GENERALIZED DYADIC DERIVATIVE AND UNIFORM CONVERGENCE OF ITS WALSH-FOURIER SERIES

Boris I. Golubov (Dolgoprudnyi, Russian Federation) Sergey S. Volosivets (Saratov, Russian Federation)

Communicated by Ferenc Weisz (Received March 27, 2019; accepted June 21, 2019)

Abstract. In the paper the notion of dyadic λ -derivative is introduced for nonnegative, nondecreasing and concave sequence $\{\lambda_n\}_{n=0}^{\infty}$. Analogues of Bernstein inequality for Walsh polynomials and of inverse approximation theorem are established. Also the uniform convergence of Walsh–Fourier series to this λ -derivative is studied.

1. Inroduction

Let us consider the function defined on the interval [0,1) by $r_0(x) = \chi_{[0,1/2)}(x) - \chi_{[1/2,1)}$, where χ_E is the indicator of a set E. We extend it to the real line by 1-periodicity and set $r_k(x) = r_0(2^k x)$, $k \in \mathbb{Z}_+ = \{0, 1, ...\}$, $x \in \mathbb{R}$. The functions $r_k(x)$ are called Rademacher functions.

Every number $n \in \mathbb{N} = \{1, 2, ...\}$ has a dyadic expansion $n = \sum_{i=0}^{k} \varepsilon_i 2^i$, where $\varepsilon_k = 1$ and ε_i are equal to 0 or 1 for $0 \le i \le k - 1$. We set

$$w_n(x) = \prod_{i=0}^k (r_i(x))^{\varepsilon_i} = r_k(x) \prod_{i=0}^{k-1} (r_i(x))^{\varepsilon_i}$$

Key words and phrases: Generalized dyadic derivative, Walsh–Fourier series, uniform convergence, best approximation.

²⁰¹⁰ Mathematics Subject Classification: 42C10, 43A50. https://doi.org/10.71352/ac.49.199

in this case and $w_0(x) \equiv 1$. The system $\{w_n(x)\}_{n=o}^{\infty}$ is called Walsh system. It is well known that Walsh system is orthonormal and complete in $L^1[0,1)$, other its properties see in monographs [7] written by author, A. V. Efimov and V. A. Skvortsov and [14] written by F. Schipp, W. R. Wade and P. Simon. Also we note the paper of N. Fine [5].

For $f \in L^1[0, 1)$ the Walsh-Fourier coefficients and partial sums are defined by

$$\widehat{f}(k) = \int_{0}^{1} f(x)w_{k}(x) \, dx, \quad k \in \mathbb{Z}_{+}; \quad S_{n}(f)(x) = \sum_{k=0}^{n-1} \widehat{f}(k)w_{k}(x), \quad n \in \mathbb{N}.$$

The notions of strong and pointwise dyadic derivatives D_p and D (D_p is defined in $L^p[0,1)$) were introduced by P. L. Butzer and H. J. Wagner [3], [4]. They used a specific difference operator in these definitions and obtained the characteristic property $Dw_n = nw_n$, $n \in \mathbb{Z}_+$. Another approach of He Zelin [9] allows to define the derivative of arbitrary order $\alpha > 0$. Relations between different definitions of dyadic derivative and integral see in [8].

As usually, the space $L^p[0,1)$, $1 \leq p < \infty$, consists of all measurable functions f such that $||f||_p^p = \int_0^1 |f(x)|^p dx < \infty$. Further we consider the space $C^*[0,1)$ of dyadically continuous functions as a completion of the set \mathcal{P} of polynomials with respect to $\{w_n\}_{n=0}^{\infty}$ in the uniform norm $||f||_{\infty} = \sup_{x \in [0,1)} |f(x)|$ and $L^p[0,1) \equiv C^*[0,1)$ for $p = \infty$ (with the exception of Theorem 1.2).

