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Abstract. In the paper the notion of dyadic λ-derivative is introduced for
nonnegative, nondecreasing and concave sequence {λn}∞n=0. Analogues of
Bernstein inequality for Walsh polynomials and of inverse approximation
theorem are established. Also the uniform convergence of Walsh–Fourier
series to this λ-derivative is studied.

1. Inroduction

Let us consider the function defined on the interval [0, 1) by
r0(x) = χ[0,1/2)(x)−χ[1/2,1), where χE is the indicator of a set E. We extend it

to the real line by 1-periodicity and set rk(x) = r0(2
kx), k ∈ Z+ = {0, 1, . . . },

x ∈ R. The functions rk(x) are called Rademacher functions.

Every number n ∈ N = {1, 2, . . . } has a dyadic expansion n =
∑k

i=0 εi2
i,

where εk = 1 and εi are equal to 0 or 1 for 0 ≤ i ≤ k − 1. We set

wn(x) =
k∏

i=0

(ri(x))
εi = rk(x)

k−1∏
i=0

(ri(x))
εi
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in this case and w0(x) ≡ 1. The system {wn(x)}∞n=o is called Walsh system.
It is well known that Walsh system is orthonormal and complete in L1[0, 1),
other its properties see in monographs [7] written by author, A. V. Efimov and
V. A. Skvortsov and [14] written by F. Schipp, W. R. Wade and P. Simon.
Also we note the paper of N. Fine [5].

For f ∈ L1[0, 1) the Walsh-Fourier coefficients and partial sums are defined
by

f̂(k) =

1∫

0

f(x)wk(x) dx, k ∈ Z+; Sn(f)(x) =
n−1∑
k=0

f̂(k)wk(x), n ∈ N.

The notions of strong and pointwise dyadic derivatives Dp and D (Dp is
defined in Lp[0, 1)) were introduced by P. L. Butzer and H. J. Wagner [3], [4].
They used a specific difference operator in these definitions and obtained the
characteristic property Dwn = nwn, n ∈ Z+. Another approach of He Zelin
[9] allows to define the derivative of arbitrary order α > 0. Relations between
different definitions of dyadic derivative and integral see in [8].

As usually, the space Lp[0, 1), 1 ≤ p < ∞, consists of all measurable func-

tions f such that ‖f‖pp =
∫ 1

0
|f(x)|p dx < ∞. Further we consider the space

C∗[0, 1) of dyadically continuous functions as a completion of the set P of poly-
nomials with respect to {wn}∞n=0 in the uniform norm ‖f‖∞ = supx∈[0,1) |f(x)|
and Lp[0, 1) ≡ C∗[0, 1) for p = ∞ (with the exception of Theorem 1.2).

Let Pn = {f ∈ L1[0, 1) : f̂(k) = 0, k ≥ n}, n ∈ N. Then for f ∈ Lp[0, 1),
1 ≤ p ≤ ∞, one can define the n-th best approximation by Walsh polynomials

En(f)p = inf{‖f − tn‖p : tn ∈ Pn}, n ∈ N.

It is known that best approximation by Walsh polynomials and dyadic modulus
of continuity are equivalent in a certain sense (the corresponding C. Watari–
A. V. Efimov result see in [14, Ch. 5, Theorem 2] and [7, Ch.10, Theorem
10.5.1]). Therefore we will use only the best approximation.

Let {λn}∞n=0 be a nondecreasing and nonnegative sequence such that

limn→∞ λn = +∞. If f ∈ Lp[0, 1), p ∈ [1,∞], and the series
∑∞

n=0 λnf̂(n)wn(x)
is the Walsh-Fourier series of a function ϕ ∈ Lp[0, 1), then ϕ is called the

λ-derivative of f in Lp[0, 1) (notation ϕ = f
(λ)
p ). If f (λ) is independent of p,

e.g., for Walsh polynomials, we write f (λ). Similar generalized derivatives in
the trigonometric case were studied by A. I. Stepanets and his students (see,
e.g., [16]). For λn = nα, α > 0, λ-derivative reduces to fractional dyadic
derivative of order α studied in a more general setting in [9].

Further one famous result will be used. Theorem 1.1 is an analogue of
M. Riesz theorem (see [2, Ch. 8, Sect. 14 and 20]) and is due to R. E. A. C. Pa-
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ley [12]. Its proof may be found in [7, Ch. 5] and in [14, Sect. 3.3]. A gen-
eralization of this result in the case of general Vilenkin systems was obtained
independently by F. Schipp [13], P. Simon [15] and W.-S. Young [19].

