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Abstract. Poisson limit theorems are studied for discrete probability mod-
els. Consider the allocation of n balls into N boxes. Let µr(N,K, n) de-
note the number of those boxes from the first K boxes which contain r
balls. Convergence of µr(N,K, n) to a Poisson distribution is proved as
K,n → ∞. Analogous results are obtained for the generalized allocation
scheme and also for several discrete probabilistic models.

1. Introduction

Poisson approximation is a good tool to estimate the probability of rare
events. The well-known approximation theorem of the binomial distribution
by Poisson distribution has lot of extensions and refinements. One of the
most famous results is Le Cam’s theorem. Let X1, . . . , Xn be independent
Bernoulli variables with P(Xi = 1) = pi, i = 1, . . . , n, Sn = X1 + · · ·+Xn and
λ = p1 + · · ·+ pn. Then

∞∑
k=0

∣∣∣∣P (Sn = k)− λk

k!
e−λ

∣∣∣∣ < 2

n∑
k=1

p2k.

Key words and phrases: Poisson distribution, power series distribution, limit theorem, gen-
eralized scheme of allocations.
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This result has many versions. One can find an overview of the Poisson
approximation theorems in the monograph [1]. In [1] the Stein-Chen method
and coupling are used to find upper bounds for the distance of the distribution
studied and an appropriate Poisson distribution. However, in this paper we do
not study rate of convergence, so here we mention only some usual convergence
theorems.

The generalized allocation scheme was introduced by V. F. Kolchin in [6].
Several models of discrete probability theory, such as random permutations,
random forests, random partitions, urn schemes are particular cases of the
generalized allocation scheme, see [7]. There are papers and books presenting
Poisson limit theorems for the number of boxes containing r balls (where r is a
fixed number), see e.g. [17], [18], [19], [20] and the references therein. Poisson
limit theorems for the number of boxes containing fixed number of balls in
the model of allocation of distinct balls into boxes were presented by Kolchin,
Sevast’yanov and Chistyakov in the monograph [11]. In [5] the usual allocation
scheme was studied and limit theorems were obtained for the number of empty
boxes in a fixed set of boxes.

In this paper we will study the generalized allocation scheme. We shall
obtain Poisson limit theorems for the number of those boxes from the first
K boxes which contain r balls, Theorems 2.2 and 2.3. Refinements of these
theorems are obtained for certain particular cases. Theorem 2.4 concerns the
uniform allocation scheme of n distinguishable balls into N boxes. Theorem
2.5 is devoted to the homogeneous allocation scheme of n indistinguishable
balls into N boxes. Theorem 2.6 deals with random forests. Poisson limit is
obtained for the number of those trees in the set of the first K trees which
have r non-root vertices. In Theorems 2.7 and 2.8 the multicolour urn scheme
is studied. We consider the number of those colours among the first K colours
from which r balls are chosen, and we prove that this quantity is asymptotically
Poisson. The novelty of our results is that we study the first K boxes and not
the whole set of boxes. The proofs are based on a Poisson limit theorem for
exchangeable events, see Proposition 2.1. We also use Le Cam’s inequality in
our proofs.

2. Main results for the generalized allocation scheme

Throughout the paper
d→ will denote convergence in distribution, π(β) will

denote a Poisson random variable with parameter β, 0 ≤ β < ∞. Let η′i = η′Ki,
1 ≤ i ≤ K, K = 1, 2, . . . , be an array of row-wise independent identically
distributed non-negative integer valued random variables. Let r be a non-
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negative integer. Let Ai = AKi = {η′i = r} be the event that η′i has fixed value

r and let µr(K) =
∑K

i=1 IAi
, where IA is the indicator of the set A. By the

simplest version of the Poisson limit theorem we have

(2.1) µr(K)
d→ π(β) as KP(Ai) → β.

In this paper we obtain analogues of this result in the case when η′1, . . . , η
′
N are

certain dependent random variables playing important role in combinatorial
probability theory.

Recall that the random variables η′1, . . . , η
′
K are called exchangeable if the

distribution of (η′1, . . . , η
′
K) coincides with the distribution of (η′i1 , . . . , η

′
iK
) for

any permutation (i1, . . . , iK) of (1, . . . ,K).

The following known elementary limit theorem will play fundamental role in
our paper (see Theorem II in [4]; we mention that Benczúr presented a slightly
more general result without proof, see Theorem 1 in [2]).

Proposition 2.1. Let the array of random variables ηi = ηKi, 1 ≤ i ≤ K,
K = 1, 2, . . . , be row-wise exchangeable. Let Ai = AKi = {ηKi = r}, where r is

fixed and let µr(K) =
∑K

i=1 IAi
. Suppose that the following condition is valid.

There exists β (0 ≤ β < ∞) such that for any k = 1, 2, . . .

(2.2) KkP(A1 ∩A2 ∩ · · · ∩Ak) → βk as K → ∞.

Then

(2.3) µr(K)
d→ π(β) as K → ∞.