Let $\mathcal{P}_n = \{f \in L^1[0,1) : \widehat{f}(k) = 0, k \ge n\}, n \in \mathbb{N}$. Then for $f \in L^p[0,1), 1 \le p \le \infty$, one can define the *n*-th best approximation by Walsh polynomials

$$E_n(f)_p = \inf\{\|f - t_n\|_p : t_n \in \mathcal{P}_n\}, \quad n \in \mathbb{N}.$$

It is known that best approximation by Walsh polynomials and dyadic modulus of continuity are equivalent in a certain sense (the corresponding C. Watari–A. V. Efimov result see in [14, Ch. 5, Theorem 2] and [7, Ch.10, Theorem 10.5.1]). Therefore we will use only the best approximation.

Let $\{\lambda_n\}_{n=0}^{\infty}$ be a nondecreasing and nonnegative sequence such that $\lim_{n\to\infty}\lambda_n = +\infty$. If $f \in L^p[0,1), p \in [1,\infty]$, and the series $\sum_{n=0}^{\infty}\lambda_n \widehat{f}(n)w_n(x)$ is the Walsh-Fourier series of a function $\varphi \in L^p[0,1)$, then φ is called the λ -derivative of f in $L^p[0,1)$ (notation $\varphi = f_p^{(\lambda)}$). If $f^{(\lambda)}$ is independent of p, e.g., for Walsh polynomials, we write $f^{(\lambda)}$. Similar generalized derivatives in the trigonometric case were studied by A. I. Stepanets and his students (see, e.g., [16]). For $\lambda_n = n^{\alpha}, \alpha > 0, \lambda$ -derivative reduces to fractional dyadic derivative of order α studied in a more general setting in [9].

Further one famous result will be used. Theorem 1.1 is an analogue of M. Riesz theorem (see [2, Ch. 8, Sect. 14 and 20]) and is due to R. E. A. C. Pa-

ley [12]. Its proof may be found in [7, Ch. 5] and in [14, Sect. 3.3]. A generalization of this result in the case of general Vilenkin systems was obtained independently by F. Schipp [13], P. Simon [15] and W.-S. Young [19].

Theorem 1.1. Let $f \in L^p[0,1)$, $1 . Then <math>||f - S_n(f)||_p \le CE_n(f)_p$, $n \in \mathbb{N}$. In particular, $\lim_{n\to\infty} ||f - S_n(f)||_p = 0$.

In [6] the fiollowing analogue of A. A. Konyushkov–S. B. Stechkin embedding theorem (see [11]) was obtained.

Theorem 1.2. Let $f \in L^p[0,1)$, $1 \le p < q < \infty$ and the series $\sum_{n=1}^{\infty} n^{1/p-1/q-1} E_n(f)_p$ converges. Then $f \in L^q[0,1)$ and

$$E_n(f)_q \le C(p,q) \left(n^{1/p-1/q} E_n(f)_p + \sum_{k=n+1}^{\infty} k^{1/p-1/q-1} E_k(f)_p \right), \quad n \in \mathbb{N}.$$

In the Lemma 2.3 below we extend this theorem on the case $q = \infty$.

In the present paper we study sufficient conditions for the continuity of $f_p^{(\lambda)}$ and uniform convergence of $\{S_n(f_p^{(\lambda)})\}_{n=1}^{\infty}$. Also the inverse approximation theorem is proved for λ -derivative in $L^p[0, 1)$.

2. Auxiliary propositions

Lemma 2.1. Let $\{\lambda_n\}_{n=0}^{\infty}$ be a nonnegative, nondecreasing and concave sequence, $1 \leq p \leq \infty$. Then for a polynomial $t_{2^r} = \sum_{k=0}^{2^r-1} c_k w_k \in \mathcal{P}_{2^r}, r \in \mathbb{Z}_+,$ the inequality $\|t_{2^r}^{(\lambda)}\|_p \leq C\lambda_{2^r}\|t_{2^r}\|_p$ holds.

