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Abstract. We describe two type of wavelet tight frames associated with
the generalized Walsh functions: (1) Parseval frames for L2-spaces on
Vilenkin groups, (2) finite tight frames for the space �2(ZN ). In particular
cases these tight frames coincide with orthogonal wavelet bases associated
with the classical Walsh functions.

1. Inroduction

Wavelet tight frames, from the works of Ron and Shen [35, 36], have been a
productive research area, both in theory and applications, particularly because
the applications to areas as diverse as signal processing, quantum information
theory, multivariate orthogonal polynomials and splines, and compressed sens-
ing (see [4, 5, 25, 41] and the references therein). Let us recall that a family
{gm : m ∈ M} is a frame for a Hilbert space H if there exist positive constants
A and B such that, for every f ∈ H,

A‖f‖2 ≤
∑

m∈M

|〈f, gm〉|2 ≤ B‖f‖2.

The constants A and B are known respectively as lower and upper frame
bounds. A frame is called a tight frame if the lower and upper frame bounds are
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equal; A = B. A frame is a Parseval frame if A = B = 1. It is well-known that
a sequence {gm} is a Parseval frame for H if and only if f =

∑
m∈M 〈f, gm〉gm

for every f ∈ H. Therefore, the concept of a Parseval frame generalizes the
concept of an orthonormal basis to systems that do not have the minimal prop-
erty.

The Walsh functions can be identified with characters of the Cantor group
(the dyadic or 2-series local field). In the introduction to the book [1] is noted
that this fact was first recognized by Gelfand in 1940s, who offered to Vilenkin
[40] study series with respect to characters of a large class of abelian groups
which includes the Cantor group as a special case. Fine [20] observed in-
dependently that Walsh functions are the characters of the compact Cantor
(dyadic) group. Orthogonal wavelets on the Cantor group have been initiated
in [26]; recent results in this directions including some orthogonal wavelets on
Vilenkin groups can be found in [14]-[17]. Wavelet frames for L2-space on the
Cantor group are studied in [11, 18], where the Parseval frame related to the
Walsh-Dirichlet kernel is given, as well as analogs of Cohen’s condition and
Daubechies’ admissible condition. In a recent paper [2], the connection be-
tween discrepancy theory and Parseval frames defined by Walsh matrices is
discussed.

Let us introduce notation and recall some basic definitions. The set of in-
tegers, non-negative integers, positive integers, and non-negative real numbers
will be denoted by Z, Z+, N, and R+, respectively. Let p ∈ N, p ≥ 2. The
Vilenkin group Gp consists of sequences x = (xj), where xj ∈ {0, 1, . . . , p− 1}
for j ∈ Z and with at most finite number of negative j such that xj �= 0. The
zero sequence is denoted by θ. If x �= θ, then there exists a unique k = k(x)
such that xk �= 0 and xj = 0 for all j < k. The group operation ⊕ on Gp is
defined as the coordinatewise addition modulo p,

(zj) = (xj)⊕ (yj) ⇐⇒ zj = xj + yj (mod p) for all j ∈ Z;

the topology on Gp is introduced via the complete system of neighbourhoods
of zero

Ul = {(xj) ∈ Gp : xj = 0 for all j ≤ l}, l ∈ Z.

The equality z = x� y means that z⊕ y = x. For p = 2 we have x⊕ y = x� y
and the group G2 coincides with the locally compact Cantor group C.

Notice that for p = 2 the subgroup U := U0 is isomorphic to the com-
pact Cantor group C0; i.e., the topological Cartesian product of a countable
set of cyclic groups with discrete topology. It is well known that C0 is a per-
fect nowhere dense totally disconnected metrizable space, and therefore U0 is
homeomorphic to the Cantor ternary set.
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One can show that G := Gp is self-dual. The duality pairing on G takes
x = (xj) and ω = (ωj) to

χ(x, ω) = exp


2πi

p

∑
j∈Z

xjω1−j


 .

There exists a Haar measure on G normalized so that the measure of U is 1.
For simplicity, we shall denote this measure by dx. As usual, the Lebesgue
space L2(G) consists of all square integrable functions on G. For each function

f ∈ L1(G) ∩ L2(G), its Fourier transform f̂ ,

f̂(ω) =

∫

G

f(x)χ(x, ω) dx, ω ∈ G,

belongs to L2(G). The Fourier operator

F : L1(G) ∩ L2(G) → L2(G), Ff = f̂ ,

extends uniquely to the whole space L2(G). See [23] and [37] for further details
about harmonic analysis on the group G.

