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Abstract. In the paper the notion of dyadic A-derivative is introduced for
nonnegative, nondecreasing and concave sequence {\, }n=o. Analogues of
Bernstein inequality for Walsh polynomials and of inverse approximation
theorem are established. Also the uniform convergence of Walsh—Fourier
series to this \-derivative is studied.

1. Inroduction

Let us consider the function defined on the interval [0,1) by
70(7) = Xjo,1/2)(%) = X[1/2,1), Wwhere x g is the indicator of a set E. We extend it
to the real line by 1-periodicity and set ry(z) = ro(2¥z), k € Z4 = {0,1,...},
x € R. The functions ry(x) are called Rademacher functions.

Every number n € N = {1,2,...} has a dyadic expansion n = Zf:o 2%,
where ¢, = 1 and ¢; are equal to O or 1 for 0 <1i < k — 1. We set

k k—1
wn(2) = [[ri(@))* = raa) [T (i)
i=0 i=0
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in this case and wp(z) = 1. The system {w, (z)}>2, is called Walsh system.
It is well known that Walsh system is orthonormal and complete in L'[0,1),
other its properties see in monographs [7] written by author, A. V. Efimov and
V. A. Skvortsov and [14] written by F. Schipp, W. R. Wade and P. Simon.
Also we note the paper of N. Fine [5].

For f € L'[0,1) the Walsh-Fourier coefficients and partial sums are defined
by

|
—

n

Fk) = / f@ywn@)da, keZi Su(f)) =Y. Fk)ue(a), neN.
0

El
Il

0

The notions of strong and pointwise dyadic derivatives D, and D (D, is
defined in L?[0, 1)) were introduced by P. L. Butzer and H. J. Wagner [3], [4].
They used a specific difference operator in these definitions and obtained the
characteristic property Dw,, = nw,, n € Zy. Another approach of He Zelin
[9] allows to define the derivative of arbitrary order o > 0. Relations between
different definitions of dyadic derivative and integral see in [8].

As usually, the space LP[0,1), 1 < p < oo, consists of all measurable func-
tions f such that [|f[|F = fol |f(z)|P de < co. Further we consider the space
C*]0, 1) of dyadically continuous functions as a completion of the set P of poly-
nomials with respect to {wy }52, in the uniform norm || f{|ec = sup,eo1) [f(2)]
and LP[0,1) = C*[0,1) for p = oo (with the exception of Theorem 1.2).

Let P, = {f € L'[0,1) : f(k) = 0,k > n}, n € N. Then for f € L?[0,1),
1 < p < o0, one can define the n-th best approximation by Walsh polynomials

En.(f)p =mf{||f —tullp : tn € Pn}, neN.

It is known that best approximation by Walsh polynomials and dyadic modulus
of continuity are equivalent in a certain sense (the corresponding C. Watari—
A. V. Efimov result see in [14, Ch. 5, Theorem 2] and [7, Ch.10, Theorem
10.5.1]). Therefore we will use only the best approximation.

Let {\,}22, be a nondecreasing and nonnegative sequence such that

limy, 00 A, = +00. If f € LP[0,1), p € [1,00], and the series Y~ A f(R)wn ()
is the Walsh-Fourier series of a function ¢ € LP[0,1), then ¢ is called the
A-derivative of f in LP[0,1) (notation ¢ = fék)). If @ is independent of p,
e.g., for Walsh polynomials, we write f(). Similar generalized derivatives in
the trigonometric case were studied by A. I. Stepanets and his students (see,
e.g., [16]). For A\, = n*, a > 0, A-derivative reduces to fractional dyadic
derivative of order « studied in a more general setting in [9].

Further one famous result will be used. Theorem 1.1 is an analogue of
M. Riesz theorem (see [2, Ch. 8, Sect. 14 and 20]) and is due to R. E. A. C. Pa-
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ley [12]. Its proof may be found in [7, Ch. 5] and in [14, Sect. 3.3]. A gen-
eralization of this result in the case of general Vilenkin systems was obtained
independently by F. Schipp [13], P. Simon [15] and W.-S. Young [19].

Theorem 1.1. Let f € LP[0,1), 1 <p < oco. Then ||f — Sp()llp < CEL(f)p,
n € N. In particular, lim,_,o || f — Sn(f)|lp = 0.

In [6] the fiollowing analogue of A. A. Konyushkov—S. B. Stechkin embed-
ding theorem (see [11]) was obtained.

Theorem 1.2. Let f € LP[0,1), 1 < p < ¢ < 0o and the series
S nt/P=Ya1E, (f), converges. Then f € L1]0,1) and

En(f)q < C(p,q) (nl/p_l/qEn(f)p+ fj kl/P—l/q—lEuf)p), neN.
k=n+1

In the Lemma 2.3 below we extend this theorem on the case ¢ = co.