The generalized allocation scheme was introduced by V. F. Kolchin in [6].
Let ξ1, ξ2, . . . , ξN be independent identically distributed non-negative integer
valued random variables. Denote by

pl = P{ξi = l}, l = 0, 1, . . .

their distribution. We say that the random variables η1, . . . , ηN satisfy the
generalized allocation scheme of allocation of n balls into N boxes, if their
joint distribution is of the form
(2.4)

P{η1 = k1, . . . , ηN = kN} = P
{
ξ1 = k1, . . . , ξN = kN

∣∣∣∣
∑N

i=1
ξi = n

}
,

for all non-negative integer numbers k1, k2, . . . , kN such that k1+k2+· · ·+kN =
= n. Various models of discrete probability theory, such as random permuta-
tions, random forests, random partitions, urn schemes are particular cases of
the generalized allocation scheme, see [7].
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Let 0 < K ≤ N . In the generalized allocation scheme, we will denote by
µr(N,K, n) the number of those boxes from the first K boxes which contain r
balls. That is

µr(N,K, n) =
∑K

i=1
IAi

,

where Ai = {ηi = r}.
The aim of this paper is to prove that under appropriate conditions

(2.5) µr(N,K, n)
d→ π(β),

where π(β) is a Poisson random variable with parameter β. Observe that
η1, . . . , ηN are exchangeable random variables. Let

ζl = ξ1 + ξ2 + · · ·+ ξl, l = 1, 2, . . . , N.

From (2.4) it follows that

(2.6)

P(Ai1 ∩Ai2 ∩ · · · ∩Aik) =

= (pr)
k P{ζN−k = n− kr}

P{ζN = n}
, if n− kr ≥ 0, N − k ≥ 1,

P(Ai1 ∩Ai2 ∩ · · · ∩Aik) =
(pr)

N

P{ζN = n}
, if n = kr, N = k,

and
P(Ai1 ∩Ai2 ∩ · · · ∩Aik) = 0

in all other cases.

Remark 2.1. We have the following representation of the distribution of
µr(N,K, n):

(2.7) P (µr(N,K, n) = k) = pkr (1− pr)
K−k

P{ζ{r}N−k = n− kr}
P{ζN = n}

, 0 ≤ k ≤ K,

where ζN = ξ1 + ξ2 + · · ·+ ξN ,

ζ
{r}
N−k = ξ

{r}
1 + · · ·+ ξ

{r}
K−k + ξK+1 + · · ·+ ξN ,

the random variables ξ
{r}
1 , . . . , ξ

{r}
K−k, ξK+1, . . . , ξN are independent, and the

random variables ξ
{r}
i , i = 1, . . . ,K − k, have the following distribution

P{ξ{r}i = j} = P{ξi = j | ξi �= r}, j = 0, 1, 2, . . . .

The proof of this formula is similar to the proofs of some well-known analogous
formulae (see, for example, Lemma 1.2.1 in [7]). But in (2.7) we have condi-
tional probabilities, therefore it is more difficult than (2.6). Therefore in this
paper we shall use Proposition 2.1 and (2.6).
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Usually, in the generalized allocation scheme, the distribution of ξi is of
power law. In this paper we will assume this, so ξi = ξi(α), 1 ≤ i ≤ N , have
the following distribution

(2.8) pk = pk(α) = P{ξi = k} =
bkα

k

k!B(α)
, k = 0, 1, 2, . . . ,

where bk ≥ 0 for each k, and the power series B(α) =
∑∞

k=0
bk
k!α

k has positive
radius of convergence R > 0. We shall use the following condition for l ≥ 1

(Al) : b0 > 0, bl > 0 and bi = 0 for 0 < i < l.

Condition (A1) was introduced in [8], while condition (Al) appeared first in
[9]. Integral and local limit theorems for sums of ξi(α) with the property (A1)
were obtained in [8]. Generalizations of those results for random variables ξi(α)
with condition (Al) were obtained in [9] and [10].

The expectation m = m(α), the variance σ2 = σ2(α) and the characteristic
function φα(t) of ξi = ξi(α) have the representation

(2.9) m(α) =
αB′(α)

B(α)
, σ2(α) = αm′(α), φα(t) =

B(αeit)

B(α)
.

Therefore m = m(α) is an increasing continuous function (see [7]).

Lemma 2.1. (A.V. Kolchin, [8], Theorem 5.) Let (A1) be valid. Let α = α(N)
be such that α → 0 and αN → ∞ if N → ∞. Then we have

σ
√
NP{ζN = n} − 1√

2π
e−

(n−Nm)2

2σ2N → 0 as N → ∞

uniformly on n = 0, 1, 2, . . . .

Let l, l1, 0 ≤ l < l1, be integer numbers. We will also use the following
condition

Al(l1) : bl > 0, bl1 > 0 and bi = 0 if either i < l or l < i < l1.

Observe that if B(α) is not a constant, then Al(l1) is valid for some l, l1. From
Al(l1) it follows that

m =

(
l +

bl1 l!

bl(l1 − 1)!
αl1−l

)
(1 + o(1))

as α → 0.