Consider the mapping λ : G → R+ defined by

λ(x) =
∑
j∈Z

xjp
−j , x = (xj) ∈ G.

Take in G a discrete subgroup H = {(xj) ∈ G : xj = 0 for j > 0}. The image
of the subgroup H under λ is the set of non-negative integers: λ(H) = Z+. For
each k ∈ Z+, let h[k] denote the element of H such that λ(h[k]) = k (clearly,
h[0] = θ). The generalized Walsh functions on G can be defined by

Wk(x) = χ(x, h[k]), x ∈ G, k ∈ Z+.

So, these functions are characters for G. Also, it is well-known that {Wk :
: k ∈ Z+} is an orthonormal basis for L2(U) (when p = 2, we have the classical
Walsh system).

The first results on orthogonal wavelets for the Vilenkin group G were
obtained in [6]. In this paper, for any integer p, n ≥ 2, the compactly supported
scaling functions are defined on G, each of which satisfies a scaling equation
with pn coefficients and generates an MRA for L2(G). Moreover, a method to
estimate the moduli of continuity of scaling functions is given in [6] which leads
to the sharp estimates for small p and n (cf. [33]). In addition, it is shown that
the conception of adapted multiresolution analysis suggested by Sendov [39] is
applicable for orthogonal wavelets on G. Further results for wavelets defined
on the Vilenkin/Cantor groups are reflected in [14, 17].
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The aim of this paper is to present a review of wavelet tight frames related
to the generalized Walsh functions. In Section 2, we define an MRA-based
tight frame on G and consider the corresponding algorithm for constructing
Parseval frames. This section reflects recent results from [13], [14], and [18].
Then, in Section 3, we use the generalized Walsh functions to define Parseval
frames in the space �2(ZN ) with N = pn (cf. [8, 10, 19, 22, 41]).

2. Wavelet tight frames for L2(G)

As above, we let N = pn. We define an automorphism A ∈ AutG by
the formula (Ax)j = xj+1. It is easy to see that the quotient group H/A(H)
contains p elements. The sets

Un, s := A−n(h[s])⊕A−n(U), 0 ≤ s ≤ N − 1,

are cosets of the subgroup A−n(U) in the group U . For every 0 ≤ α ≤ N − 1
the Walsh function Wα is constant on each Un, s.

The Vilenkin-Chrestenson transform translates an arbitrary vector b =
= (b0, b1, . . . , bN−1) of the space CN into a vector a = (a0, a1, . . . , aN−1) with
components

(2.1) aα =
1

N

N−1∑
s=0

bsWs(A
−nh[α]), 0 ≤ α ≤ N − 1.

The inverse transform acts by the formula

(2.2) bs =
N−1∑
α=0

aα Wα(A−nh[s]), 0 ≤ s ≤ N − 1.

These transforms can be realized by the fast algorithms (see, for instance, [3],
[23, Sect. 11.2], [37, p. 463]).

A mask mb associated with a vector b has the form

mb(ω) =

N−1∑
k=0

akWk(ω), ω ∈ G,

where the coefficients ak are defined by (2.1). A compactly supported function
ϕ ∈ L2(G) is a refinable function with the mask mb if it satisfies the equation

(2.3) ϕ(x) = p
N−1∑
k=0

akϕ(Ax � h[k]),

or, in the Fourier domain, ϕ̂(ω) = mb(A
−1ω)ϕ̂(A−1ω).



Wavelet tight frames in Walsh analysis 165

For any f ∈ L2(G) we let

fj,k(x) := pj/2f(Ajx� h[k]), j ∈ Z, k ∈ Z+.

Given Ψ := {ψ(1), . . . , ψ(r)} ⊂ L2(G) with r ≥ p, we define the wavelet
system as

X(Ψ) := {ψ(ν)
j,k : 1 ≤ ν ≤ r, j ∈ Z, k ∈ Z+}.

