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Abstract. As hardware devices became increasingly sophisticated and
cheaper, and fast and broadband wireless internet connection became avail-
able not just in towns but also in remote rural areas, using sensors to collect
various kinds of data became common in agriculture and applying these
sensors to a wide range of locations using huge databases. However, de-
spite the numerous highly qualified agricultural specialists and this huge
amount of data collected, lot of useful information remains hidden. A de-
mand for software naturally arises which is able to handle these enormous
databases, and can derive latent information from it to ease decision mak-
ing in important agricultural situations. We delineate in our paper the
effort and outcome while we examined Farm Accountancy Data Network
data collected by the Hungarian Research Institute of Agricultural Eco-
nomics (AKI). Our main interest was to find those questions which can be
answered by the use of a matrix factorization (MF) model

1. Introduction

Similar to other sectors, agriculture is rapidly influenced by the digital
transformation. The present and certainly the future will be increasingly data
intensive, meaning that more and more sources will provide enormous amount
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of data to be utilized [9]. The data revolution is expected to provide numerous
benefits, including increasing efficiency and better sustainability performance
to mention a few [11]. Overall, all of these foreseen advancements can effectively
combat the challenges, providing food in a sustainable manner for the rapidly
increasing population [10].

Our goal was to build a matrix factorization model working on a set of
agricultural data collected by AKI. We built our model for predicting the miss-
ing values and recognising the ’incriminating’ values, i.e. where the difference
is significant between the collected value and the approximation. We concen-
trated our attention on the Explicit Matrix Factorization Method (EMFM).
We speak about explicit collection of data when we get high-quality real infor-
mation as in our project where data was collected directly from grain growers
by questionnaires.

1.1. The Netflix Prize Competition

Matrix factorization models suddenly were the center of computer scientists’
attention in 2006 when a contest was announced by Netflix, an on-line DVD-
rental and video streaming service company. The goal of the competition was
to develop a recommender system which can predict people’s preferences for
movies. In 2009 the research group BellKor’s Pragmatic Chaos gained the
1.000.000 $ winner’s prize. Their submitted program with prediction error
RMSE (root mean squared error) firstly reached 10% better result than the
Netflix Cinematch algorithm. The Netflix company released a training set of
100 480 507 ratings spanning 480 189 anonymous customers and their ratings on
17 770 movies, each movie being rated on a scale of 1 to 5 stars. Participating
teams submitted the predicted ratings for a test set of 2 817 131 ratings, and
Netflix calculated an RMSE by their own evaluation system.

Between 2006 and 2009 numerous articles were published characterizing
various methods to implement effective recommender systems. We can observe
that most participants of the Netflix Prize Contents used some variations of the
matrix factorization model. This fact convinced us that using an appropriate
MF model we could develop a decision preparing system in agricultural envi-
ronment based on high confidence level predictions. Furthermore, the problem
of ’big’ and ’sparse’ data arising in the agriculture is highly similar to the
problems investigated in connection with the recommender systems.

2. The matrix factorization model

Although, in this section we give examples from the Netflix Prize Compe-
tition and keep the well-known notations introduced in this area, the meaning
of concepts can be more generalized, e.g. the sets of users and items.
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2.1. Collaborative Filtering (CF)

Due to total lack of detailed profiles of the users’ preferences the recom-
mender strategies based on content filtering had to be ignored in our project.
Contrary to content filtering the approach called Collaborative Filtering re-
lies on some events in the users’ past. For example, a given Netflix costumer
rated a movie 4 stars. There are two well-known methods for implementing
collaborative filtering.

2.1.1. Neighbourhood method

One of these is the so-called neighbourhood method. An item-oriented ver-
sion evaluates a user’s preference for an item based on the connections of a
similar item by the same user. So, a neighbour of an item is another item,
for example in the Netflix database a neighbour of ’Once Upon a Time in the
West’ can be an other western movie, or another movie directed by Sergio
Leone. On the other hand, the user-oriented approach is trying to find the
similarities among different users. We can describe the item-oriented or item
based neighbourhood.

