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Abstract. We describe two type of wavelet tight frames associated with
the generalized Walsh functions: (1) Parseval frames for L*-spaces on
Vilenkin groups, (2) finite tight frames for the space £*(Zy). In particular
cases these tight frames coincide with orthogonal wavelet bases associated
with the classical Walsh functions.

1. Inroduction

Wavelet tight frames, from the works of Ron and Shen [35, 36], have been a
productive research area, both in theory and applications, particularly because
the applications to areas as diverse as signal processing, quantum information
theory, multivariate orthogonal polynomials and splines, and compressed sens-
ing (see [4, 5, 25, 41] and the references therein). Let us recall that a family
{gm : m € M} is a frame for a Hilbert space H if there exist positive constants
A and B such that, for every f € H,

AIfIP < Y7 1 gm)® < BIFIP.

me M

The constants A and B are known respectively as lower and upper frame
bounds. A frame is called a tight frame if the lower and upper frame bounds are
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equal; A = B. A frame is a Parseval frame if A = B = 1. It is well-known that
a sequence {g,, } is a Parseval frame for H if and only if f =3/ (f, Gm)gm
for every f € H. Therefore, the concept of a Parseval frame generalizes the
concept of an orthonormal basis to systems that do not have the minimal prop-
erty.

The Walsh functions can be identified with characters of the Cantor group
(the dyadic or 2-series local field). In the introduction to the book [1] is noted
that this fact was first recognized by Gelfand in 1940s, who offered to Vilenkin
[40] study series with respect to characters of a large class of abelian groups
which includes the Cantor group as a special case. Fine [20] observed in-
dependently that Walsh functions are the characters of the compact Cantor
(dyadic) group. Orthogonal wavelets on the Cantor group have been initiated
in [26]; recent results in this directions including some orthogonal wavelets on
Vilenkin groups can be found in [14]-[17]. Wavelet frames for L2-space on the
Cantor group are studied in [11, 18], where the Parseval frame related to the
Walsh-Dirichlet kernel is given, as well as analogs of Cohen’s condition and
Daubechies’ admissible condition. In a recent paper [2], the connection be-
tween discrepancy theory and Parseval frames defined by Walsh matrices is
discussed.

Let us introduce notation and recall some basic definitions. The set of in-
tegers, non-negative integers, positive integers, and non-negative real numbers
will be denoted by Z, Z,, N, and R, respectively. Let p € N, p > 2. The
Vilenkin group G), consists of sequences « = (z;), where z; € {0,1,...,p— 1}
for j € Z and with at most finite number of negative j such that z; # 0. The
zero sequence is denoted by 6. If  # 6, then there exists a unique k = k(z)
such that z;, # 0 and x; = 0 for all j < k. The group operation & on G, is
defined as the coordinatewise addition modulo p,

(zj) = (z;) ® (y;) <= z; =x; +y; (modp) forall je€Z

the topology on G, is introduced via the complete system of neighbourhoods
of zero

U= (@) € Gy ¢ 2y =0 forall j<1), €2,

The equality z = £ © y means that 2y =x. Forp=2wehave x Dy =26y
and the group G2 coincides with the locally compact Cantor group C.

Notice that for p = 2 the subgroup U := Uy is isomorphic to the com-
pact Cantor group Cp; i.e., the topological Cartesian product of a countable
set of cyclic groups with discrete topology. It is well known that Cy is a per-
fect nowhere dense totally disconnected metrizable space, and therefore Uy is
homeomorphic to the Cantor ternary set.
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One can show that G := G, is self-dual. The duality pairing on G takes
z = (z;) and w = (wj) to

271
X(z,w) = exp 75 Tjwi—j
P e

There exists a Haar measure on G normalized so that the measure of U is 1.
For simplicity, we shall denote this measure by dz. As usual, the Lebesgue
space L?(G) consists of all square integrable functions on G. For each function

f € LY(G) N L2(G), its Fourier transform f,
f) = [ ran@alde. wed.
G
belongs to L?(G). The Fourier operator

F LNG)NIAG) — LXG), Ff=1T,

extends uniquely to the whole space L?(G). See [23] and [37] for further details
about harmonic analysis on the group G.