Theorem 1.1. Let f ∈ Lp[0, 1), 1 < p < ∞. Then ‖f − Sn(f)‖p ≤ CEn(f)p,
n ∈ N. In particular, limn→∞ ‖f − Sn(f)‖p = 0.

In [6] the fiollowing analogue of A. A. Konyushkov–S. B. Stechkin embed-
ding theorem (see [11]) was obtained.

Theorem 1.2. Let f ∈ Lp[0, 1), 1 ≤ p < q < ∞ and the series∑∞
n=1 n

1/p−1/q−1En(f)p converges. Then f ∈ Lq[0, 1) and

En(f)q ≤ C(p, q)

(
n1/p−1/qEn(f)p +

∞∑
k=n+1

k1/p−1/q−1Ek(f)p

)
, n ∈ N.

In the Lemma 2.3 below we extend this theorem on the case q = ∞.

In the present paper we study sufficient conditions for the continuity of f
(λ)
p

and uniform convergence of {Sn(f
(λ)
p )}∞n=1. Also the inverse approximation

theorem is proved for λ-derivative in Lp[0, 1).

2. Auxiliary propositions

Lemma 2.1. Let {λn}∞n=0 be a nonnegative, nondecreasing and concave se-

quence, 1 ≤ p ≤ ∞. Then for a polynomial t2r =
∑2r−1

k=0 ckwk ∈ P2r , r ∈ Z+,

the inequality ‖t(λ)2r ‖p ≤ Cλ2r‖t2r‖p holds.

Proof. Let Dn(x) :=
∑n−1

k=0 wk(x) and Fn(x) :=
∑n

k=1 Dk(x)/n, n ∈ N,
D0(x) = 0. Then summation by parts gives

Λr :=
2r−1∑
k=0

λkwk =
2r−1∑
k=1

(λk−1 − λk)Dk + λ2r−1D2r =: I1 + I2.

Since D2k(x) = 2rχ[0,1/2r)(x) (see [14, Sect. 1.2] or [7, Sect. 1.4]), one has

(2.1) ‖I2‖1 ≤ λ2r−1 ≤ λ2r .
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On the other hand, using summation by parts again we derive

I1 =

2r−2∑
k=0

∆2λk(k + 1)Fk+1 + (λ2r−1 − λ2r )(2
r − 1)F2r−1,

where ∆2λk = λk − 2λk+1 + λk+2. It is known that ‖Fk‖1 are bounded (see
[14, Sect. 1.8]). Applying summation by parts we have

2r−1∑
k=0

(λk − λk+1) =

2r−2∑
k=0

(k + 1)∆2λk + 2r(λ2r−1 − λ2r )

or

2r−2∑
k=0

(k+1)∆2λk+(2r−1)(λ2r−1−λ2r ) = λ0−λ2r −(λ2r−1−λ2r ) = λ0−λ2r−1.

Therefore, by the concavity of {λn}∞n=0

‖I1‖1 ≤
2r−2∑
k=0

(k + 1)|∆2λk|‖Fk+1‖1 + (2r − 1)(λ2r − λ2r−1)‖F2r−1‖1 ≤

(2.2) ≤ C1(λ2r−1 − λ0) ≤ C1λ2r .

Thus, ‖Λr‖1 ≤ (C1+1)λ2r by (2.1) and (2.2). Finally, the equality t2r ∗Λr(x) =

=
∑2r−1

k=0 λkckwk(x) holds (see the definition of dyadic convolution in [14,
Sect.1.3] and formula (45) for its Walsh–Fourier coefficients in the same place).
Applying Lemma 1 from [14, Sect. 4.4] we obtain

‖t(λ)2r ‖p = ‖t2r ∗Λr‖p ≤ ‖t2r‖p‖Λr‖1 ≤ (C1 +1)λ2r‖t2r‖p. �

Remark 2.1. For λn = nα, α > 0, the inequality of Lemma 2.1 is known in a
more general setting (see [9, Lemma 1] and [18, Lemma 5]).

The following lemma is known at least in the case of concave functions (see
[10, § 1, (1.20)]. The proof is given for the utility of a reader.

Lemma 2.2. If {λn}∞n=0 is a nonnegative, nondecreasing and concave se-
quence, then λ2n ≤ 2λn, n ∈ N.