In the present paper we study sufficient conditions for the continuity of fng)
and uniform convergence of {5, ( ,SA) VI,
theorem is proved for A-derivative in LP[0,1).

Also the inverse approximation

2. Auxiliary propositions

Lemma 2.1. Let {\,}2, be a nonnegative, nondecreasing and concave se-
quence, 1 < p < oco. Then for a polynomial tor = Zi:_ol crwy, € Por, 1 € Zy,

the inequality Htgf)Hp < Charlltar]|p holds.
Proof. Let D,(x) := Z;S wy(z) and F,(z) := >} ; Di(z)/n, n € N,
Dy(x) = 0. Then summation by parts gives
271 271
A, = Z AW = Z (/\k—l — )\k)Dk + Aor_1Dor =: I + I5.
k=0 k=1

Since Dox () = 2"X[0,1/27) () (see [14, Sect. 1.2] or [7, Sect. 1.4]), one has

(2.1) 1La]ls < Aar—y < Aor.
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On the other hand, using summation by parts again we derive

2" —2
=Y MMk + 1) Fepr + (a1 — Aor)(27 = 1) For g,
k=0

where A2\, = A\p — 2M\p 11 + Apyo. It is known that ||Fy||; are bounded (see
[14, Sect. 1.8]). Applying summation by parts we have

2" —1 2" -2
k= Aeg1) = > (B +1)APN + 27 (Nor—1 — Aor)
k=0 k=0
or
2" -2

> (1) AN+ (2" = 1) (A1 —A2r) = Ao —Aar — (Aar—1 —Aor) = Ao —Aar_1.
k=0

Therefore, by the concavity of {\,}22,

2" -2
il <) (b + DAL Frpalls + (27 = 1)(Aar — A1) [ Far a1 <
k=0
(2.2) < CyNar—1 — o) < Chdar.

Thus, [|[A]1 < (Ci+1)Aer by (2.1) and (2.2). Finally, the equality tor*A,.(z) =
= Zi;?)l Arcrwi(x) holds (see the definition of dyadic convolution in [14,
Sect.1.3] and formula (45) for its Walsh-Fourier coefficients in the same place).
Applying Lemma 1 from [14, Sect. 4.4] we obtain

A
£ 11 = lltor % Arllp < lltor 1Al < (Cr + D) Aor|[t2r - ]

Remark 2.1. For A\, = n%, a > 0, the inequality of Lemma 2.1 is known in a
more general setting (see [9, Lemma 1] and [18, Lemma 5]).

The following lemma is known at least in the case of concave functions (see
[10, §1, (1.20)]. The proof is given for the utility of a reader.

Lemma 2.2. If {\,}>2, is a nonnegative, nondecreasing and concave se-
quence, then Ao, < 2\,, n € N.

Proof. The concavity of {)\,}>, means that A2)\, ; < 0 for all n € N,
whence

>\n+1_)\n§>\n_>\nflS"'S)\k_)\kfly k=1,...,n.
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By summing similar inequalities one has

2n

Z (A — Ak—1) SZO\k_/\k—l)v n €N,

k=n+1 k=1
and )\gn < 2)\77, — )\0 < 2)\77, |
Lemma 2.3 is a revision of Theorem 1.2.

Lemma 2.3. Let 1 < p < oo, f € L?[0,1), and the series > oo, n*/P" E, (f),
converges. Then f is equivalent to fy € C*[0,1) (i.e. f(x) = fo(z) a.e. on
[0,1)) and

(2:3) [lfo = Sa(F)lloe < Cp) (n”pEn<f>p+ > k”“mf)p), nen.

k=n+1
In particular, there exists lim, o0 || fo — Sn(f)]|ee = 0.

Proof. It is known the following Nikol’skii type inequality for Walsh system
(see [1, Ch. 4, §9, Lemma 1]):

(2.4) [tnlloo < C1nYP|tallp, nEN, t,€P,.

By Theorem 1.1 the equality

(2.5) F=5u(F)+ > (Sarnlf) = Sar-1n(f))

k=1

is valid, where the series converges in the space L”[0,1). From (2.4) it follows
that

D 182t (f) = Sax-1n(Hlloo < C1 D (20) 2|1 Sorp (f) = Sar-rn(f)lp <
k=1

k=1

(2.6)

<201 ) (25 n) P By (f)p < Co | n/PEL(F)p+ Y VP ER(S)
k=1 j=n+1

Since Si(f) € C*[0,1) for all £ € N and C*[0,1) with the norm || - || is a
Banach space, the series in right-hand side of (2.5) converges uniformly to a
function fy € C*[0,1). But earlier it was proved that the series in right-hand
side of (2.5) converges to the function f in LP[0,1). Therefore, f(z) = fo(x)
a.e. on [0,1). From (2.5) and (2.6) the inequality (2.3) follows. The last
statement of Lemma 2.3 is proved as in Theorem 3.2. |
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3. Main results