Proof. Let $D_n(x) := \sum_{k=0}^{n-1} w_k(x)$ and $F_n(x) := \sum_{k=1}^n D_k(x)/n$, $n \in \mathbb{N}$, $D_0(x) = 0$. Then summation by parts gives

$$\Lambda_r := \sum_{k=0}^{2^r - 1} \lambda_k w_k = \sum_{k=1}^{2^r - 1} (\lambda_{k-1} - \lambda_k) D_k + \lambda_{2^r - 1} D_{2^r} =: I_1 + I_2.$$

Since $D_{2^k}(x) = 2^r \chi_{[0,1/2^r)}(x)$ (see [14, Sect. 1.2] or [7, Sect. 1.4]), one has

(2.1)
$$||I_2||_1 \le \lambda_{2^r-1} \le \lambda_{2^r}.$$

On the other hand, using summation by parts again we derive

$$I_1 = \sum_{k=0}^{2^r - 2} \Delta^2 \lambda_k (k+1) F_{k+1} + (\lambda_{2^r - 1} - \lambda_{2^r}) (2^r - 1) F_{2^r - 1},$$

where $\Delta^2 \lambda_k = \lambda_k - 2\lambda_{k+1} + \lambda_{k+2}$. It is known that $||F_k||_1$ are bounded (see [14, Sect. 1.8]). Applying summation by parts we have

$$\sum_{k=0}^{2^{r}-1} (\lambda_{k} - \lambda_{k+1}) = \sum_{k=0}^{2^{r}-2} (k+1)\Delta^{2}\lambda_{k} + 2^{r}(\lambda_{2^{r}-1} - \lambda_{2^{r}})$$

or

$$\sum_{k=0}^{2^{r}-2} (k+1)\Delta^{2}\lambda_{k} + (2^{r}-1)(\lambda_{2^{r}-1}-\lambda_{2^{r}}) = \lambda_{0} - \lambda_{2^{r}} - (\lambda_{2^{r}-1}-\lambda_{2^{r}}) = \lambda_{0} - \lambda_{2^{r}-1}.$$

Therefore, by the concavity of $\{\lambda_n\}_{n=0}^{\infty}$

$$\|I_1\|_1 \leq \sum_{k=0}^{2^r-2} (k+1) |\Delta^2 \lambda_k| \|F_{k+1}\|_1 + (2^r-1)(\lambda_{2^r}-\lambda_{2^r-1}) \|F_{2^r-1}\|_1 \leq C_{k+1} \|F_{k+1}\|_1 + C_{k+1} \|$$

(2.2)
$$\leq C_1(\lambda_{2^r-1} - \lambda_0) \leq C_1\lambda_{2^r}.$$

Thus, $\|\Lambda_r\|_1 \leq (C_1+1)\lambda_{2^r}$ by (2.1) and (2.2). Finally, the equality $t_{2^r} * \Lambda_r(x) = \sum_{k=0}^{2^r-1} \lambda_k c_k w_k(x)$ holds (see the definition of dyadic convolution in [14, Sect.1.3] and formula (45) for its Walsh–Fourier coefficients in the same place). Applying Lemma 1 from [14, Sect. 4.4] we obtain

$$\|t_{2^r}^{(\lambda)}\|_p = \|t_{2^r} * \Lambda_r\|_p \le \|t_{2^r}\|_p \|\Lambda_r\|_1 \le (C_1 + 1)\lambda_{2^r} \|t_{2^r}\|_p.$$

Remark 2.1. For $\lambda_n = n^{\alpha}$, $\alpha > 0$, the inequality of Lemma 2.1 is known in a more general setting (see [9, Lemma 1] and [18, Lemma 5]).

The following lemma is known at least in the case of concave functions (see $[10, \S 1, (1.20)]$). The proof is given for the utility of a reader.

Lemma 2.2. If $\{\lambda_n\}_{n=0}^{\infty}$ is a nonnegative, nondecreasing and concave sequence, then $\lambda_{2n} \leq 2\lambda_n$, $n \in \mathbb{N}$.

Proof. The concavity of $\{\lambda_n\}_{n=0}^{\infty}$ means that $\Delta^2 \lambda_{n-1} \leq 0$ for all $n \in \mathbb{N}$, whence

$$\lambda_{n+1} - \lambda_n \le \lambda_n - \lambda_{n-1} \le \dots \le \lambda_k - \lambda_{k-1}, \quad k = 1, \dots, n.$$

By summing similar inequalities one has

$$\sum_{k=n+1}^{2n} (\lambda_k - \lambda_{k-1}) \le \sum_{k=1}^{n} (\lambda_k - \lambda_{k-1}), \quad n \in \mathbb{N},$$

and $\lambda_{2n} \leq 2\lambda_n - \lambda_0 \leq 2\lambda_n$.