Proof. The concavity of {λn}∞n=0 means that ∆2λn−1 ≤ 0 for all n ∈ N,
whence

λn+1 − λn ≤ λn − λn−1 ≤ · · · ≤ λk − λk−1, k = 1, . . . , n.
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By summing similar inequalities one has

2n∑
k=n+1

(λk − λk−1) ≤
n∑

k=1

(λk − λk−1), n ∈ N,

and λ2n ≤ 2λn − λ0 ≤ 2λn. �

Lemma 2.3 is a revision of Theorem 1.2.

Lemma 2.3. Let 1 < p < ∞, f ∈ Lp[0, 1), and the series
∑∞

n=1 n
1/p−1En(f)p

converges. Then f is equivalent to f0 ∈ C∗[0, 1) (i.e. f(x) = f0(x) a.e. on
[0, 1)) and

(2.3) ‖f0 − Sn(f)‖∞ ≤ C(p)

(
n1/pEn(f)p +

∞∑
k=n+1

k1/p−1Ek(f)p

)
, n ∈ N.

In particular, there exists limn→∞ ‖f0 − Sn(f)‖∞ = 0.

Proof. It is known the following Nikol’skii type inequality for Walsh system
(see [1, Ch. 4, § 9, Lemma 1]):

(2.4) ‖tn‖∞ ≤ C1n
1/p‖tn‖p, n ∈ N, tn ∈ Pn.

By Theorem 1.1 the equality

(2.5) f = Sn(f) +
∞∑
k=1

(S2kn(f)− S2k−1n(f))

is valid, where the series converges in the space Lp[0, 1). From (2.4) it follows
that

∞∑
k=1

‖S2kn(f)− S2k−1n(f)‖∞ ≤ C1

∞∑
k=1

(2kn)1/p‖S2kn(f)− S2k−1n(f)‖p ≤

(2.6)

≤ 2C1

∞∑
k=1

(2kn)1/pE2k−1n(f)p ≤ C2


n1/pEn(f)p +

∞∑
j=n+1

j1/p−1Ek(f)p


 .

Since Sk(f) ∈ C∗[0, 1) for all k ∈ N and C∗[0, 1) with the norm ‖ · ‖∞ is a
Banach space, the series in right-hand side of (2.5) converges uniformly to a
function f0 ∈ C∗[0, 1). But earlier it was proved that the series in right-hand
side of (2.5) converges to the function f in Lp[0, 1). Therefore, f(x) = f0(x)
a.e. on [0, 1). From (2.5) and (2.6) the inequality (2.3) follows. The last
statement of Lemma 2.3 is proved as in Theorem 3.2. �
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3. Main results

Theorem 3.1. Let {λn}∞n=0 be a nonnegative, nondecreasing, tending to in-
finity and concave sequence, 1 < p < ∞, f ∈ Lp[0, 1) and the series∑∞

k=1 k
−1λkEk(f)p converges. Then there exists f

(λ)
p and

En(f
(λ)
p )p ≤ C

(
λnEn(f)p +

∞∑
k=n+1

k−1λkEk(f)p

)
, n ∈ N.

Proof. Since f ∈ Lp[0, 1), 1 < p < ∞, by Theorem 1.1 the series Sn(f) +
+
∑∞

k=1(S2kn(f) − S2k−1n(f)) converges in Lp[0, 1) to f . Let us consider the
series

(3.1) (Sn(f))
(λ) +

∞∑
k=1

(S2kn(f)− S2k−1n(f))
(λ).

By Lemmas 2.1 and 2.2 the estimate

‖(S2kn(f)− S2k−1n(f))
(λ)‖p ≤ C1λ2kn‖S2kn(f)− S2k−1n(f)‖p ≤

≤ C1λ2kn(‖f − S2kn(f)‖p + ‖f − S2k−1n(f)‖p) ≤ 2C1λ2knE2k−1n(f)p

holds. Since for k ≥ 2

E2k−1n(f)p ≤ C2

2k−1n∑
i=2k−2n+1

i−1Ei(f)p,

we have

∞∑
k=1

‖(S2kn(f)− S2k−1n(f))
(λ)‖p ≤ C3

(
λnEn(f)p +

∞∑
i=n+1

i−1λiEi(f)p

)
.