Consider the mapping A : G — R, defined by

Az) = Z:cjp_j, z=(z;) €G.

JEZ

Take in G a discrete subgroup H = {(z;) € G : x; =0 for j > 0}. The image
of the subgroup H under A is the set of non-negative integers: A(H) = Z. For
each k € Z,, let hy, denote the element of H such that A(hy) = k (clearly,
hjo) = 0). The generalized Walsh functions on G can be defined by

Wi(z) = x(x, hyy), z€G, keZ,.

So, these functions are characters for G. Also, it is well-known that {Wj :
: k € Z} is an orthonormal basis for L?(U) (when p = 2, we have the classical
Walsh system).

The first results on orthogonal wavelets for the Vilenkin group G were
obtained in [6]. In this paper, for any integer p,n > 2, the compactly supported
scaling functions are defined on G, each of which satisfies a scaling equation
with p" coefficients and generates an MRA for L?(G). Moreover, a method to
estimate the moduli of continuity of scaling functions is given in [6] which leads
to the sharp estimates for small p and n (cf. [33]). In addition, it is shown that
the conception of adapted multiresolution analysis suggested by Sendov [39] is
applicable for orthogonal wavelets on GG. Further results for wavelets defined
on the Vilenkin/Cantor groups are reflected in [14, 17].
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The aim of this paper is to present a review of wavelet tight frames related
to the generalized Walsh functions. In Section 2, we define an MRA-based
tight frame on G and consider the corresponding algorithm for constructing
Parseval frames. This section reflects recent results from [13], [14], and [18].
Then, in Section 3, we use the generalized Walsh functions to define Parseval
frames in the space ¢2(Zy) with N = p" (cf. [8, 10, 19, 22, 41]).

2. Wavelet tight frames for L?(G)

As above, we let N = p"”. We define an automorphism A € AutG by
the formula (Az); = zj11. It is easy to see that the quotient group H/A(H)
contains p elements. The sets

Un,s e A_n(h[s]) ) A_n(U), 0<s<N-1,

are cosets of the subgroup A="(U) in the group U. For every 0 < a < N — 1
the Walsh function W, is constant on each U, .

The Vilenkin-Chrestenson transform translates an arbitrary vector b =

= (bo,b1,...,bn_1) of the space CV into a vector a = (ag, a,...,anx_1) with
components
| N1

(2.1) G = 5 gbsWS(A*”h[a]), 0<a<N-1.
The inverse transform acts by the formula

N-1
(2.2) be= Y aaWo(A"hy), 0<s<N-1

a=0

These transforms can be realized by the fast algorithms (see, for instance, [3],
[23, Sect. 11.2], [37, p. 463)]).

A mask my associated with a vector b has the form
N-1
mp(w) = Z aWi(w), weQG,
k=0
where the coefficients ay are defined by (2.1). A compactly supported function
¢ € L*(G) is a refinable function with the mask my if it satisfies the equation

N—-1

(2.3) p(x)=p Z app(Az © hyy),
k=0

or, in the Fourier domain, p(w) = mp(A~ w)P(A™ w).
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For any f € L?(G) we let

fj,k('r) = pj/2f(A]l' S h[k])7 .7 € Za ke Z+'

Given ¥ := {yM ... ¢} c L?(G) with r > p, we define the wavelet
system as

X(0)={y\)  1<v<r, jel kely)
The system X (V) is a Parseval frame (or a wavelet tight frame) for L?(G) if
D0 IR =11
JEL k€Lt v=1

for all f € L?(G). This is equivalent to f = EQGX(\P)g,g)g for all f € L*(G).

Now, we let Ny := p"~! and denote by F(p,n) the set of all vectors b =
= (bg, b1, ...,by_1) of the space CN such that

(2.4) bo=1, [bu® +bipn, [P+ -+ by ponym |* < 1,

forall 0 <1 < Nj—1. The following algorithm allows us to construct a Parseval
frame for L?(G) from any vector b € F(p,n).