The system X(Ψ) is a Parseval frame (or a wavelet tight frame) for L2(G) if

∑
j∈Z

∑
k∈Z+

r∑
ν=1

|〈f , ψ
(ν)
j,k 〉|

2 = ‖f‖2

for all f ∈ L2(G). This is equivalent to f =
∑

g∈X(Ψ)〈f , g〉g for all f ∈ L2(G).

Now, we let N1 := pn−1 and denote by F (p, n) the set of all vectors b =
= (b0, b1, . . . , bN−1) of the space CN such that

(2.4) b0 = 1, |bl|2 + |bl+N1 |2 + · · ·+ |bl+(p−1)N1
|2 ≤ 1,

for all 0 ≤ l ≤ N1−1. The following algorithm allows us to construct a Parseval
frame for L2(G) from any vector b ∈ F (p, n).

Algorithm A

• Step 1. Choose an arbitrary vector b = (b0, b1, . . . , bN−1) in F (p, n).

• Step 2. Compute aα, 0 ≤ α ≤ N − 1, by (2.1) and define

m0(ω) =
N−1∑
α=0

aαWα(ω).

• Step 3. Define ϕ ∈ L2(G) such that

(2.5) ϕ̂(ω) =

∞∏
j=1

m0(A
−jω), ω ∈ G.

• Step 4. Given r ≥ p find the Walsh polynomials

mν(ω) =

N−1∑
α=0

a(ν)α Wα(ω), 1 ≤ ν ≤ r,
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such that, for each ω ∈ G, the rows of the matrix M(ω) form an or-
thonormal system, where

M(ω) :=




m0(ω) m1(ω) . . . mr(ω)
m0(ω ⊕ δ1) m1(ω ⊕ δ1) . . . mr(ω ⊕ δ1)

...
...

...
...

m0(ω ⊕ δp−1) m1(ω ⊕ δp−1) . . . mr(ω ⊕ δp−1)




with δl ∈ U , λ(δl) = l/p, l = 0, . . . , p− 1.

• Step 5. Define ψ(1), . . . , ψ(r) as follows:

ψ(ν)(x) = p
N−1∑
α=0

a(ν)α ϕ(Ax� h[α]), 1 ≤ ν ≤ r.

Note that, according to Step 1 and Step 2,

p−1∑
l=0

|m0 (ω ⊕ δl)|2 ≤ 1, ω ∈ G.

Hence, by [13, Theorem 11], the function ϕ on Step 3 belongs to L2(G). Let
us show how to calculate the values ϕ̂(ω) for ω ∈ G. For each 0 ≤ s ≤ N − 1
we set

γ(i1, i2, ..., in) = bs,

if

s = i1p
0 + i2p

1 + · · ·+ inp
n−1, ij ∈ {0, 1, . . . , p− 1}.

Then for an integer l with the p -ary expansion

(2.6) l =

k∑
j=0

µjp
j , µj ∈ {0, 1, . . . , p− 1}, µk �= 0, k = k(l) ∈ Z+,

we define dl as follows

dl = γ(µ0, 0, 0, . . . , 0, 0), if k(l) = 0;

dl = γ(µ1, 0, 0, . . . , 0, 0)γ(µ0, µ1, 0, . . . , 0, 0), if k(l) = 1;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

dl = γ(µk, 0, 0, . . . , 0, 0)γ(µk−1, µk, 0, . . . , 0, 0) . . . γ(µ0, µ1, µ2, . . . , µn−2, µn−1),



Wavelet tight frames in Walsh analysis 167

if k = k(l) ≥ n − 1. Further, denote by M 0 the set of all positive integers
l ≥ N1 whose p -ary expansion (2.6) contains no n-tuple (µj , µj+1, . . . , µj+n−1)
coinciding with any of the n-tuples

(0, 0, . . . , 0, 1), (0, 0, . . . , 0, 2), . . . , (0, 0, . . . , 0, p− 1).

and set M = {1, 2, . . . , N1 − 1} ∪M 0. In particular, if n = 2 then

M =

{ k∑
j=0

µjp
j : µj ∈ {1, 2, . . . , p− 1}, k ∈ Z+

}
.

Proposition 2.1. Suppose that m0 and dl are defined as above. If the function
ϕ̂ is given by (2.5), then

(2.7) ϕ̂(ω) =




1, ω ∈ Un−1, 0,
dl, ω ∈ Un−1, l, l ∈ M,
0, ω ∈ Un−1, l, l /∈ M.

