

3. Results and discussion

Test results were compared for equality before analysing the timings. For
most tests (specifically tests 4, 5, 6, 7, 8, 9, 13, 14 and 15) any differences
occurred, on average, at the fifteenth significant figure. This coincides with
the sixteen decimal precision of MATLAB [5], fifteen decimal precision of Excel
[7], and the machine precision of Mathematica which, on the tested computer,
was sixteen. Thus these differences can be attributed to rounding and approx-
imation errors and can be considered identical otherwise. Comparision of the
remaining tests was less straightforward and are summarised in Table 1.

Table 2 lists the timings of each test which are also represented graphically
in Figure 1. To make the comparison clearer, Figure 2 shows the difference
in time for each test. Generally MATLAB had a significant advantage over
Mathematica particularly in the speed at which it imported data, transposed
matrices, calculated gamma functions, and sorted numbers. It is not clear why
the Mathematica algorithms were particularly slow in these regards. On the
other hand, Mathematica had an enormous advantage in symbolic processing
(not surprising given that this is its main function) and element-wise matrix
operations (which turned out quicker for Mathematica despite this perhaps
being MATLAB’s core functionality). The differences between the other tests
were small but generally swung in favour of MATLAB.



224 M.F. Gustavo and J. Tóth

Test Comparison of Results

1 MATLAB: a = 120.000000005858, b = 139.999999017496, c =
= 299.196900459061
Mathematica: a = 120, b = 140, c = −300.
We note that because c is in the argument of the cosine function
the sign does not matter. It is unreasonable to expect identical
answers from a data fitting test. For the purposes of this work we
consider the answers to be identical.

2 Due to the maximum cell content limit of Excel, only the first
32767 digits could be compared but were found to be identical.

3 These answers differed moderately in three key ways but remained
comparable. First, the complex argument was consistently oppo-
site in sign between the packages. Secondly, MATLAB’s answers
were consistently 1000 times larger than Mathematica’s. Thirdly,
the numbers differed at the third or fourth significant figure. Since
this function is non-unique we accept these differences.

10 Both packages transposed the matrices exactly.
11 MATLAB: 3.14741405891796

Mathematica: 3.14741405930589
It is unreasonable to expect identical answers from a numerical
integration test. For the purposes of this work we consider the
answers to be the same.

12 All coefficients of the constructed polynomial were found to be
identical, this is because this symbolic test uses variable precision
in MATLAB and is thus not limited by the floating point precision
of other tests.

Table 1. Tests with non-straightforward comparisons

It is pertinent to note the difference between numeric and symbolic calcu-
lation here. MATLAB is primarily a numerical platform which uses numbers
with floating point precision [3], however, it does provide symbolic and vari-
able precision tools to perform numeric calculations with an arbitrary number
of significant figures [4]. The maximum number of significant figures in these
regimes are 229, but the absolute largest number is still 1.7977 × 10308. To
use these tools, they must be explicitly invoked in the calculation. On the
other hand, Mathematica is also equipped with both numeric and symbolic
capabilities but the choice of which to use is left to the system depending on
the input number of significant figures [14]. The difference between the two
types of calculation can have a profound effect on calculation speed [4]. To
ensure that Mathematica was computing numerically rather than symbolically,
each test result was checked for its final precision. Only Test 2: Digits of Pi and



Comparison of MATLAB and Mathematica 225

Time (s)

Test MATLAB Mathematica

0 Data Importing 0.4384 2.7000
1 Data Fitting 0.7326 1.6100
2 Digits of Pi 0.0225 0.0000
3 Discrete Fourier Transform 0.2152 0.7390
4 Eigenvalues of a Matrix 0.6122 0.6600
5 Elementary Functions 1.2814 2.7700
6 Gamma Function 1.2798 4.7100
7 Large Integer Multiplication 0.4641 0.0077
8 Matrix Arithmetic 3.0249 1.0800
9 Matrix Multiplication 0.8696 1.2000
10 Matrix Transpose 0.4702 5.1160
11 Numerical Integration 0.1270 0.8200
12 Polynomial Expansion 6.1698 0.0005
13 Random Number Sort 0.8183 3.0800
14 Singular Value Decomposition 0.4544 0.9700
15 Solving a Linear System 0.7018 0.9990

Total 17.6822 26.4622

Table 2. Timing results of sixteen numerical and symbolic test problems on
MATLAB and Mathematica

0 1 2 3 4 5 6 7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Time (s)

Te
st

MATLAB Mathematica

Figure 1. Testing times in each language for each test



226 M.F. Gustavo and J. Tóth

-7 -5 -3 -1 1 3 5 7

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Time (s)

Te
st

Mathematica FasterMATLAB Faster

Figure 2. Difference in testing times in each language for each test

Test 12: Polynomial Expansion did not have machine precision (i.e. were
calculated using symbolic tools). This matches the behaviour of MATLAB
and indicates that our comparisons are fair and appropriate.

4. Conclusion

The computational time ofMathematica and MATLAB, across a wide range
of low-level computationally intensive problems, was compared. It was deter-
mined that significant differences still exist between the languages in terms of
their strengths and appropriate areas of application. MATLAB was unable
to compete with Mathematica’s symbolic programming advantages. On the
other hand, MATLAB demonstrated clear and repeated computational speed
advantages in most numeric problems. The task of comparing two packages,
however, is harder than it would appear at first glance due to core differences
in the structure of the programs, the manner in which results are calculated,
and the number of significant figures used.

References

[1] Abbasi, N.M., Comparing Matlab, Mathematica and Maple numerical
speed for matrix rank calculation, September 2, 2016.
https://12000.org/my_notes/rankTest/test.htm



Comparison of MATLAB and Mathematica 227

[2] Gustavo, M.F. and J. Tóth, Codes and data,
http://ac.inf.elte.hu/Vol 049 2019

[3] MathWorks, Floating-Point Numbers,
https://www.mathworks.com/help/matlab/

[4] MathWorks, Choose Symbolic or Numeric Arithmetic,
https://www.mathworks.com/help/symbolic/

[5] MathWorks, Increase Precision of Numeric Calculations,
https://www.mathworks.com/help/symbolic/

[6] McLoone, J., Wolfram Blog: 10 Tips for Writing Fast Mathematica
Code, December 7, 2011.
https://blog.wolfram.com/2011/12/07/

[7] Oppenheimer, D., Understanding Floating Point Precision aka “Why
does Excel Give Me Seemingly Wrong Answers?”, April 10, 2008.
https://www.microsoft.com/

[8] ResearchGate, Is MATLAB or Mathematica more appropriate for me-
chanical engineers?, 2014.
https://www.researchgate.net/post/

[9] ResearchGate, Which one is faster? Matlab or Mathematica?, 2017.
https://www.researchgate.net/post/

[10] StackExchange: Mathematica, Dramatic speed difference of code on
Matlab and Mathematica,
https://mathematica.stackexchange.com/questions/74108/

[11] Quora Why isn’t Mathematica not as popular as MATLAB or Python?,
https://www.quora.com/

[12] Wikipedia, List of Computer Algebra Systems,
https://en.wikipedia.org/

[13] Wolfram Community, Matrix operation speed: Mathematica vs Mat-
lab?,
https://community.wolfram.com/groups/-/m/t/864778

[14] Wolfram, Numerical Precision,
https://reference.wolfram.com/language/tutorial/

M. F. Gustavo and J. Tóth
Department of Analysis
Budapest University of Technology and Economics
Budapest
Hungary
mgus93@gmail.com

jtoth@math.bme.hu