Both user and item based variations exist of the kNN (k-Nearest Neigh-
bours) method that one of the most popular and simplest manifestation of the
above mentioned method. KNN is a so called ’lazy learner’ algorithm which
means that it does not built a model, and the whole training data set is stored
and all computation is delayed until classification. As a matter of fact, the
k-nearest neighbours is a relation defined by a distance function that makes
the classification or regression.

2.1.2. Latent Factor Model

An alternative realization of the collective filtering is the Latent Factor
Model (LFM) that tries to predict the appropriate values by characterizing both
items and users on some factors inferred from the collected data. The number
of factors gives the dimension of the latent space in which the model sets the
users and items up. Let us consider an example from the world of movies.
Two factors (properties) determine a Cartesian coordinate plane. The axes
correspond to two factors, namely the dimensions characterized as ’children’s
versus grown up’ and ’drama versus comedy’ movies. The closer a given user
and item are situated in the system the closer the connection between them
with respect the investigated properties. For example, Figure 1 shows that we
expect the C to like the movies Hannibal, English Patient and Schindler’ list,
to hate Toy Story and Gru. Furthermore, on these two dimensions users A, B
and movies Batman, Doctor Who and Her can be considered highly neutral.

One of the most effective methods for realizing a Latent Factor Model is
matrix factorization.
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Figure 1. We can see a two dimensional virtual space including users (circled
capital letters) and movies (white background). Axis x shows the values on a
scale ’children’s versus grown up’ and axis y ’drama versus comedy’.

2.2. The supervised learning process

Let us consider two arbitrary sets: users and items with cardinality n and
m respectively. Further, let the set of original data denoted by R, is a table
that columns are identified by the items and row by the users. Some cells of R
contains a positive number, the other cells are empty. These numbers charac-
terize a connection, interaction or any other abstract phenomenon between a
user and an item. Let us denote the set of the numbers found in the non-empty
cells by R and the value in the intersection of the u-th row and i-th column
by rui.

We randomly divide R into two disjoint subsets T and P, namely the
training set and probe set (the latter is also known as holdout set or test set),
where T ∪P = R and T ∩P = ∅. The learning algorithm of the MF model
learns on T , the quality of learning is validated on P and finally we can except
that the well-trained system gives sharp approximations on the original data
set R.

In our matrix factorization model we correspond a vector wu ∈ Rk to user
u and a vector hi ∈ Rk to the item i, where k is the number of factors. The
resulting dot product wuh

T
i determines the ’closeness’ between user u and item

i in the k dimensional virtual space, e.g. customer u’s approximated rating of
item i. Let us introduce the following notation:

(2.1) rui ≈ r̂ui = wu · hT
i =

k∑
j=1

wuj
· hT

ij .



Recommender systems 151

We recall that rui ∈ R and rui ∈ R if the value of rui is known. If the matrix
Wn×k contains all user vectors and Hk×m contains all item vectors then we can
estimate the missing elements of R by the product W ·HT .

2.2.1. The loss function

To calculate the value of the elements of user and item vectors is a difficult
problem. In a general case we initialize the user and item vectors in a random
way. The MF model then learns the factor vectors minimizing the error of
the approximation (2.1). As a matter of fact we minimize the square of the
difference between all known values in our dataset R, i.e. the elements of R
and our predictions. We introduce a so-called loss function err : R × R → R:

(2.2) err(r, r̂) =
∑

rui∈R

e2ui =
∑

rui∈R

(rui − r̂ui)
2 =

∑
rui∈R

(
rui − wu · hT

i

)2
.

In reality two phenomena can slow down the speed of the learning process.
When a recommender system is not capable of modelling the addition of new
users without retraining the whole model, we speak about cold start problem.
To relieve this problem we can add new information sources or use implicit
data collection. In our experiment both of these were impossible, so we had to
develop a model which is resistant to the cold start problem ab ovo.

The other malfunction we mention is the overfitting, where the system learns
only the unique properties of the elements of T and does not recognize the real
connections and rules on the whole original data set R as illustrated in Figure 2.

Figure 2. In this pattern the dashed line represents an overfitted model and
the black line represents the real trends.