Observe also that (A1) coincides with A0(1). Therefore Al(l + 1) is a gen-
eralization of (A1) and following lemma is a generalization of Lemma 2.1.
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Lemma 2.2. Let Al(l + 1) be valid. Let α = α(N) be such that α → 0 and
αN → ∞ as N → ∞. Then we have

(2.10) σ
√
NP{ζN = n} − 1√

2π
e−

(n−Nm)2

2σ2N → 0 as N → ∞

uniformly for n = 0, 1, 2, . . . .

Lemma 2.3. (A.V. Kolchin, [3], Theorem 2 for the case of l = 1.) Assume that
(Al) is true. Let α = α(N) be such that α → 0 and Npl(α) → λ as N → ∞,
where 0 ≤ λ < ∞. Then we have

ζN
d→ lπ(λ) as N → ∞.

The following stronger result than Lemma 2.3 is also true.

Lemma 2.4. Assume that (Al) is true. Let B be a subset of non-negative
integer numbers. Then we have

(2.11) |P(ζN ∈ B)− P(lπ(Npl(α)) ∈ B)| ≤ NP(ξi(α) ≥ l + 1) +N(pl(α))
2.

Corollary 2.1. Assume that (Al) is true. Let n be a non-negative integer
number. Then we have

P(ζN = ln) = P(π(Nα) = n) + O(Nαl+1),

where

O(Nαl+1) ≤ CNαl+1, C =

(
bl

l!B(α)

)2

αl−1+
1

B(α)

∞∑
k=l+1

bkα
k−l−1

k!
, α ≤ 1.

Using Lemma 2.2 to estimate the fractional in (2.6), we obtain the following
theorem.

Theorem 2.2. Assume that Al(l + 1) is true. Let r ≥ l + 2 and assume that
r belongs to a bounded set. Suppose that n,N,K → ∞ and α → 0 such that
m(α) = n

N and Kpr → β, where 0 < β < ∞. Then we have

µr(N,K, n)
d→ π(β).

Using Lemma 2.4 to estimate the fraction in (2.6), we obtain the following
theorem.

Theorem 2.3. Let r = 1 and assume that (A1) is valid. Let α = n
N . Suppose

that n,K → ∞ such that n2,5

N → 0 and Kp1(α) → β. Then

µ1(N,K, n)
d→ π(β).
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In most models of discrete probability theory the probability of Ai1 ∩Ai2 ∩
∩ · · ·∩Aik has a nice representation. This allows us to refine Theorems 2.2 and
2.3 for particular cases.

First we consider allocations of distinct balls. The uniform (equidistributed)
allocation scheme of n distinct balls into N different boxes is the random vector
η1, . . . , ηN , with the following distribution

(2.12) P{η1 = k1, . . . , ηN = kN} =
n!

k1!k2! · · · kN !

(
1

N

)n

,

where for k1, k2, . . . , kN are non-negative numbers such that k1 + k2 + · · · +
+kN = n. Limit theorems for this model were obtained in lot of papers (see the
monograph [11] by Kolchin, Sevast’yanov and Chistyakov). We mention that
in Theorem 7 of [3] Poisson approximation is obtained for the number of boxes
containing at least two balls. The conditions of that theorem are in accordance
with our conditions in Theorem 2.4. We also mention that section 6.2 in [1] is
devoted to the Poisson approximation for the non-uniform allocation scheme.

If ξ1, ξ2, . . . , ξN are independent identically distributed Poisson random vari-
ables, then the generalized allocation scheme of occupation n balls into N boxes
gives the above model (2.12). Therefore we can apply Theorem 2.2 in this case.
However, we can obtain the following refinement of Theorem 2.2 for this par-
ticular model. In the following theorem α = n

N can converge to 0 or to ∞
moreover r can be 0 or 1.

Theorem 2.4. Consider the equidistributed allocation scheme (2.12) of n dis-
tinct balls into N different boxes. Suppose that n,K → ∞. Assume that one
of the following two sets of conditions is valid:

(A) the set of the numbers r is bounded,
n

N2
→ 0, K

1

r!

( n

N

)r

e−
n
N → β;

(B)
r

N
→ 0,

r2

n
→ 0,

n

N
→ 0, K

1

r!

( n

N

)r

→ β.

Then (2.5) is satisfied.

We can apply Theorem 2.4 to the random variable

η(K1) = min
1≤i≤K

ηi

that is the minimal content of a box from the first K boxes.

Corollary 2.2. Consider the equidistributed allocation scheme (2.12) of n dis-
tinct balls into N different boxes. Let the set of r values be bounded. Suppose
that n,K → ∞ such that n

N → ∞ and K 1
r!