Algorithm A

e Step 1. Choose an arbitrary vector b = (bg,b1,...,by—1) in F(p,n).

e Step 2. Compute a,, 0 < a < N —1, by (2.1) and define

N-1
mo(w) = Z aoWeo(w).
a=0
e Step 3. Define ¢ € L?(G) such that

(2.5) P(w) = H mo(A7w), weQq.

e Step 4. Given r > p find the Walsh polynomials

N-1
my,(w) = Z A Wo(w), 1<v<r,
a=0
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such that, for each w € G, the rows of the matrix M(w) form an or-
thonormal system, where

mOEW) ) mlgw) ) mTEW) )

molw @ 01 mi(w @ 071 e My (W @ 07

M(w) := . . . :
mo(w @ op—1) mi(wddp_1) ... Mmp(wddp_1)

with 6, € U, A\(0;) =1/p,1=0,...,p— 1.

e Step 5. Define vV ... (") as follows:

N—-1
(@) =p Y aVp(Az S hy), 1<v<r,

a=0
Note that, according to Step 1 and Step 2,
p—1
dmowad)?<1, weg.
1=0

Hence, by [13, Theorem 11], the function ¢ on Step 3 belongs to L?(G). Let
us show how to calculate the values @(w) for w € G. For each 0 < s < N —1
we set

’}/(il,ig, ,Zn) = bs,

s=i1p" +igpt + - +inp™ Y, i; €{0,1,...,p—1}.
Then for an integer | with the p-ary expansion

k
(26) l:Z/’LJpJa M]E{O’1>7p_1}7 ,U/k#(), k:k(l)ez+7

§=0
we define d; as follows

d; = v(10,0,0,...,0,0), if k(l) =0;

dl = 7(“1)0707"'a070)7(M05M1707"'7070)7 if k(l) = 17

dl = ’7(/1’1670’07 .. '5070)7(/1%71’”]6’07 .. '7070) .. '7(/"07”17/‘27 o 7/"”*2;,“/1’7,71)’
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if Kk = k() > n — 1. Further, denote by M the set of all positive integers
[ > Ny whose p-ary expansion (2.6) contains no n-tuple (@, ftj+1,- - -, fjtn—1)
coinciding with any of the n-tuples

(0,0,...,0,1),(0,0,...,0,2),...,(0,0,...,0,p — 1).
and set M = {1,2,...,N; — 1} UMy. In particular, if n = 2 then

k
j=0

Proposition 2.1. Suppose that mg and d; are defined as above. If the function
@ is given by (2.5), then

1, we&Up1,o0,
(27) @(w) = dl, w € Unflyl, l e M,
0, weUp_1,1, | ¢ M.

Proof. By definition, for each w € U, 1,9 we have A~Jw € U,, o for all j € N.
But mg(w) = 1 on U,,. Using (2.5), we obtain the first equality in (2.7).
Further, since b € F(p,n), we have

(2.8) by, = =bp_1n, = 0.
Now, take [ € N with expansion (2.6) and find
jo=min{j : jEN, pI~t > +1}.

Then for any w € U,_1,; and j > jp we have A7lw € U, and hence
mo(A~Jw) = 1. Therefore, by (2.5) we obtain

Jo—1
(2.9) )= [ mo(A7w), weUn 1.

j=1
In the case | = ug (i.e. when k(I) = 0) in (2.6) we have jo =2, A™'w € Uy, ,,
and A~w € Uy, 0. Thus, if I € {1,2,...,p— 1} and w € U,,_1, then

o(w) = by = (1o, 0,0,...,0,0) =dj.
Further, if k(l) = 1 then
mO(Ailw) = ’Y(,Ulv 0: 07 s 707 0) mO(Aizw) = ’Y(/J'Ov Kty 07 s 70: 0)7 LR

and, hence, p(w) = d;. In general, from (2.5) it follows, that

l 1 [ wo Hj—2

t -1+ pp e+ ukpk_">
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for all j € N. Beside, if w € U,_1,; then A7 lw e Untj—1,. For il ¢ M in view
of (2.8) among the factors in (2.9) there is zero. Moreover, if [ € M, then in
(2.9) we have