Proof. By definition, for each ω ∈ Un−1,0 we have A−jω ∈ Un,0 for all j ∈ N.
But m0(ω) ≡ 1 on Un,0. Using (2.5), we obtain the first equality in (2.7).
Further, since b ∈ F (p, n), we have

(2.8) bN1 = · · · = b(p−1)N1
= 0.

Now, take l ∈ N with expansion (2.6) and find

j0 = min{j : j ∈ N, p j−1 > l + 1}.

Then for any ω ∈ Un−1, l and j ≥ j0 we have A−jω ∈ Un,0 and hence
m0(A

−jω) = 1. Therefore, by (2.5) we obtain

(2.9) ϕ̂(ω) =

j0−1∏
j=1

m0(A
−jω), ω ∈ Un−1, l.

In the case l = µ0 (i.e. when k(l) = 0) in (2.6) we have j0 = 2, A−1ω ∈ Un,µ0

and A−jω ∈ Un,0. Thus, if l ∈ {1, 2, . . . , p− 1} and ω ∈ Un−1, l, then

ϕ̂(ω) = b1 = γ(µ0, 0, 0, . . . , 0, 0) = dl.

Further, if k(l) = 1 then

m0(A
−1ω) = γ(µ1, 0, 0, . . . , 0, 0) m0(A

−2ω) = γ(µ0, µ1, 0, . . . , 0, 0), . . . ,

and, hence, ϕ̂(ω) = dl. In general, from (2.5) it follows, that

l

pn+j−1
=

1

pn

(
µ0

pj−1
+ · · ·+ µj−2

p
+ µj−1 + µjp+ · · ·+ µkp

k−n

)
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for all j ∈ N. Beside, if ω ∈ Un−1, l then A−jω ∈ Un+j−1,l. For l /∈ M in view
of (2.8) among the factors in (2.9) there is zero. Moreover, if l ∈ M, then in
(2.9) we have

A−1ω ∈ Un,µk
A−2ω ∈ Un,µk−1+pµk

, . . . , A−j0ω ∈ Un,ν0
,

where

ν0 = µj0−1 + µj0p+ · · ·+ µkp
k−n.

Therefore, since m0 is H-periodic, we conclude that (2.7) is true. �

As a consequence of Proposition 2.1, we have

(2.10) ϕ̂(ω) = 1Un−1,0
(ω) +

∑
l∈M

dl1Un−1,0
(ω �A1−nh[l]), ω ∈ G,

where 1E is the characteristic function of a set E. A formal application of the
inverse Fourier transform to (2.10) gives the expansion

(2.11) ϕ(x) = (1/pn−1)1U (A
1−nx)(1 +

∑
l∈M

dlWl(A
1−nx)), x ∈ G.

A few examples of expansion (2.11) are given in [6, 14, 17, 33]. Example 4.3
in [17] shows that, in general, this expansion does not converge absolutely.
The necessary and sufficient conditions on the mask of equation (2.3) ensuring
that the refinable function ϕ will not be a step function are contained in [14,
Theorem 3.9].

Example 2.2. For the case p = 2, n = 3, we obtain from (2.11) the following
step functions:

1) ϕ(x) = (1/4)1[0,1)(A
−2x) (b1 = 0),

2) ϕ(x) = (1/4)1[0,1)(A
−2x)

(
1 + b1W1(A

−2x)
)

(b1 �= 0, b2 = b3 = 0),

3) ϕ(x) = (1/4)1[0,1)(A
−2x)

(
1 + b1W1(A

−2x) + b1b2W2(A
−2x)

)

(b1b2 �= 0, b3 = b4 = b5 = 0),

4) ϕ(x) = (1/4)1[0,1)(A
−2x)

(
1 + b1W1(A

−2x) + b1b3W3(A
−2x)

)

(b1b3 �= 0, b2 = b6 = b7 = 0),

5) ϕ(x) = (1/4)1[0,1)(A
−2x)(1 + b1W1(A

−2x) + b1b2W2(A
−2x)+

+b1b3w3(A
−2x) + b1b3b6W6(A

−2x))

(b1b2b3b6 �= 0, b4 = b5 = b7 = 0).
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In connection with Example 2.2, see [31, Example 3] and examples of refin-
able step functions in [28, 33].