(
n
N

)r
e−

n
N → β. Then we have

(2.13) P{η(K1) ≤ r − 1} = o(1), P{η(K1) = r} = 1− e−β + o(1).
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If K = N then (2.13) was proved in [11] under another conditions: α > r,
α

lnN → 1, Npr → λ, where α = n
N . The conditions Npr → λ, α > r, α

lnN → 1
imply n

rN → ∞. The condition α
lnN → 1 implies n

N2 → 0. Therefore our above
corollary is an extension of the result of [11] to the case K < N and for K = N
we apply weaker conditions. In [11] the proof is based on a local limit theorem.

Next we consider allocations of indistinguishable balls. Let n,N be integer
numbers. The homogeneous allocation scheme of n indistinguishable balls into
N boxes is represented by the random variables η1, . . . , ηN with the distribution
defined by formula

(2.14) P{η1 = k1, . . . , ηN = kN} = 1
/(

n+N − 1

N − 1

)
,

where k1, k2, . . . , kN are non-negative integer numbers such that k1+k2+ · · ·+
kN = n (see Kolchin [7], Example 1.2.2). In other words, this scheme is the
subdivision of n into N parts as n = k1 + k2 + · · · + kN , where k1, k2, . . . , kN
are non-negative integers.

Let K be an integer number such that 0 < K ≤ N . Let r be a non-negative
integer number.

Theorem 2.5. In model (2.14), suppose that n,K → ∞ such that

(2.15)
r2

n
→ 0, K

N

N + n

(
n

N + n

)r

→ β.

Then (2.5) is satisfied.

Now we turn to random forests. More precisely, in what follows a labelled
graph containing rooted trees will be called a forest. The roots are labelled by
1, . . . , N and the non-root vertices are labelled by 1, . . . , n. On the set of all
such kind of forests the uniform distribution is considered. This model is called
random forest. A random forest with N root vertices and n non-root vertices
can be considered as a generalized allocation scheme with B-function

Bf (α) =
∑∞

k=1

kk−1

k!
αk,

(see V. F. Kolchin [7], see also Yu. L. Pavlov [14], A. N. Timashev [17] for the
theory of random forests). In this case the meaning of (2.4) is the following.
In the random forest there are N rooted trees and the ith tree has ηi non-root
vertices. So µr(N,K, n) is the number of those trees in the set of the first
K trees which have r non-root vertices. We mention that the function Bf (α)
satisfies condition A1(2). Therefore we can apply Theorem 2.2. However, in
Theorem 2.2 we have condition n

N = m(α). In the following theorem we shall
avoid this condition, so we do not need to solve equation n

N = m(α).
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Theorem 2.6. Consider a random forest with N root vertices and n non-root
vertices. Suppose that r ≥ 1, and n,N → ∞ such that

(2.16)
r2

n
→ 0, K

1

(r + 1)!

(
(r + 1)n

n+N

)r

e−
(r+1)n
n+N → β.

Then (2.5) is satisfied.

Now we turn to multi-colour urn schemes. In a box there are mN balls.
The balls are coloured with N different colours. For each colour there are m
balls in the urn with this colour. We choose n balls from the urn without
replacement. Let ηi denote the number of balls chosen from the ith colour. So
the random variables ηi, 1 ≤ i ≤ N , represent the multi-colour urn scheme if
their joint distribution is given by the formula

(2.17) P{η1 = n1, . . . , ηN = nN} =

(
m
n1

)(
m
n2

)
· · ·

(
m
nN

)
(
Nm
n

) ,

where n1 + n2 + · · ·+ nN = n, ni < m, 1 ≤ i ≤ N , n ≤ Nm. The multi-colour
urn scheme is a general allocation scheme with binomial random variable ξi
having parameters m and α (see V.F. Kolchin [7]). Therefore the limit in (2.5)
depends also on m. We need the following technical lemma.

Lemma 2.5. Consider the multi-colour urn scheme (2.17). Suppose that
n,N → ∞ such that

(2.18) r ≤ m,
n

Nm
< C for some C < 1,

m

N
→ 0,

r2

n
→ 0.

Let k be a fixed non-negative integer number. Then we have

(2.19) P(A1 ∩A2 ∩ · · · ∩Ak) =

((
m

r

)( n

Nm

)r (
1− n

Nm

)m−r
)k

(1 + o(1)).

Using Le Cam’s Poisson approximation theorem, we obtain the following
result.

Theorem 2.7. Consider the multi-colour urn scheme (2.17). Suppose that
n,N → ∞ such that (2.18) is satisfied. Let K → ∞ such that

(2.20) K
1

r!

( n

N

)r

e−
n
N → β, Km

( n

mN

)2

→ 0.

Then (2.5) is satisfied.
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In order to prove our next theorem, we will use the following version of the
Moivre–Laplace theorem (see [15], see also, p. 310 in [16])

(2.21)

(
m

r

)
prqm−r =

1√
2πmpq

e−x2/2

[
1 +

(q − p)(x3 − 3x)

6
√
mpq

]
+∆,

where 0 < p < 1, q = 1− p, x = (r−mp)√
mpq , and

(2.22) |∆| < 0, 15 + 0, 25|p− q|
(mpq)3/2

+ e−
3
2

√
mpq, mpq ≥ 25.