Lemma 2.3 is a revision of Theorem 1.2.

Lemma 2.3. Let $1 , <math>f \in L^p[0,1)$, and the series $\sum_{n=1}^{\infty} n^{1/p-1} E_n(f)_p$ converges. Then f is equivalent to $f_0 \in C^*[0,1)$ (i.e. $f(x) = f_0(x)$ a.e. on [0,1)) and

(2.3)
$$||f_0 - S_n(f)||_{\infty} \le C(p) \left(n^{1/p} E_n(f)_p + \sum_{k=n+1}^{\infty} k^{1/p-1} E_k(f)_p \right), \quad n \in \mathbb{N}.$$

In particular, there exists $\lim_{n\to\infty} ||f_0 - S_n(f)||_{\infty} = 0.$

Proof. It is known the following Nikol'skii type inequality for Walsh system (see [1, Ch. 4, § 9, Lemma 1]):

(2.4)
$$||t_n||_{\infty} \le C_1 n^{1/p} ||t_n||_p, \quad n \in \mathbb{N}, \quad t_n \in \mathcal{P}_n.$$

By Theorem 1.1 the equality

(2.5)
$$f = S_n(f) + \sum_{k=1}^{\infty} (S_{2^k n}(f) - S_{2^{k-1} n}(f))$$

is valid, where the series converges in the space $L^p[0,1)$. From (2.4) it follows that

$$\sum_{k=1}^{\infty} \|S_{2^{k}n}(f) - S_{2^{k-1}n}(f)\|_{\infty} \le C_1 \sum_{k=1}^{\infty} (2^{k}n)^{1/p} \|S_{2^{k}n}(f) - S_{2^{k-1}n}(f)\|_p \le C_1 \sum_{k=1}^{\infty} (2^{k}n)^{1/p} \|S_{2^{k}n}(f) - S_{2^{k}n}(f)\|_p \le C_1 \sum_{k=1}^{\infty} (2^{k}n)^{1/p} \|S_{2^{k}n}(f) - S_{2^{k}n}(f)\|_p \le C_1 \sum_{k=1}^{\infty} (2^{k}n)^{1/p} \|S_{2^{k}n}(f)\|_p \le C_1 \sum_{k=1}^{\infty} (2^{k}n)^{1/p} \|S_{2^{k}n}(f)\|_p \leC_1 \sum_{k=1}^{\infty} (2^{k}n)^{1/p} \|S_{2^{k}n$$

(2.6)

$$\leq 2C_1 \sum_{k=1}^{\infty} (2^k n)^{1/p} E_{2^{k-1}n}(f)_p \leq C_2 \left(n^{1/p} E_n(f)_p + \sum_{j=n+1}^{\infty} j^{1/p-1} E_k(f)_p \right).$$

Since $S_k(f) \in C^*[0,1)$ for all $k \in \mathbb{N}$ and $C^*[0,1)$ with the norm $\|\cdot\|_{\infty}$ is a Banach space, the series in right-hand side of (2.5) converges uniformly to a function $f_0 \in C^*[0,1)$. But earlier it was proved that the series in right-hand side of (2.5) converges to the function f in $L^p[0,1)$. Therefore, $f(x) = f_0(x)$ a.e. on [0,1). From (2.5) and (2.6) the inequality (2.3) follows. The last statement of Lemma 2.3 is proved as in Theorem 3.2.

3. Main results

Theorem 3.1. Let $\{\lambda_n\}_{n=0}^{\infty}$ be a nonnegative, nondecreasing, tending to infinity and concave sequence, $1 , <math>f \in L^p[0,1)$ and the series $\sum_{k=1}^{\infty} k^{-1} \lambda_k E_k(f)_p$ converges. Then there exists $f_p^{(\lambda)}$ and

$$E_n(f_p^{(\lambda)})_p \le C\left(\lambda_n E_n(f)_p + \sum_{k=n+1}^{\infty} k^{-1} \lambda_k E_k(f)_p\right), \quad n \in \mathbb{N}$$