Let us set
b(ν)s = mν(A

−nh[s]), 0 ≤ s ≤ N − 1.

Then, by Step 1, we have

b
(0)
0 = 1, |b(0)l |2 + |b(0)l+N1

|2 + · · ·+ |b(0)l+(p−1)N1
|2 ≤ 1, 0 ≤ l ≤ N1 − 1.

According to Step 4, for each l, we must find

b
(1)
l , b

(1)
l+N1

, . . . , b
(1)
l+(p−1)N1

, . . . , b
(r)
l , b

(r)
l+N1

, . . . , b
(r)
l+(p−1)N1

,

such that the matrices

Ml =




b
(0)
l b

(0)
l+N1

. . . b
(0)
l+(p−1)N1

b
(1)
l b

(1)
l+N1

. . . b
(1)
l+(p−1)N1

...
...

...
...

b
(r)
l b

(r)
l+N1

. . . b
(r)
l+(p−1)N1




satisfy the condition MlM∗
l = I, where M∗

l is the Hermitian conjugate matrix
of Ml and I denotes the identity matrix. To find such matrices Ml can be
used the methods given in [13].

Application of the unitary extension principle (cf. [13], [30, Sect. 1.8], [38])
gives the following

Theorem 2.3. Let Ψ = {ψ(1), . . . , ψ(r)} be the wavelet system determined in
Algorithm A. Then X(Ψ) is a Parseval frame for L2(G).

Remark 2.1. If a refinable function ϕb associated with the mask mb satisfies
equation (2.3) and generates a Parseval frame for L2(G), then b ∈ F (p, n) (see
[13, Theorem 10]).

We write b ∈ G(p, n), if for a vector b ∈ F (p, n) all inequalities in (2.4)
become equalities. Further, denote byW (p, n) the set of all vectors b ∈ G(p, n)
for which

V (ϕb) := {ϕb(· � h) : h ∈ H}

is an orthonormal system in L2(G).

Remark 2.2. Algorithm A with b ∈ G(p, n) in Step 1 can be applied for r =
p−1 and Theorem 2.2 is still valid in this case (see [13]). Moreover, it is known
that Algorithm A with b ∈ W (p, n) leads to orthogonal MRA-based wavelets
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ψ(1), . . . , ψ(p−1) in L2(G). There are three ways to verify the orthogonality of
V (ϕb): (a) the modified Cohen criterion [7, 27], (b) the blocking sets criterion
[7, 31, 33], and (c) the N -valid trees method [28]. For instance, if a vector
b = (b0, b1, . . . , bN−1) lies in G(p, n) and bl �= 0 for all 1 ≤ l ≤ N1 − 1, then
b ∈ W (p, n) (see [7, Example 5]).

3. Finite tight frames for the space �2(ZN)

The notation used in this section is consistent with some previous publica-
tions (e.g., [8, 21]) on related topics. Let ZN denote the set {0, 1, . . . , N − 1}
with N = pn. For a, b ∈ ZN we define

a⊕p b :=
n−1∑
ν=0

|aν − bν | p ν ,

where

a =

n−1∑
ν=0

aνp
ν , b =

n−1∑
ν=0

bνp
ν , aν , bν ∈ {0, 1, . . . , p− 1}.

As usual, c = a�p b means that a = c⊕p b.

Let us denote by �2(ZN ) the space of complex N -periodic sequences

x = (. . . , x(−1), x(0), x(1), x(2), . . . ), x(j +N) = x(j), j ∈ Z.

An arbitrary x from �2(ZN ) is given if the values of x(j) are known for j ∈ ZN ;
therefore, the sequence x can be identified with the vector

(x(0), x(1), . . . , x(N − 1)).

Hence, the space �2(ZN ) has an inner product defined by

〈x, y〉 :=
N−1∑
j=0

x(j)y(j)

and the resulting norm ‖x‖ =
√
〈x, x〉.