Theorem 2.8. Consider the multi-colour urn scheme (2.17). Suppose n,N →
→ ∞ such that (2.18) is satisfied, K → ∞ such that

(2.23)

(
r − n

N

)2
2 n
N

(
1− n

Nm

) < C

for some 0 < C < ∞ and

(2.24)
K√

2π n
N

(
1− n

Nm

)e
− (r− n

N )
2

2 n
N (1− n

Nm ) → β.

Then (2.5) is satisfied.

One can see that in Theorems 2.7 and 2.8 α = n
N can converge to infinity.

Let D ⊂ {1, 2, . . . , N}, such that |D| = K. Denote by µr(D,n) the number
of boxes from D which contain r balls. Then the distribution of µr(D,n)
coincides with the distribution of µr(N,K, n). Therefore the results of this
paper can be considered as Poisson limit theorems for µr(D,n). In [5] limit
theorems were obtained for µ0(D,n) in some schemes of allocations of distinct
balls. In several papers limit theorems for µr(N,N, n) were proved (see, for
example, the monographs [7], [11], [14], [17]).

3. Proofs

Proof of Proposition 2.1. For the sake of completeness we present a proof
which is a simplified version of the proof in [4]. Let Xi = IAi

, SK =
∑K

i=1 Xi,
ml

K = E(SK)l, l = 1, 2, . . . . By Theorem 1.1.4 of [7] we obtain

SK(SK − 1) · · · (SK − l + 1) =
∑

{i1,...,il}

Xi1Xi2 · · ·Xil ,
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where we summarize for all ordered selections without replacement i1, . . . , il of
l elements from the set {1, 2, . . . ,K}. The proof of this equation is simple. In
the set {X1, . . . , XK} let j be the number of ones (and K − j be the number
of zeros). If j = 0, 1, . . . , (l− 1), then both sides of the above equation are 0, if
j = l, (l+1), . . . ,K, then both sides are equal to j(j − 1) · · · (j − (l− 1)). Now
the above equation implies that

SK(SK − 1) · · · (SK − l + 1) =
∑

{i1,...,il}
IAi1∩Ai2∩···∩Ail

and therefore

ESK(SK − 1) · · · (SK − l+1) = K(K− 1) · · · (K− l+1)P(A1 ∩A2 ∩ · · · ∩Al) =

= (1 + o(1))KlP(A1 ∩A2 ∩ · · · ∩Al) → βl

as K → ∞, because our condition (2.2) is

KlP(A1 ∩A2 ∩ · · · ∩Al) → βl.

Recall that π(β) is a Poisson random variable with parameter β. So we have

Eπ(β)(π(β)− 1) · · · (π(β)− l + 1) = e−β
∞∑
k=0

k(k − 1) · · · (k − l + 1)
βk

k!
= βl.

Therefore

ESK(SK − 1) · · · (SK − l + 1) → Eπ(β)(π(β)− 1) · · · (π(β)− l + 1)

that is
ml

K → E(π(β))l

for l = 1, 2, . . . . Therefore we can apply the moment convergence theorem (see
Theorem C in Section 11.4 of [13], see also Theorem 1.1.3 of [7]). The proof is
complete. �

Proof of Lemma 2.2. Consider independent random variables ξ′i = ξ′i(α),

i ∈ N, having power law distribution with function B′(α) = B(α)
αl . Let φ′

α be
the characteristic function of ξ′i. Then, by (2.9), we have

φ′
α(t) =

B(αeit)/(αeit)l

B(α)/αl
= e−itlB(αeit)

B(α)
= e−itlφα(t).

Therefore ξ′i = ξi(α) − l, i = 1, 2, . . . , and ζ ′N = ξ′1 + · · · + ξ′N = ζN − lN .
Then ξ′i satisfies condition (A1), it has expectation m′ = m − l and variance
σ2. Therefore, using Lemma 2.1, we obtain



88 A. Chuprunov and I. Fazekas

σ
√
NP{ζN = n} = σ

√
NP{ζ ′N = n−Nl} =

=
1√
2π

e
(n−Nl−Nm′)2

2σ2N + o(1) =
1√
2π

e
(n−Nm)2

2σ2N + o(1).

The proof is complete. �

Proof of Lemma 2.4. The proof is a consequence of the following inequalities.

|P(ζN ∈ B)− P(lπ(Npl(α)) ∈ B)| ≤

∣∣∣∣∣P(ζN ∈ B)− P

(
l

N∑
i=1

I{ξi=l} ∈ B

)∣∣∣∣∣+

+

∣∣∣∣∣P
(
l

N∑
i=1

I{ξi=l} ∈ B

)
− P(lπ(Npl(α)) ∈ B)

∣∣∣∣∣ ≤

≤
N∑
i=1

P(ξi �= lI{ξi=l}) +

∣∣∣∣∣P
(

N∑
i=1

I{ξi(α)=l} ∈ B/l

)
− P(π(Npl(α)) ∈ B/l)

∣∣∣∣∣ ≤

≤ NP (ξi(α) ≥ l + 1) +N(pl(α))
2.