Theorem 3.1. Let {\,}52, be a nonnegative, nondecreasing, tending to in-
finity and concave sequence, 1 < p < oo, f € LP[0,1) and the series

S re kT ALE(f)p converges. Then there exists fz(,)‘) and
En(f))p <C<A,LEH Hp + Z k™ lAkEk(f),,>, neN.
k=n+1
Proof. Since f € LP[0,1), 1 < p < oo, by Theorem 1.1 the series S, (f) +

+ > p (Sorp (f) = Sar-1,(f)) converges in LP[0,1) to f. Let us consider the
series

(3.1) (SN +D (Sarn(f) = Sar-1,(F)P.
=1

By Lemmas 2.1 and 2.2 the estimate
10532 (f) = Sar-1n(F) My < Codgin|Saen(f) = Sar-1n (£l <

< Crdorp ([[f = Sorn(F)llp + [1f — Sar-1,(f)llp) < 2C1 Ak Eor-1,,(f)p
holds. Since for k > 2

2k—1p
Eyin(f)p<Co Y i Ei(f)p
i=2k—2p41
we have
D 1(Seen(f) = Sar-1 ()Ml < Cs (AnEn<f>p+ > ilAiEz—(f)p) :
k=1 1=n+1

Therefore, the series (3.1) converges in L?[0, 1) and its partial sum

N
DY+ (Sokn(F) = Sar1n (NP = (Sawa(FHD

has Walsh—Fourier coefficients )\jf(j) for 0 < j < 2N¥n — 1. Thus, there exists
¢ € LP[0,1) such that imy e [[(Sovn(£))N = ¢ll, = 0 and $(5) = A; f(4),
j € Z. By definition, ¢ = f,(,k) and
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En(f)p S 1Y = SalF) M p < D 1(Sarn(F) = Sar-1a ()Ml <

< 03 (AnEn(f)p + i i_l)‘iEi(f)P> ' u

i=n+1
Remark 3.1. Similar result for trigonometric case was obtained by A.I. Stepa-
nets and E.I. Zhukina [16].

Theorem 3.2. Let {\,}32, be a nonnegative, nondecreasing, tending to in-
finity and concave sequence, 1 < p < 0o, f € LP[0,1) and the series

S oo KYPTINLER(f), converges. Then there exists FN that is equivalent to
fA) e c*0,1) and lim, 00 | — S (fFM)]|0e = 0.

Proof. From the conditions of Theorem 3.2 it follows that

S kT'AER(f), < oo and by Theorem 3.1 there exists f\") € LP[0,1).
For the proof of convergence of the series 3°7  n/P=1E, (f{"), we use The-
orem 3.1 and change the order of summation as follows (1/p + 1/p’ = 1)

S > : > P ME
S P EL (V) < CLY nT VPN EL(f)p + Ca Zn’l/p > MBSy

n=1 n=1 k=n k
B (f
—clznw "AnEn, (f)p+clzz M1 Z( b
n=1 k=1n=1
Cy (Z P INLEL (f)p + Zkl/pl)\kEk(f)p) < 0.
n=1 k=1

By Lemma 2.3 f(’\) is equivalent to f*) € C*[0,1). Using inequalities of
Lemma 2.3 and Theorem 3.1 we obtain

1FY = S (fV)loo < Cs | nPEL(FM), Z FPTE (), | <
Jj=n+1

< CSnl/p (AnEn(f)p + Z kl)\kEk(f)P> +

k=n+1
+Cs Y G INE (Np+ Y iTNE(S), | < Can'PAEL(f)+
j=n+1 i=j+1

(32) 4205 Y EYPTINE(S), +Cs Z it 12 i INE(f
k=n+1 j=n+1
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Denote the last term in (3.2) by I. Then

I=Cs > Y GYPNTINE(), <Ca Y iYPTINE(S),
1=n+1j=n+1 1=n-+1

Thus, we have

3.3) /N = Su(f M)l < Cs <n1/pAnEn<f>p+ > k”“AkEk<f>p>.

k=n+1

Due to Lemma 2.2 the estimate

n

nPXEn(f)p <Cs Y EYPTINER(f)p, mEN,
k=[n/2]

holds and the right-hand side of (3.3) tends to zero as n — co. |

For A\, = n% a > 0, n € Z,, denote fi(,A) by Dy f. Corollary 3.1 is also
new.

Corollary 3.1. Let 0 < a < 1, 1 < p < oo, f € LP[0,1) and the series
Sr  kOTYPTLEL(f), converges. Then there exists Dy f that is equivalent to
@ € C*[0,1) and lim,, o [|Sn(Dy f) — ¢l = 0.
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