Proof. Since $f \in L^p[0,1)$, $1 , by Theorem 1.1 the series <math>S_n(f) + \sum_{k=1}^{\infty} (S_{2^k n}(f) - S_{2^{k-1}n}(f))$ converges in $L^p[0,1)$ to f. Let us consider the series

(3.1)
$$(S_n(f))^{(\lambda)} + \sum_{k=1}^{\infty} (S_{2^k n}(f) - S_{2^{k-1} n}(f))^{(\lambda)}.$$

By Lemmas 2.1 and 2.2 the estimate

$$\|(S_{2^{k}n}(f) - S_{2^{k-1}n}(f))^{(\lambda)}\|_{p} \le C_{1}\lambda_{2^{k}n}\|S_{2^{k}n}(f) - S_{2^{k-1}n}(f)\|_{p} \le C_{1}\lambda_{2^{k}n}(\|f - S_{2^{k}n}(f)\|_{p} + \|f - S_{2^{k-1}n}(f)\|_{p}) \le 2C_{1}\lambda_{2^{k}n}E_{2^{k-1}n}(f)_{p}$$

holds. Since for $k \ge 2$

$$E_{2^{k-1}n}(f)_p \le C_2 \sum_{i=2^{k-2}n+1}^{2^{k-1}n} i^{-1} E_i(f)_p,$$

we have

$$\sum_{k=1}^{\infty} \| (S_{2^k n}(f) - S_{2^{k-1} n}(f))^{(\lambda)} \|_p \le C_3 \left(\lambda_n E_n(f)_p + \sum_{i=n+1}^{\infty} i^{-1} \lambda_i E_i(f)_p \right).$$

Therefore, the series (3.1) converges in $L^p[0,1)$ and its partial sum

$$(S_n(f))^{(\lambda)} + \sum_{k=1}^N (S_{2^k n}(f) - S_{2^{k-1} n}(f))^{(\lambda)} = (S_{2^N n}(f))^{(\lambda)}$$

has Walsh–Fourier coefficients $\lambda_j \widehat{f}(j)$ for $0 \leq j \leq 2^N n - 1$. Thus, there exists $\varphi \in L^p[0,1)$ such that $\lim_{N\to\infty} ||(S_{2^N n}(f))^{(\lambda)} - \varphi||_p = 0$ and $\widehat{\varphi}(j) = \lambda_j \widehat{f}(j)$, $j \in \mathbb{Z}_+$. By definition, $\varphi = f_p^{(\lambda)}$ and

$$E_{n}(f_{p}^{(\lambda)})_{p} \leq \|f_{p}^{(\lambda)} - (S_{n}(f))^{(\lambda)}\|_{p} \leq \sum_{k=1}^{\infty} \|(S_{2^{k}n}(f) - S_{2^{k-1}n}(f))^{(\lambda)}\|_{p} \leq C_{3} \left(\lambda_{n}E_{n}(f)_{p} + \sum_{i=n+1}^{\infty} i^{-1}\lambda_{i}E_{i}(f)_{p}\right).$$

Remark 3.1. Similar result for trigonometric case was obtained by A.I. Stepanets and E.I. Zhukina [16].

Theorem 3.2. Let $\{\lambda_n\}_{n=0}^{\infty}$ be a nonnegative, nondecreasing, tending to infinity and concave sequence, $1 , <math>f \in L^p[0,1)$ and the series $\sum_{k=1}^{\infty} k^{1/p-1} \lambda_k E_k(f)_p$ converges. Then there exists $f_p^{(\lambda)}$ that is equivalent to $f^{(\lambda)} \in C^*[0,1)$ and $\lim_{n\to\infty} \|f^{(\lambda)} - S_n(f^{(\lambda)})\|_{\infty} = 0$.