In the last step we applied Le Cam’s inequality. The proof is complete. �

Proof of Corollary 2.1. Using (2.11), we obtain

|P(ζN = ln)− P(lπ(Npl(α)) = n)| ≤

≤ N

((
blα

l

l!B(α)

)2

+
αl+1

B(α)

∞∑
k=l+1

bkα
k−l−1

k!

)
≤

≤ Nαl+1

((
bl

l!B(α)

)2

αl−1 +
1

B(α)

∞∑
k=l+1

bkα
k−l−1

k!

)
.

The proof is complete. �

Before proving Theorems 2.2 and 2.3, we observe that Kpr → β implies
that

Kpr < C for some 0 < C < ∞.

Proof of Theorem 2.2. The radius of convergence of
∑∞

k=0
bk
k!α

k coincides

with the radius of convergence of
∑∞

k=2
bk
k!α

k−1. Therefore the radius of con-

vergence of
∑∞

k=2
bk
k!α

k−1 is equal to R and br
r!α

r−1 → 0 as α → 0 uniformly
for r ≥ l + 2. Now we apply the condition Kpr → β, so we obtain

Nα
brα

r−1

r!(blαl + o(1))
≥ K

brα
r

r!B(α)
= Kpr = β + o(1) > 0.



Poisson limit theorems 89

Consequently, using r ≥ l + 2, we get Nα → ∞. Now, we use Lemma 2.2 to
approximate the fractional in (2.6), so we obtain

KkP(A1 ∩A2 ∩ · · · ∩Ak) =

= Kk(pr)
k e

− (n−kr−(N−k) n
N )

2

2(N−k)σ2 + o(1)√
2π(N − k)σ

/
e−

(n−N n
N )

2

2Nσ2 + o(1)√
2πNσ

=

(3.1) = Kk(pr)
k e

− (k( n
N

−r))
2

2(N−k)σ2 + o(1)

1 + o(1)

√
N

N − k
= βk(1 + o(1)).

So condition (2.2) of Proposition 2.1 is satisfied, therefore Theorem 2.2 follows
from Proposition 2.1. The proof is complete. �

Proof of Theorem 2.3. Recall that r = 1. As n2.5/N → 0, so α = n
N → 0.

Therefore, using Corollary 2.1 and Stirling’s formula to approximate n! and
(n− k)!, we obtain from (2.6) that

KkP(A1 ∩A2 ∩ · · · ∩Ak) = (Kp1(α))
k P(ζN−k = n− k)

P(ζN = n)
=

= (Kp1(α))
k P(π((N − k)α) = n− k) + O((N − k)α2)

P(π(Nα) = n) + O(Nα2)
=

= (Kp1(α))
k
e−(N−k) n

N

(
(N−k) n

N e

(n−k)

)n−k
1√

2π(n−k)
+O((N − k)α2)

e−N n
N

(
N n

N e

n

)n
1√
2πn

+O(Nα2)
(1 + o(1)) =

= (Kp1(α))
k
e−n+ kn

N +n−k (1−
k
N )

N n−k
N

(1− k
n )

n−k

√
n

n−k +O
(
Nα2

√
n
)

1 + O(Nα2
√
n)

(1 + o(1)) =

(3.2) = (Kp1(α))
k
e

kn
N
(1− k

N )
N n−k

N

ek(1− k
n )

n−k

√
n

n−k +O
(
Nα2

√
n
)

1 + O(Nα2
√
n)

(1 + o(1)).

Applying the well-known inequality e−1 ≥
(
1− 1

y

)y

≥ e−1
(
1− 1

y

)
if y > 1,

then using n2,5

N → 0 and Kp1(α) → β, we obtain from (3.2) for fixed k that
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KkP(A1 ∩A2 ∩ · · · ∩Ak) =

= (Kp1(α))
k
e

kn
N −k e

−k n−k
N (1+O( k

N ))

e
−k n−k

n (1+O( k
n ))

√
n

n−k +O
(

n2√n
N

)

1 + O
(

n2
√
n

N

) = βk(1 + o(1)).

Therefore condition (2.2) of Proposition 2.1 is valid. Consequently, Theorem
2.3 follows from Proposition 2.1. The proof is complete. �

Proof of Theorem 2.4. Let either (A) or (B) be valid. Since

( n

N

)kr

>
n

N
·
(

n

N
− 1

N

)
· · ·

(
n

N
− kr − 1

N

)
>

( n

N

)kr
(
1− kr

n

)kr

=

=
( n

N

)kr
(
1− kr

n

) n
kr

(kr)2

n

,

so we have

n

N
·
(

n

N
− 1

N

)
· · ·

(
n

N
− kr − 1

N

)
=

( n

N

)kr

(1 + o(1)).

Consequently, we obtain

P(A1 ∩A2 ∩ · · · ∩Ak) =
n!

(r!)k(n− kr)!