Therefore, the series (3.1) converges in Lp[0, 1) and its partial sum

(Sn(f))
(λ) +

N∑
k=1

(S2kn(f)− S2k−1n(f))
(λ) = (S2Nn(f))

(λ)

has Walsh–Fourier coefficients λj f̂(j) for 0 ≤ j ≤ 2Nn− 1. Thus, there exists

ϕ ∈ Lp[0, 1) such that limN→∞ ‖(S2Nn(f))
(λ) − ϕ‖p = 0 and ϕ̂(j) = λj f̂(j),

j ∈ Z+. By definition, ϕ = f
(λ)
p and
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En(f
(λ)
p )p ≤ ‖f (λ)

p − (Sn(f))
(λ)‖p ≤

∞∑
k=1

‖(S2kn(f)− S2k−1n(f))
(λ)‖p ≤

≤ C3

(
λnEn(f)p +

∞∑
i=n+1

i−1λiEi(f)p

)
. �

Remark 3.1. Similar result for trigonometric case was obtained by A.I. Stepa-
nets and E.I. Zhukina [16].

Theorem 3.2. Let {λn}∞n=0 be a nonnegative, nondecreasing, tending to in-
finity and concave sequence, 1 < p < ∞, f ∈ Lp[0, 1) and the series∑∞

k=1 k
1/p−1λkEk(f)p converges. Then there exists f

(λ)
p that is equivalent to

f (λ) ∈ C∗[0, 1) and limn→∞ ‖f (λ) − Sn(f
(λ))‖∞ = 0.

Proof. From the conditions of Theorem 3.2 it follows that∑∞
k=1 k

−1λkEk(f)p < ∞ and by Theorem 3.1 there exists f
(λ)
p ∈ Lp[0, 1).

For the proof of convergence of the series
∑∞

n=1 n
1/p−1En(f

(λ)
p )p we use The-

orem 3.1 and change the order of summation as follows (1/p+ 1/p′ = 1)

∞∑
n=1

n1/p−1En(f
(λ)
p )p ≤ C1

∞∑
n=1

n−1/p′
λnEn(f)p + C1

∞∑
n=1

n−1/p′
∞∑

k=n

λkEk(f)p
k

= C1

∞∑
n=1

n1/p−1λnEn(f)p + C1

∞∑
k=1

k∑
n=1

n1/p−1λkEk(f)p
k

≤

≤ C2

( ∞∑
n=1

n1/p−1λnEn(f)p +
∞∑
k=1

k1/p−1λkEk(f)p

)
< ∞.

By Lemma 2.3 f
(λ)
p is equivalent to f (λ) ∈ C∗[0, 1). Using inequalities of

Lemma 2.3 and Theorem 3.1 we obtain

‖f (λ) − Sn(f
(λ))‖∞ ≤ C3


n1/pEn(f

(λ)
p )p +

∞∑
j=n+1

j1/p−1Ej(f
(λ)
p )p


 ≤

≤ C3n
1/p

(
λnEn(f)p +

∞∑
k=n+1

k−1λkEk(f)p

)
+

+C3

∞∑
j=n+1

j1/p−1


λjEj(f)p +

∞∑
i=j+1

i−1λiEi(f)p


 ≤ C3n

1/pλnEn(f)p+

(3.2) + 2C3

∞∑
k=n+1

k1/p−1λkEk(f)p + C3

∞∑
j=n+1

j1/p−1
∞∑
i=j

i−1λiEi(f)p.
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Denote the last term in (3.2) by I. Then

I = C3

∞∑
i=n+1

i∑
j=n+1

j1/p−1i−1λiEi(f)p ≤ C4

∞∑
i=n+1

i1/p−1λiEi(f)p.

Thus, we have

(3.3) ‖f (λ) − Sn(f
(λ))‖∞ ≤ C5

(
n1/pλnEn(f)p +

∞∑
k=n+1

k1/p−1λkEk(f)p

)
.

Due to Lemma 2.2 the estimate

n1/pλnEn(f)p ≤ C6

n∑
k=[n/2]

k1/p−1λkEk(f)p, n ∈ N,

holds and the right-hand side of (3.3) tends to zero as n → ∞. �

For λn = nα, α > 0, n ∈ Z+, denote f
(λ)
p by Dα

p f . Corollary 3.1 is also
new.

Corollary 3.1. Let 0 < α ≤ 1, 1 < p < ∞, f ∈ Lp[0, 1) and the series∑∞
k=1 k

α+1/p−1Ek(f)p converges. Then there exists Dα
p f that is equivalent to

ϕ ∈ C∗[0, 1) and limn→∞ ‖Sn(D
α
p f)− ϕ‖∞ = 0.
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