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Abstract. We provide some consequences of recently proved conjectures
of Kátai regarding the values taken by arithmetic functions at consecutive
integers.

1. Introduction

We provide an update on some consequences of some old conjectures for-
mulated by Kátai, many of which have recently been proved by O. Klurman [2]
and others by O. Klurman and A.P. Mangerel [3], [4].

2. Notation

Let T := {z ∈ C : |z| = 1} stand for the set of the points on the unit circle
and let M1 stand for the set of multiplicative functions f such that |f(n)| = 1
for all positive integers n. Given f ∈ M1, consider the arithmetic function
δ(n) = δf (n) := f(n+1)f(n). Given x ∈ R, we set ‖x‖ = minn∈Z |x−n|. As is
common, we let A stand for the set of real-valued additive functions. Finally,
given h ∈ A, we set ∆h(n) := h(n+ 1)− h(n).
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3. Some old conjectures of Kátai and their recent proofs

We first state some conjectures.

Conjecture 1. (Kátai [1]) Let f ∈ M1 and consider its corresponding function

δ = δf . If lim
x→∞

1

x

∑
n≤x

|δ(n)− 1| = 0, then f(n) = nit for some t ∈ R.

Conjecture 2. (Kátai [1]) Let f ∈ M1 and consider its corresponding function

δ = δf . If lim
x→∞

1

log x

∑
n≤x

1

n
|δ(n)− 1| = 0, then f(n) = nit for some t ∈ R.

Conjecture 1 was proved by Klurman [2], whereas Conjecture 2 can be
proved in a similar manner.

Conjecture 3. Let f ∈ M1 and consider its corresponding function δ = δf .
Assume that there exists some w ∈ T and some ε > 0 for which |δ(n)w−1| ≥ ε
for all n ∈ N. Then f(n) = g(n)nit for some t ∈ R, where g(n)k = 1 for all
n ∈ N and some k ∈ N.

Conjecture 3 was proved by Klurman and Mangerel [3].

Conjecture 4. Let f ∈ M1 and consider its corresponding function δ = δf .
Assume that there exist some w ∈ T and some ε > 0 for which

lim
x→∞

1

x

∑
n≤x

|δ(n)w−1|<ε

1 = 0.

Then f(n) = g(n)nit for some t ∈ R, where g(n)k = 1 for all n ∈ N and some
k ∈ N.

Klurman and Mangerel claim (private communication) that they can prove
Conjecture 4.

The above statements can be reformulated for additive functions through
the following theorem.

Theorem A. Let h ∈ A and assume that either

(3.1) lim
x→∞

1

x

∑
n≤x

‖∆h(n)‖ = 0

or

(3.2) lim
x→∞

1

log x

∑
n≤x

1

n
‖∆h(n)‖ = 0

holds. Then there exists some c ∈ R such that h(n) ≡ c log n (mod 1) for all
n ∈ N.
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Proof. This result is an obvious consequence of Conjectures 1 and 2. Indeed,
setting f(n) := e2πih(n), we have that f ∈ M1 and δf (n) − 1 � ‖∆h(n)‖,
implying that (3.1) is equivalent to the condition of Conjecture 1 whereas (3.2)
is equivalent to the condition of Conjecture 2. �

We state our last conjecture.

Conjecture 5. Let h ∈ A, ξ ∈ [0, 1) and ε > 0. Let n1 < n2 < · · · be a
sequence of positive integers of positive density. Assume that

lim
x→∞

1

x

∑
nj≤x

‖∆h(nj)−ξ‖<ε

1 = 0.

Then, there exists k ∈ N such that kξ ∈ Z.

One can easily see that Conjecture 5 is actually a reformulation of Conjec-
ture 4.

4. Main result

Theorem 1. Let h ∈ A and τ ∈ R \Q. Assume that

(4.1) lim
x→∞

1

x

∑
n≤x

‖∆h(n)‖ = 0 and lim
x→∞

1

x

∑
n≤x

‖τ∆h(n)‖ = 0

or

(4.2) lim
x→∞

1

log x

∑
n≤x

1

n
‖∆h(n)‖ = 0 and lim

x→∞

1

log x

∑
n≤x

1

n
‖τ∆h(n)‖ = 0.

Then, there exists c ∈ R such that h(n) = c log n for all n ∈ N.