1

Nkr

(
1− k

N

)n−kr

=

=

(
1

r!

)k
n

N
· n− 1

N
· · · n− kr + 1

N

(
1− k

N

)n−kr

=

(3.3) =

(
1

r!

)k ( n

N

)rk
(
1− k

N

)n−kr

(1 + o(1)).

Now we consider the case when condition (A) is valid. For a fixed k, it follows
from (3.3) that

KkP(A1 ∩A2 ∩ · · · ∩Ak) =

(
K

1

r!

)k ( n

N

)kr

en ln(1− k
N )

(
1− k

N

)−Nk r
N

=

=

(
K

1

r!

)k ( n

N

)kr

e−k n
N +O( n

N2 )(1 + o(1)) =

(
K

1

r!

( n

N

)r

e−
n
N

)k

(1 + o(1)) =

= βk(1 + o(1)).
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In the last two steps we used that n/N2 → 0 and K 1
r!

(
n
N

)r
e−

n
N → β. There-

fore condition (2.2) is valid. So in the case of the assumption (A), our theorem
follows from Proposition 2.1.

Now, assume that (B) is valid. Then for a fixed k, it follows from (3.3) that

KkP(A1 ∩A2 ∩ · · · ∩Ak) =

=

(
K

1

r!

)k ( n

N

)rk
(
1− k

N

)N
k

n−kr
N k

(1 + o(1)) = βk(1 + o(1)).

Therefore condition (2.2) is valid. So in the case of the assumption (B), our
theorem follows from Proposition 2.1, too. �

Proof of Corollary 2.2. By taking the logarithm ofK 1
r!

(
n
N

)r
e−

n
N = β+o(1),

we obtain

ln(N)− C1
n

N
> ln(K)− ln(r!) + C ln

( n

N

)
− n

N
> ln(β + o(1))

for some C1 > 0 and C > 1. Therefore we have

1− ln(β + o(1))

ln(N)
> C1

n

N ln(N)
.

Consequently, n
N ln(N) is bounded. Therefore we see that the condition

K 1
r!

(
n
N

)r
e−

n
N → β implies n

N2 → 0. So we can apply Theorem 2.4 because its
conditions are satisfied.

Now let α = n
N and let ξ be a Poisson random variable with parameter α.

Then, since r
α → 0, we have

KP{ξ ≤ r − 1} = K
r−1∑
i=0

e−αα
i

i!
=

(
r

α
+

r(r − 1)

α2
+ · · ·+ r!

αr

)
Ke−αα

r

r!
=

= o(1)(β + o(1)) = o(1).

Using this, by direct calculation we find

P{η(K1) ≤ r − 1} = P{ min
1≤i≤K

ηi ≤ r − 1} = P{∪K
i=1{ηi ≤ r − 1}} ≤

≤ KP{η1 ≤ r − 1} = K
r−1∑
k=0

(
n

k

)(
1

N

)k (
1− 1

N

)n−k

≤

≤ K
r−1∑
k=0

1

k!

( n

N

)k
(
1− 1

N

)n−k

≤ K
r−1∑
k=0

1

k!

(
α

1− 1
N

)k

e−α =

= KP{ξ ≤ r − 1}(1 + o(1)) = o(1).
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So the first equality in (2.13) is proved. Let Br = {µ(N,K, r) ≥ 1}. Then

{η(K1) ≤ r − 1} ∪Br = {η(K1) ≤ r},

an so we have

P{Br} ≤ P{η(K1) ≤ r} ≤ P{η(K1) ≤ r − 1}+ P{Br}.

So the first equality in (2.13) and Theorem 2.4 imply the second equality in
(2.13). The proof is complete. �

Proof of Theorem 2.5. Observe that

k ≤ N and kr ≤ n.

Recall that Ai = {ηi = r}. Let k be a fixed positive integer. Then we have

KkP{A1 ∩A2 ∩ · · · ∩Ak} =

= Kk

(
n−kr+N−k−1

N−k−1

)
(
n+N−1
N−1

) = Kk (N − 1)!

(N − k − 1)!

n!

(n− kr)!

(n− kr +N − k − 1)!

(n+N − 1)!
.

Using assumption r2/n → 0, we obtain that the above expression is equal to

(
K

Nnr

(N + n− 1)r+1

)k

(1 + o(1)) =

(
K

N

N + n

(
n

N + n

)r)k

(1 + o(1)).

So condition (2.15) implies (2.2). Therefore our theorem follows from Proposi-
tion 2.1. The proof is complete. �

Proof of Theorem 2.6. First observe that k ≤ N . Since

(3.4) nkr > n(n− 1) · · · (n− (kr − 1)) > nkr

(
1− kr − 1

n

)kr

and r2

n → 0, so for any fixed k we have

(3.5) n(n− 1) · · · (n− (kr − 1)) = nkr(1 + o(1)).