Thus, overfitting negatively impacts on the predictions given by the model
on the original data set. To avoid the overfitting we limit the magnitude of
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the learned parameters i.e. the elements of W and H. This process is called
regularization, which modifies our loss function adding a so-called penalty term:

(2.3) f(r, r̂) =
∑

rui∈R

(
rui − wu · hT

i

)2
+ λ

(
‖wu‖2 + ‖hi‖2

)
,

where ‖ · ‖2 means the Euclidean norm of a given vector.

2.2.2. The learning method: SGD

The Stochastic Gradient Descent (SGD) method is one of the numerous
variations of the popular technique Gradient Descent (GD) for finding mini-
mum of functions. S. Funk’s described in [7] the application of SGD for the
loss function given in the following form:

f(Θ) =
∑
j

fj(Θ),

where our case Θ means the set of all user and item vectors, i.g. Θ = W ∪H.
The main steps of SGD are shown in Algorithm 1.

Algorithm 1 BASICSGD

1: procedure BASICSGD(ε, α, fk) � Basic idea of SGD
2: random initialization of Θ
3: for number of iterations do
4: for repetition for all k do
5: � := δfk

δΘ
6: Θ ← Θ − α�
7: end for
8: end for
9: end procedure

α > 0 is called learning rate and its value depends on the magnitude of
the error. The number of iterations z can be an input parameter or we use
a stopping criteria ε, for example |α�| < ε. In the latter case ε is an input
parameter instead of z.

For approximating the minimum of the loss function (2.3) we need the
partial differentiation of fui with respect to any wu and hi. Let us introduce
the following notation:

fui(wu, hi) :=
(
rui − wu · hT

i

)2
.

Then we get that
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δfui
δwu

=
δ

δwu

((
rui − wu · hT

i

)2
+ λ

(
‖wu‖2 + ‖hi‖2

))
=

= −2hi

(
rui − wu · hT

i

)
− 2λwu = −2 (euihi − λwu) ,

and similarly
δfui
δhi

= −2 (euiwu − λhi) .

Finally, considering the multiplicative factor 2 as a part of the constant α
we obtain the pseudocode Algorithm 2.

Algorithm 2 SGD for fui
1: procedure SGD(ε, α, λ) � SGD for fui
2: random initialization of the vectors wu and hi

3: for number of iterations do
4: for repetition if rui is known do
5: �u := δfui

δwu
, �i :=

δfui

δhi

6: wu ← wu − α�u = wu + α (euihi − λwu)
7: hi ← hi − α�i = hi + α (euiwu − λhi)
8: end for
9: end for

10: end procedure

2.2.3. Biased Matrix Factorization (BMF)

We can observe a phenomenon called bias in collaborative filtering, when
some users or items systematically deform the values of user-item interactions.
For example, a rigorous film critic notoriously gives lower ratings then others
or a bad movie gets higher ratings because of the brilliant casting or a famous
director. The former is called user bias, the latter item bias. The bias can be
built in rui in the following way:

bui = µ+ bi + bu,

where µ means the overall average rating, bi is the item bias and bu is the user
bias. Now, modifying (2.1) we get the extended version of the estimation:

r̂ui = µ+ bi + bu + wuh
T
i .

Finally, we get the loss function in the following form:

f(r, r̂) =
∑

rui∈R

(
rui − µ− bu − bi − wu · hT

i

)2
+ λ

(
‖wu‖2 + ‖hi‖2 + b2u + b2i

)
.
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Although the loss function is different in the MF and the BMF method, the
learning process remains the same.

2.2.4. SVD Plus Plus

Singular Value Decomposition (SVD) is a well-known method for factorizing
a matrix. Although it does not work properly on sparse matrices, using addi-
tional data sources, e.g. implicit data collection, highly effective SVD based
algorithm can be developed for the lower rank decomposition of the original
matrix R. A good example is the SVD Plus Plus latent factor method that is
derived from an SVD-type decomposition model, as we can see in [3]. Contrary
to the matrix factorization models described above, SVD Plus Plus represents
the users through the items with which the interaction value is high, instead
of providing explicit parametrization. Of course, the loss function f(r, r̂) is
modified because of the possibility of implicit data.