-1 -2 —j
A7 weUyu, A weUnpuy 4puns - A77°w € Up iy,

where
k—n

Vo = fjo—1F HjoP + - -+ + kP

Therefore, since mg is H-periodic, we conclude that (2.7) is true. |

As a consequence of Proposition 2.1, we have

(210) ()/0\(("‘)) = ]'Un—l,O (w) + Z dllU’nfl,O(w © Alinh[l])a w € G,
leM

where 1 is the characteristic function of a set F. A formal application of the
inverse Fourier transform to (2.10) gives the expansion

(2.11) o(x) = (1/p" H1y (A "2)(1 + Z AW (AY"2)), =z €G.
leM

A few examples of expansion (2.11) are given in [6, 14, 17, 33]. Example 4.3
in [17] shows that, in general, this expansion does not converge absolutely.
The necessary and sufficient conditions on the mask of equation (2.3) ensuring
that the refinable function ¢ will not be a step function are contained in [14,
Theorem 3.9].

Example 2.2. For the case p = 2,n = 3, we obtain from (2.11) the following
step functions:

1) p(x) = (1/4)1j,1y(A%z) (b1 =0),
2) (p(l') 1/ )1[071) (Aizl') (1 + b1W1(A72.’L')) (bl # 0, by = bg = O),
3) (p(l’) 1/ )1[0 1) (Aiz ) (1 + b1 W4 (Aisz') -+ b1b2W2(A72(L'))

4) () = (1/4)10,1)(A722) (1 + by Wi (A7) + bibs W3 (A 2z))

bibs # 0, by = bg = by = 0),
1/4)110,1)(A722) (1 4 by W1 (A 22) + bibaWa (A 22)+
+b1bzws (A72x) + bibsbsWe(A™x))

(b1b2b3b6 7& 07 b4 = b5 = b7 = O)

(
(
(
(bibs # 0, by = by = bs = 0),
(
(
(

5) p(z) =
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In connection with Example 2.2, see [31, Example 3] and examples of refin-
able step functions in [28, 33].
Let us set
bgu) — mV(Afnh[s]), 0<s<N-—1.

Then, by Step 1, we have

R O R L

l+(;071)N1|2 <1, 0<I<N;—1.

According to Step 4, for each [, we must find

(1) (1) (1) (r) 4(r) ()
b, ,bl+N1,...,bl+(p71)N1, b ’bl—b—Nl""’bl«k(pfl)Nl’
such that the matrices
(0) (0 (0)
N
DS SN
M, = ! +‘ 1 . l.Jr(pfl)Nl
) ) &)
b, biin, e bleDN1

satisfy the condition M; M = I, where M is the Hermitian conjugate matrix
of M; and I denotes the identity matrix. To find such matrices M; can be
used the methods given in [13].

Application of the unitary extension principle (cf. [13], [30, Sect. 1.8], [38])
gives the following

Theorem 2.3. Let U = {4 ... ("} be the wavelet system determined in
Algorithm A. Then X(¥) is a Parseval frame for L?(G).

Remark 2.1. If a refinable function ¢ associated with the mask my, satisfies
equation (2.3) and generates a Parseval frame for L?(G), then b € F(p,n) (see
[13, Theorem 10]).

We write b € G(p,n), if for a vector b € F(p,n) all inequalities in (2.4)
become equalities. Further, denote by W (p,n) the set of all vectors b € G(p,n)
for which

Vies) :={ps(-©h) : he H}

is an orthonormal system in L*(G).
Remark 2.2. Algorithm A with b € G(p,n) in Step 1 can be applied for r =

p—1 and Theorem 2.2 is still valid in this case (see [13]). Moreover, it is known
that Algorithm A with b € W (p,n) leads to orthogonal MRA-based wavelets
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»M P in L?(@). There are three ways to verify the orthogonality of
V(ep): (a) the modified Cohen criterion [7, 27], (b) the blocking sets criterion
[7, 31, 33], and (c) the N-valid trees method [28]. For instance, if a vector
b= (by,b1,...,by—1) lies in G(p,n) and b; # 0 for all 1 <[ < Ny — 1, then
be Wi(p,n) (see [7, Example 5]).