5. Proof of Theorem 1

It follows from Theorem A that there exist c1, c2 ∈ R and integer valued
additive functions u(n) and v(n) such that

h(n) = c1 log n+ u(n) and τh(n) = c2 log n+ v(n) for all n ∈ N.
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Since τh(n) = c1τ log n+ τu(n), we have that, for all n ∈ N,

(5.1) D log n = v(n)− τu(n), where D = c1τ − c2.

If D = 0, then v(n) = τu(n) for every n ∈ N, implying that u(n) = v(n) = 0
for each integer n ≥ 1, thus completing the proof of Theorem 1 in the case
D = 0.

From here on, we can therefore assume that D �= 0. From (5.1), we have
that

log n =
v(n)

D
− τu(n)

D
,

so that, for arbitrary positive integers p and q, we have

Du(q) log p = u(q)v(p)− τu(p)u(q),

Du(p) log q = u(p)v(q)− τu(p)u(q),

from which we obtain that

(5.2) D log

(
pu(q)

qu(p)

)
= u(q)v(p)− u(p)u(q) =: L(p, q).

So, let us first assume that there exist distinct primes p, q and co-prime prime
powers P,Q for which L(p, q) �= 0 and L(P,Q) �= 0. Let A,B be such that

A

B
=

L(p, q)

L(P,Q)
.

It follows that

log

(
pu(q)

qu(p)

)B

= log

(
Pu(Q)

Qu(P )

)A

.

But, in light of the uniqueness of prime factorisation, this can hold only if
u(P ) = u(Q) = 0 and u(p) = u(q) = 0, which contradicts our condition D �= 0.

Hence, it remains to consider the case where there exist at most three primes
π1 < π2 < π3 for which u(π

ej
j ) �= 0 for some ej ∈ N for j = 1, 2, 3. Consider the

integers n = πe1
1 ν, where ν runs over those integers such that (ν, π1π2π3) = 1

and (n+ 1, π1π2π3) = 1. In this case, we have

∆h(n) = h(n+ 1)− h(n) = c1 log

(
1 +

1

πe1
1 ν

)
− u(πe1

1 ),

from which it follows that

lim
n=π

e1
1 ν→∞

∆h(n) = −u(πe1
1 ),
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which in turn implies that

lim
n=π

e1
1 ν→∞

∆τh(n) = lim
n=π

e1
1 ν→∞

(v(n+ 1)− v(n)) = −τu(πe1
1 ).

Now, since v(n + 1) − v(n) ∈ Z and u(πe1
1 ) �= 0, we have established that, for

a suitable δ > 0, there exists n0 ∈ N such that

‖τu(πe1
1 ) + (v(n+ 1)− v(n))‖ > δ > 0 for all n ≥ n0,

again a contradiction. This completes the proof of Theorem 1 in this particular
case.

It remains to consider the case where there exist only two primes π1 < π2

for which for suitable e1, e2 ∈ N we have u(πe1
1 ) �= 0 and u(πe2

2 ) �= 0. Similarly
as above, let us consider those integers n = πe1

1 ν, where (ν, π1π2) = 1 and
(n+1, π1π2) = 1. We may then argue as above and conclude that this situation
also leads to a contradiction.

Therefore, it only remains to consider the case where u(P ) = 0 for some
prime power P = p� and u(m) = 0 for every m coprime to P . Let us first
assume that there exist positive integers Q1 and Q2 such that (Q1, Q2) = 1
and (p,Q1Q2) = 1 for which v(Q1) �= 0 and v(Q2) �= 0. We then have

D logQj = v(Qj) for j = 1, 2,

logQ1

logQ2
=

v(Q1)

v(Q2)
,

which implies that Q
v(Q2)
1 = Q

v(Q1)
2 , which is clearly impossible. If u(n) = 0

for all n ∈ N or if v(n) = 0 for all n ∈ N, we are done.

So, consider those integers n = p�ν, where ν runs over those positive integers
satisfying (ν, p) = 1. In this case, we have u(n + 1) = 0 and u(n) = u(p�).
Consequently,

lim
n=p�ν→∞

∆h(n) = −u(p�) and

lim
n=p�ν→∞

∆τh(n) = lim
n=p�ν→∞

(v(n+ 1)− v(n)) = −τu(p�),

which is also impossible, thus completing the proof of Theorem 1. �
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