Proof. From the conditions of Theorem 3.2 it follows that $\sum_{k=1}^{\infty} k^{-1} \lambda_k E_k(f)_p < \infty$ and by Theorem 3.1 there exists $f_p^{(\lambda)} \in L^p[0,1)$. For the proof of convergence of the series $\sum_{n=1}^{\infty} n^{1/p-1} E_n(f_p^{(\lambda)})_p$ we use Theorem 3.1 and change the order of summation as follows (1/p + 1/p' = 1)

$$\sum_{n=1}^{\infty} n^{1/p-1} E_n(f_p^{(\lambda)})_p \le C_1 \sum_{n=1}^{\infty} n^{-1/p'} \lambda_n E_n(f)_p + C_1 \sum_{n=1}^{\infty} n^{-1/p'} \sum_{k=n}^{\infty} \frac{\lambda_k E_k(f)_p}{k}$$
$$= C_1 \sum_{n=1}^{\infty} n^{1/p-1} \lambda_n E_n(f)_p + C_1 \sum_{k=1}^{\infty} \sum_{n=1}^k n^{1/p-1} \frac{\lambda_k E_k(f)_p}{k} \le$$
$$\le C_2 \left(\sum_{n=1}^{\infty} n^{1/p-1} \lambda_n E_n(f)_p + \sum_{k=1}^{\infty} k^{1/p-1} \lambda_k E_k(f)_p \right) < \infty.$$

By Lemma 2.3 $f_p^{(\lambda)}$ is equivalent to $f^{(\lambda)} \in C^*[0,1)$. Using inequalities of Lemma 2.3 and Theorem 3.1 we obtain

$$\|f^{(\lambda)} - S_n(f^{(\lambda)})\|_{\infty} \le C_3 \left(n^{1/p} E_n(f_p^{(\lambda)})_p + \sum_{j=n+1}^{\infty} j^{1/p-1} E_j(f_p^{(\lambda)})_p \right) \le \\ \le C_3 n^{1/p} \left(\lambda_n E_n(f)_p + \sum_{k=n+1}^{\infty} k^{-1} \lambda_k E_k(f)_p \right) + \\ + C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{i=j+1}^{\infty} i^{-1} \lambda_i E_i(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{i=j+1}^{\infty} i^{-1} \lambda_i E_i(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{i=j+1}^{\infty} i^{-1} \lambda_i E_i(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{i=j+1}^{\infty} i^{-1} \lambda_i E_i(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{i=j+1}^{\infty} i^{-1} \lambda_i E_i(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{i=j+1}^{\infty} i^{-1} \lambda_i E_i(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{i=j+1}^{\infty} i^{-1} \lambda_i E_i(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{i=j+1}^{\infty} i^{-1} \lambda_i E_i(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{i=j+1}^{\infty} i^{-1} \lambda_i E_i(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{j=j+1}^{\infty} i^{-1} \lambda_j E_j(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{j=j+1}^{\infty} i^{-1} \lambda_j E_j(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{j=n+1}^{\infty} i^{-1} \lambda_j E_j(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{j=n+1}^{\infty} i^{-1} \lambda_j E_j(f)_p \right) \le C_3 n^{1/p} \lambda_n E_n(f)_p + \\ = C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \left(\lambda_j E_j(f)_p + \sum_{j=n+1}^{\infty} i^{-1} \lambda_j E_j(f)_p \right)$$

(3.2)
$$+ 2C_3 \sum_{k=n+1}^{\infty} k^{1/p-1} \lambda_k E_k(f)_p + C_3 \sum_{j=n+1}^{\infty} j^{1/p-1} \sum_{i=j}^{\infty} i^{-1} \lambda_i E_i(f)_p.$$

Denote the last term in (3.2) by *I*. Then

$$I = C_3 \sum_{i=n+1}^{\infty} \sum_{j=n+1}^{i} j^{1/p-1} i^{-1} \lambda_i E_i(f)_p \le C_4 \sum_{i=n+1}^{\infty} i^{1/p-1} \lambda_i E_i(f)_p.$$

Thus, we have

(3.3)
$$||f^{(\lambda)} - S_n(f^{(\lambda)})||_{\infty} \le C_5 \left(n^{1/p} \lambda_n E_n(f)_p + \sum_{k=n+1}^{\infty} k^{1/p-1} \lambda_k E_k(f)_p \right).$$

Due to Lemma 2.2 the estimate

$$n^{1/p}\lambda_n E_n(f)_p \le C_6 \sum_{k=\lfloor n/2 \rfloor}^n k^{1/p-1}\lambda_k E_k(f)_p, \quad n \in \mathbb{N},$$

holds and the right-hand side of (3.3) tends to zero as $n \to \infty$.