3. Finite tight frames for the space £2(Zy)

The notation used in this section is consistent with some previous publica-
tions (e.g., [8, 21]) on related topics. Let Zy denote the set {0,1,..., N — 1}
with N = p™. For a,b € Zy we define

n—1

a®pb:= Z la, —by|p”,
v=0

where

n—1 n—1
a=) ap’, b= bp", anb, {01 p—1}
v=0 v=0

As usual, ¢ = a &, b means that a = c @), b.

Let us denote by ¢?(Zy) the space of complex N-periodic sequences
r=(..,z(=1),2(0),z(1),2(2),...), z(+N)==z(), JjEZ

An arbitrary x from ¢2(Zy) is given if the values of z(j) are known for j € Zy;
therefore, the sequence = can be identified with the vector

Hence, the space £2(Zy) has an inner product defined by
N-1

(wy) = 3 2()y0)

<

and the resulting norm ||z| = \/{(z,x).
Let e, = exp(2mi/p). The generalized Walsh functions* w(()N), ng), . ,wgvjvjl
for the space £2(Zy) can be defined by

*These functions are sometimes called the Chrestenson functions or the Chrestenson—Levy
functions (see e.g. [3], [23]).
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wM@) =5*0 WM G =M G+ N), jez,

where o (k,1) = >-"_} kyl,—,—1 and

n—1 n—1
k:ZkupV7 l:Zleya kuvllle{oalv"'vp_l}'
v=0 vr=0

For example, if p = 3 and € = €3, then, for n =1,

1 1 1
WPy =11 e |, kle{01,2}.
1 &2 ¢
and, for n = 2,
1 1 1 1 1 1 1 1 17
1 1 1 e e e 2 g2 g2
1 1 1 €2 &2 &2 ¢ ¢ ¢
1 e €2 1 € ¢ 1 ¢ &2
WP =]1 e &2 e & 1 & ¢ 1], kiefo1,...,8}.
1 e €2 2 1 & ¢ € 1
1 &2 ¢ 1 &2 & 1 & ¢
1 &2 ¢ e 1 €2 & ¢ 1
I 1 €2 ¢ 2 ¢ 1 & 1 &2 |

It is known also, that

N-1
(N) (s N, j:O(modN),
ZwkN <‘7){ 0, j#0(modN).

Moreover, the functions wéN),ng), e ,w§VN_)1 constitute an orthogonal basis
in /?(Zy) and

Hw,(CN)H2 =N forall keZy.
The Vilenkin-Chrestenson transform Z of each z € ¢?(Zy) coincides with the

sequence of the Fourier coefficients of « with respect to the basis {w,(QN)}iV:_O1

N-1

~ 1 . )

z(k) = N Z x(])w,iN)(j), k€Zn.
j=0

Therefore, for any = € (2(Zy),

N-— 1

O
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For each k € Zy, the p-adic shift operator Ty : (*(Zn) — (*(Zy) is
defined by
(Txz)(5) = 2(j ©p k), ©=1(j) € (Zy).

It follows from the definitions that for z,y € ¢?(Zy) and k,l € Zy we have
(Th)(l) = wy, "(D2(1),  (z,y) = N(Z,7).
We recall that I, denotes the identity matrix of order p. The following
theorem is proved in [19] for the case p = 2 (see also [8] for the orthogonal

case).

Theorem 3.1. Let ug,u1,...,u, € {*(Zy), where r > p — 1. Suppose that

(1) NETA ()
ao(l—I—Nl) a,.(l—l—Nl)
M) = N Gt +2n3) a4 2Ny)
VP S
up(l+ (p—1)N1) ... w(l+(p-1)N)

and, for each 1€ {0,1,...,N; — 1},
(3.1) MM (1) = I,
where M*(1) is the Hermitian conjugate matriz of M(l). Then
Blug,ur, ... ur) = {Tppuoya s " U{Thun Yo g U U { Ty pur eyt
is a Parseval frame for (*(Zy).