Let εp = exp(2πi/p). The generalized Walsh functions∗ w
(N)
0 , w

(N)
1 , . . . , w

(N)
N−1

for the space �2(ZN ) can be defined by

∗These functions are sometimes called the Chrestenson functions or the Chrestenson–Levy
functions (see e.g. [3], [23]).
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w
(N)
k (l) = ε

σ(k,l)
p , w

(N)
k (j) = w

(N)
k (j +N), j ∈ Z,

where σ(k, l) =
∑n−1

ν=0 kν ln−ν−1 and

k =
n−1∑
ν=0

kνp
ν , l =

n−1∑
ν=0

lνp
ν , kν , lν ∈ {0, 1, . . . , p− 1}.

For example, if p = 3 and ε = ε3, then, for n = 1,

(w
(3)
k (l)) =




1 1 1
1 ε ε2

1 ε2 ε


 , k, l ∈ {0, 1, 2}.

and, for n = 2,

(w
(9)
k (l)) =




1 1 1 1 1 1 1 1 1
1 1 1 ε ε ε ε2 ε2 ε2

1 1 1 ε2 ε2 ε2 ε ε ε
1 ε ε2 1 ε ε2 1 ε ε2

1 ε ε2 ε ε2 1 ε2 ε 1
1 ε ε2 ε2 1 ε ε ε2 1
1 ε2 ε 1 ε2 ε 1 ε2 ε
1 ε2 ε ε 1 ε2 ε2 ε 1
1 ε2 ε ε2 ε 1 ε 1 ε2




, k, l ∈ {0, 1, . . . , 8}.

It is known also, that

N−1∑
k=0

w
(N)
k (j) =

{
N, j = 0 (modN),
0, j �= 0 (modN).

Moreover, the functions w
(N)
0 , w

(N)
1 , . . . , w

(N)
N−1 constitute an orthogonal basis

in �2(ZN ) and

‖w(N)
k ‖2 = N for all k ∈ ZN .

The Vilenkin–Chrestenson transform x̂ of each x ∈ �2(ZN ) coincides with the

sequence of the Fourier coefficients of x with respect to the basis {w(N)
k }N−1

k=0 :

x̂(k) :=
1

N

N−1∑
j=0

x(j)w
(N)
k (j), k ∈ ZN .

Therefore, for any x ∈ �2(ZN ),

x(j) =

N−1∑
k=0

x̂(k)w
(N)
k (j), j ∈ ZN .
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For each k ∈ ZN , the p-adic shift operator Tk : �2(ZN ) → �2(ZN ) is
defined by

(Tkx)(j) := x(j �p k), x = x(j) ∈ �2(ZN ).

It follows from the definitions that for x, y ∈ �2(ZN ) and k, l ∈ ZN we have

(̂Tkx)(l) = w
(N)
k (l) x̂(l), 〈x, y〉 = N〈 x̂, ŷ 〉.

We recall that Ip denotes the identity matrix of order p. The following
theorem is proved in [19] for the case p = 2 (see also [8] for the orthogonal
case).

Theorem 3.1. Let u0, u1, . . . , ur ∈ �2(ZN ), where r ≥ p− 1. Suppose that

M(l) :=
N
√
p




û0(l) . . . ûr(l)
û0(l +N1) . . . ûr(l +N1)
û0(l + 2N1) . . . ûr(l + 2N1)
...

...
...

û0(l + (p− 1)N1) . . . ûr(l + (p− 1)N1)




and, for each l ∈ {0, 1, . . . , N1 − 1},

(3.1) M(l)M∗(l) = Ip,

where M∗(l) is the Hermitian conjugate matrix of M(l). Then

B(u0, u1, . . . , ur) := {Tp ku0}N1−1
k=0 ∪ {Tp ku1}N1−1

k=0 ∪ · · · ∪ {Tp kur}N1−1
k=0

is a Parseval frame for �2(ZN ).

To illustrate this theorem, we give several examples.

Example 3.2. Let p = r = 2, n = 1. Then

M(l) =
√
2

[
û0(l) û1(l) û2(l)
û0(l + 1) û1(l + 1) û2(l + 1)

]
, l = 0.

The condition (3.1) will be satisfied if we set

ûi(0) =

√
2

2
xi, ûi(1) =

√
2

2
yi, i = 0, 1, 2,

where (x0, x1, x2) and (y0, y1, y2) are orthogonal vectors with unit lengths:

x0ȳ0 + x1ȳ1 + x2ȳ2 = 0,
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|x0|2 + |x1|2 + |x2|2 = 1, |y0|2 + |y1|2 + |y2|2 = 1.