Moreover, again using r2

n → 0, we obtain

(
1− k(r + 1)

n+N

)n−kr−1

= e(n−kr−1) ln(1− k(r+1)
n+N ) =

(3.6) = e
(n−kr−1)

(
− k(r+1)

n+N +O
(
( k(r+1)

n+N )
2
))

= e−
k(r+1)n

n+N (1 + o(1)).
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It is known that the number of random forests with N roots and n non-root
vertices is N(n + N)n−1 (see Kolchin [7], Example 1.2.4). Therefore, using

(3.5), (3.6) and condition r2

n → 0, we obtain that for any fixed k

KkP(A1∩A2∩· · ·∩Ak) = Kk

(
(r + 1)r

(r + 1)!

)k
(N − k)(n− kr +N − k)n−kr−1n!

N(n+N)n−1(n− kr)!
=

= Kk

(
(r + 1)r

(r + 1)!

)k
(n− kr +N − k)n−kr−1n(n− 1) . . . (n− kr + 1)

(n+N)n−1

N − k

N
=

=

(
K

(r + 1)r

(r + 1)!

)k
(n+N − kr − k)n−kr−1nkr

(n+N)n−1
(1 + o(1)) =

=

(
K

(r + 1)r

(r + 1)!

)k
(n+N − k(r + 1))n−kr−1

(n+N)n−kr−1

nkr

(n+N)kr
(1 + o(1)) =

=

(
K

(r + 1)r

(r + 1)!

(
1− k(r + 1)

n+N

)(n−kr−1)/k (
n

N + n

)r
)k

(1 + o(1)) =

(3.7) =

(
K

(r + 1)r

(r + 1)!
e−

n(r+1)
n+N

(
n

N + n

)r)k

(1 + o(1)) = βk(1 + o(1)).

In the last step we used condition (2.16). Therefore the conditions of Propo-
sition 2.1 are valid, so Theorem 2.6 follows from Proposition 2.1. The proof is
complete. �

Proof of Lemma 2.5. Observe that

P(A1 ∩A2 ∩ · · · ∩Ak) =

((
m
r

))k ((N−k)m
n−rk

)
(
mN
n

) =

((
m
r

))k ((N−k)m)!
(n−rk)!(Nm−n−k(m−r))!

(mN)!
n!(mN−n)!

=

(3.8) =

((
m

r

))k
((N − k)m)!

(mN)!

n!

(n− kr)!

(Nm− n)!

(Nm− n− k(m− r))!
.

As r2/n → 0, so (3.5) gives

(3.9)
n!

(n− kr)!
= nkr(1 + o(1)).

We have

(Nm)km >
(mN)!

((N − k)m)!
> (Nm)km

(
1− km

Nm

)km

= (Nm)km
(
1− k

N

)Nkm
N

,
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(mN − n)k(m−r) ≥

≥ (mN − n)!

(Nm− n− k(m− r))!
> (mN − n)k(m−r)

(
1− k(m− r)

mN − n

)k(m−r)

=

= (mN − n)k(m−r)

(
1− k(m− r)

mN − n

)mN−n
m−r k

(m−r)2

mN−n

and because m ≥ r, n/Nm < C, so

m− r

mN − n
≤ (m− r)2

mN − n
≤ m2

mN − n
=

m
N

1− n
Nm

≤
m
N

1− C
→ 0.

So, using m/N → 0, we obtain

(3.10)
(mN)!

((N − k)m)!
= (Nm)km(1 + o(1)),

(3.11)
(mN − n)!

(Nm− n− k(m− r))!
= (mN − n)k(m−r)(1 + o(1)).

Using relations (3.9), (3.10) and (3.11) in equation (3.8), we obtain (2.19). The
proof is complete. �

Proof of Theorem 2.7. Using Le Cam’s inequality with λ = m n
Nm = n

N , we
obtain

K

(
m

r

)( n

Nm

)r (
1− n

Nm

)m−r

= K
1

r!

( n

N

)r

e−
n
N + o1(1) = β + o(1),

where

|o1(1)| ≤ Km
( n

mN

)2

.

Therefore Theorem 2.7 follows from Lemma 2.5 and Proposition 2.1. The proof
is complete. �

Proof of Theorem 2.8. Let in (2.21), (2.22) be p = n
Nm , q = 1− n

Nm . From
(2.23) and (2.24) it follows that

K√
2π n

N

= O(1).

Therefore, as K → ∞, n
N → ∞. Now

Ke
−
√

n
N (1− n

Nm ) =
K√

n
N

(
1− n

Nm

)
√

n

N

(
1− n

Nm

)
e
−
√

n
N (1− n

Nm ) = o(1)
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and

K
/√

n

N

n

N
= o(1).

Therefore we have K∆ → 0. Consequently, using (2.23), (2.24), we obtain

K

(
m

r

)( n

Nm

)r (
1− n

Nm

)m−r

=
K√

2π n
N

(
1− n

Nm

)e
− (r− n

N )
2

2 n
N (1− n

Nm ) (1 + o(1)) =

= β + o(1).

Therefore Theorem 2.8 follows from Lemma 2.5 and Proposition 2.1. The proof
is complete. �
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