To illustrate this theorem, we give several examples.
Example 3.2. Let p=7r =2, n=1. Then

o sla w0 =
MO =VZ| 5041 a+1) wmi+y | =0

The condition (3.1) will be satisfied if we set

2 2
f i _gyla i:0a1725

where (xo,x1,22) and (yo,y1,y2) are orthogonal vectors with unit lengths:

ToYo + w141 + T2Y2 = 0,
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[wo® + |z1® + |22 =1, |yol® + |y1]? + || =

In particular, if zo = a, yo = b, |a|? + |b|* < 1, then we can take

x1 =0, x2=+/1—]a|%
ab
Yo=———"F— Y1—=
V1 —lal?
As a result, for each pair of complex numbers (a,b), satisfying the condition

0 < |al®> + |b|? < 1, we get the Parseval frame {ug,uy,us} for £2(Zs) (cf. [8,
example 2]).

L= (b = Jy2|>.

Example 3.3. Let p =1 =n = 2. Choose ug, uy,us in ¢?(Z4) such that

(Das(1+2) =0, Z\us => fa(l+2)] ; 1=0,1.

s=0

no

Mw

Then {ug, u1, uz, Toug, Toui, Tous} is a Parseval frame for ¢2(Z4). Indeed, in
this case

and (3.1) holds.
Example 3.4. Let p=3, n=2,r=8. Then N =9 and

o [T @) .. G

Thus, we can choose the matrices M(0), M (1), M(2) so that the matrix

[ﬂk(j)]id-:o will be proportional to [w o )(])],” o and (3.1) will be fulfilled.
In a similar way, for any N, we can take r = N — 1 and then use the matrix

[w,(gN)(j)},]Xj;lO to construct a Parseval frame for ¢?(Zy).

Suppose that the N-dimensional complex non-zero vector (bg, b1, ...,bn—_1)
satisfies the condition

p
(32) |bl|2+|bl+N1|2+"'+|bl+(p—1)N1|2 < W7 l:0717"'7N1 - L

Then by Theorem 3.1 we have the following algorithm for constructing the
Parseval frame B(ug,uq, .. .,u,) for (?(Zy).
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Algorithm B

e Step 1. Find ug € /2(Zy)
ug(l) = by, (1 + N1) = biynys - - Uo(l+ (p — 1)N1) = by (p—1)ny s
1=0,1,...,Ny — 1, where by, by, ...,by_1 are taken from (3.2).

e Step 2. Find uy,...,u, € {*(Zy) such that for the matrix

To(0) a(l) A

| ey (14 V) (N

M(l) _ % uo(l +2N1) U1(l =+ 2N1) . ur(l =+ 2N1)
:Eo(l+(p—1)N1) ﬁl(l—l—(p—l)Nl) ur(l+ (p—1)N1)

the equality M (1)M*(l) = I, holds for all {=0,1,...,N; — 1.
e Step 3. Define

B(uo,ul,..., ) { kuo} U{ kul}Nl 1 U{ kur}k

Step 1 of this algorithm can be implemented by the inverse discrete Vilenkin—
Chrestenson transform:

N—-1

Zbk’w ] , jGZN.
k=0

To find matrices in Step 2 can be used the methods given for Vilenkin groups
n [13, 14].

Finally, we note that the initiating vector (bg,b1,...,by—1) in Algorithms
A and B can be chosen in combination with adaptive methods used in signal
processing (e.g. [5, 22, 29]). Examples of this approach for some applications of
orthogonal and biorthogonal wavelets associated with the Walsh functions are
given in [9, 10, 12, 34]. Properties of approximation, optimality and smoothness
of dyadic wavelets and frames [13, 24, 32, 33| can also be useful in applications.
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