In particular, if x0 = a, y0 = b, |a|2 + |b|2 ≤ 1, then we can take

x1 = 0, x2 =
√
1− |a|2,

y2 = − ab̄√
1− |a|2

, y1 =
√
1− |b|2 − |y2|2.

As a result, for each pair of complex numbers (a, b), satisfying the condition
0 < |a|2 + |b|2 ≤ 1, we get the Parseval frame {u0, u1, u2} for �2(Z2) (cf. [8,
example 2]).

Example 3.3. Let p = r = n = 2. Choose u0, u1, u2 in �2(Z4) such that

2∑
s=0

ûs(l)ûs(l + 2) = 0,

2∑
s=0

|ûs(l)|2 =

2∑
s=0

|ûs(l + 2)|2 =
1

8
, l = 0, 1.

Then {u0, u1, u2, T2u0, T2u1, T2u2} is a Parseval frame for �2(Z4). Indeed, in
this case

M(l) =
4√
2

(
û0(l) û1(l) û2(l)
û0(l + 2) û1(l + 2) û2(l + 2)

)
, l = 0, 1,

and (3.1) holds.

Example 3.4. Let p = 3, n = 2, r = 8. Then N = 9 and

M(l) =
9√
3




û0(l) û1(l) . . . û8(l)
û0(l + 3) û1(l + 3) . . . û8(l + 3)
û0(l + 6) û1(l + 6) . . . û8(l + 6)


 , l = 0, 1, 2.

Thus, we can choose the matrices M(0), M(1), M(2) so that the matrix

[ûk(j)]
j
k,j=0 will be proportional to [w

(9)
k (j)]8k,j=0 and (3.1) will be fulfilled.

In a similar way, for any N , we can take r = N − 1 and then use the matrix

[w
(N)
k (j)]N−1

k,j=0 to construct a Parseval frame for �2(ZN ).

Suppose that the N -dimensional complex non-zero vector (b0, b1, . . . , bN−1)
satisfies the condition

(3.2) |bl|2 + |bl+N1
|2 + · · ·+ |bl+(p−1)N1

|2 ≤ p

N2
, l = 0, 1, . . . , N1 − 1.

Then by Theorem 3.1 we have the following algorithm for constructing the
Parseval frame B(u0, u1, . . . , ur) for �

2(ZN ).
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Algorithm B

• Step 1. Find u0 ∈ �2(ZN )
û0(l) = bl, û0(l +N1) = bl+N1

, . . . , û0(l + (p− 1)N1) = bl+(p−1)N1
,

l = 0, 1, . . . , N1 − 1, where b0, b1, . . . , bN−1 are taken from (3.2).

• Step 2. Find u1, . . . , ur ∈ �2(ZN ) such that for the matrix

M(l) =
N
√
p




û0(l) û1(l) . . . ûr(l)
û0(l +N1) û1(l +N1) . . . ûr(l +N1)
û0(l + 2N1) û1(l + 2N1) . . . ûr(l + 2N1)
...

...
...

û0(l + (p− 1)N1) û1(l + (p− 1)N1) . . . ûr(l + (p− 1)N1)




the equality M(l)M∗(l) = Ip holds for all l = 0, 1, . . . , N1 − 1.

• Step 3. Define

B(u0, u1, . . . , ur) = {Tp ku0}N1−1
k=0 ∪ {Tp ku1}N1−1

k=0 ∪ · · · ∪ {Tp kur}N1−1
k=0 .

Step 1 of this algorithm can be implemented by the inverse discrete Vilenkin–
Chrestenson transform:

u0(j) =
N−1∑
k=0

bkw
(N)
k (j), j ∈ ZN .

To find matrices in Step 2 can be used the methods given for Vilenkin groups
in [13, 14].

Finally, we note that the initiating vector (b0, b1, . . . , bN−1) in Algorithms
A and B can be chosen in combination with adaptive methods used in signal
processing (e.g. [5, 22, 29]). Examples of this approach for some applications of
orthogonal and biorthogonal wavelets associated with the Walsh functions are
given in [9, 10, 12, 34]. Properties of approximation, optimality and smoothness
of dyadic wavelets and frames [13, 24, 32, 33] can also be useful in applications.
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