For $\lambda_n = n^{\alpha}$, $\alpha > 0$, $n \in \mathbb{Z}_+$, denote $f_p^{(\lambda)}$ by $D_p^{\alpha} f$. Corollary 3.1 is also new.

Corollary 3.1. Let $0 < \alpha \leq 1, 1 < p < \infty, f \in L^p[0,1)$ and the series $\sum_{k=1}^{\infty} k^{\alpha+1/p-1} E_k(f)_p$ converges. Then there exists $D_p^{\alpha} f$ that is equivalent to $\varphi \in C^*[0,1)$ and $\lim_{n\to\infty} \|S_n(D_p^{\alpha} f) - \varphi\|_{\infty} = 0.$

References

- Agaev, G.N., N.Ya. Vilenkin, G.M. Dzhafarli and A.I. Rubinstein, Multiplicative systems of functions and harmonic analysis on zerodimensional groups, ELM, Baku, 1981. (in Russian)
- [2] Bary, N.K., A Treatise on Trigonometric Series. Vol.2, Macmillan, New York, 1964.
- [3] Butzer, P.L. and H.J. Wagner, Walsh series and the concept of a derivative, Applic. Anal., 3 (1973), 29–46.
- [4] Butzer, P.L. and H.J. Wagner, On dyadic analysis based on the pointwise dyadic derivative, Analysis Math., 1 (1975), 171–196.
- [5] Fine, N.J., On the Walsh functions, Trans. Amer. Math. Soc., 65 (1949), 372–414.

- [6] Golubov, B.I., Best approximations of functions in the L^p metric by Haar and Walsh polynomials, Math. USSR-Sb., 16 (1972), 265–285.
- [7] Golubov B.I., A.V. Efimov and V.A. Skvortsov, Walsh Series and Transforms, Kluwer, Dordrecht, 1991.
- [8] Golubov B.I., On some properties of fractional dyadic derivative and integral, Analysis Math., 32 (2006), 173–205.
- [9] He Zelin, The derivatives and integrals of fractional order in Walsh-Fourier analysis with applications to approximation theory, J. Approx. Theory, 39 (1983), 361–373.
- [10] Krasnosel'skii, M.A. and Ya.B. Rutickii, Convex Functions and Orlicz spaces, Noordhoff, Groningen, 1961.
- [11] Konyushkov, A.A., Best approximations by trigonometric polynomials and the Fourier coefficients, *Mat. Sbornik*, 44 (1958), 53–84 (in Russian).
- [12] Paley, R.E.A.C., A remarkable system of orthogonal functions, Proc. London Math. Soc., 34 (1932), 241–279.
- [13] Schipp, F., On L^p-norm convergence of series with respect to product systems, Analysis Math., 2 (1976), 49–64.
- [14] Schipp, F., W.R. Wade and P. Simon, Walsh Series. An Introduction to Dyadic Harmonic Analysis, Akadémiai Kiadó, Budapest, 1990.
- [15] Simon, P., Verallgemeinerte Walsh-Fourierreihen. II, Acta math. Acad. Sci. Hung., 27 (1976), 329–341.
- [16] Stepanets, A.I. and E.I. Zhukina, Inverse theorems for the approximation of (ψ, β) -differentiable functions, Ukrainian Math. J., 41 (1989), 953–959.
- [17] Vilenkin, N.Ya., On a class of complete orthonormal systems, Amer. Math. Soc. Transl., 28 (1963), 1–35.
- [18] Volosivets, S.S., Approximation of functions of bounded p-fluctuation by polynomials with respect to multiplicative systems, Analysis Math., 21 (1995), 61–77 (in Russian).
- [19] Young, W.S., Mean convergence of generalized Walsh-Fourier series, Trans. Amer. Math. Soc., 218 (1976), 311–320.

B.I. Golubov

Moscow Institute of Physical Technologies (State University) Dolgoprudnyi, Moscow region Russian Federation golubov@mail.mipt.ru

S.S. Volosivets

Saratov state university Saratov Russian Federation VolosivetsSS@mail.ru