2.2.5. Hyperparameters

The fine-tuning of most parameters is taking place during the learning pro-
cess but some parameters can be set before the learning begins. These are
called hyperparameters and these are input parameters of the learning algo-
rithm. For setting the appropriate values of the hyperparameters we used in
our experiment the well-known cross-validation method. The following hyper-
parameters were set by minimizing the RMSE on the test set: k is the number
of factors, it is the number of iterations, λ is the regularization coefficient and
α is the learning rate.

R is divided into 5 disjoint subset with even cardinality each R = P1 ∪
· · · ∪ P5 and every set Pi is also divided into 5 disjoint subsets with even
cardinality each Pi = Pi1 ∪ · · · ∪ Pi5 . The learning algorithm ran in 5 × 5
rounds, where Pij was the test set and the training set was

⋃
l∈[1,5]\{j}

Pil i, j ∈ [1, 5] .

We can say that we completed a 2-level 5-fold cross-validation. In total,
360 000 different combinations of hyperparameter values were compared, and
the best scoring k, it, λ and α values were chosen for every Pij . Finally, the
average of the best values on the sets P1, . . . ,P5 was calculated.

3. Results

The data set supported by AKI contained |R| = 8 179 590 known values.
The set of users consisted of sown areas identified by a number. The items are
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quantitative information with respect to different crops, for example, ’Insecti-
cides costs for wheat’, ’Machinery costs for maize’, ’Fertilizer costs for barley’,
’Sown area for rapeseed’, ’Nitrogen fertilizer costs for wheat’, and so on.

Our computational results prove that a well-constructed MF model effec-
tively learns on the data supported by AKI. This fact makes us convinced that
our model is capable of approximating sharply the missing values of the original
set even if the rate of unknown data exceeds 95%.

Further, our model is able to detect ’suspicious’ values among the collected
data, i.e. a predicted value significantly differs – according to a predefined
precision criteria – from the value collected on questionnaire.

The programs were developed in Python and C languages, some tests were
performed with the help of the MyMediaLite free recommender system li-
brary [12].

3.1. The investigated methods

Figure 3 shows a comparison of the performances of different recommender
methods. The first 4 models can be considered as a variations of the matrix
factorization model. The error was measured by three different techniques:
RMSE (Root Mean Square Error), MAE (Mean Absolute Error) and CBD
(Capped Binomial Deviation).

In each program the SGD (Stochastic Gradient Descent) was implemented
as a learning algorithm (Algorithm 2). The efficiency of learning can be seen
in Figure 4.

SVD Plus Plus is described in 2.2.4.
Sig SVD Plus Plus is a variation of SVD Plus Plus that uses a sigmoid
function.
Biased Matrix Factorization is described in 2.2.3.
Matrix Factorization is the basic MF model described in 2.
User Item Baseline uses the average interaction value, and a regularized
user and item bias for prediction.
Item Average uses the average interaction value of an item for prediction.
Item KNN Item-based kNN is described in 2.1.1.
Global Average uses the average interaction value over all interactions for
prediction.
User Average uses the average interaction value of a user for prediction.
Random uses a random interaction value for prediction.
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Figure 3. Comparison between the performances of recommender methods on
AKI’s dataset using three different types of error.

Figure 4. The efficiency of the stochastic gradient desscent (SGD) method on
AKI’s data set.
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Figure 5. The comparison of different matrix factorization strategies on AKI’s
data set. The error was measured by RMSE.

Figure 6. The comparison of different matrix factorization strategies on AKI’s
data set. The error was measured by MAE.
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3.2. Conclusion

Although the SVD Plus Plus and Sig SVD Plus Plus methods give the best
approximation on the collected agricultural data set, due to the total lack of
additional information sources and possibility of implicit data collection, they
are not resistant to the cold start problem. The ’fastest learner’ is the basic
MF model, and its running time is also the best. The BMF is slower than MF,
but gives slightly better approximations.

Thus, our experiment confirms that the explicit matrix factorization model
can be a highly effective tool to develop recommender or decision support
systems for predicting the missing values and recognising the ’incriminating’
values in a data set collected from an agricultural environment.
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