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Abstract. All two-dimensional reproducing formulae, i.e. of L2(R2), re-
sulting out of restrictions of the projective metaplectic representation to
connected Lie subgroups of Sp(2,R) and of type E2, were listed and classi-
fied up to conjugation within Sp(2,R) in [2], [3]. A full classification, up to
conjugation within R2 � Sp(1,R), of one-dimensional reproducing formu-
lae, i.e. of L2(R), resulting out of restrictions of the extended projective
metaplectic representation to connected Lie subgroups of R2 � Sp(1,R)
was obtained in [13], [14]. In dimension one, there are no reproducing for-
mulae with one-dimensional parametrizations, yet in dimension two, there
are reproducing formulae with two-dimensional parametrizations. Two-
dimensional reproducing subgroups of Sp(2,R) of type E2 are a novelty.
They exhibit completely new phase space phenomena. We show, that they
are all unitarily equivalent via natural choices of coordinate systems, and
we derive the consequences of this equivalence.

1. Introduction

Let (P, ν) be a measure space, and {φp}p∈P a measurable field with values

in a Hilbert space H (see e.g. Section 5.3 of [1]). We say that {φp}p∈P is a
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reproducing system in H, with the parameter measure ν, if for every f ∈ H

(1.1) f =

∫

P

〈f, φp〉φp dν(p),

where the convergence in (1.1) is understood in the weak sense. Via polarization
formula (1.1) is equivalent to

(1.2) ||f ||2 =

∫

P

|〈f, φp〉|2 dν(p),

valid for all f ∈ H. Form (1.2) of (1.1) is more convenient than (1.1) in formal
arguments and we will use it frequently. In case ν is the counting measure
the system {φp}p∈P is called a Parseval frame. Formulae of the form (1.1) are
called reproducing formulae.

The group Sp(d,R) consists of 2d × 2d invertible matrices, with real coef-
ficients, preserving the symplectic form. The extended projective metaplec-
tic representation µe of R2d � Sp(d,R) assigns to an affine transformation
g ∈ R2d � Sp(d,R) of the phase space R2d =

{
(x, ξ)|x, ξ ∈ Rd

}
the corre-

sponding unitary operator µe(g) acting on L2(Rd). The definition of µe, we
provide next, is based on the Wigner distribution. There are many alternative
models for defining the extended projective metaplectic representation. The
choice of the model depends on specific targets. In the current context we
want to stress the phase space geometry phenomena captured by the Wigner
distribution. The operator µe(g) translates the affine action of g performed
on the Wigner distribution Wφ, φ ∈ L2(Rd), to the level of φ, i.e. to any
φ ∈ L2(Rd) it assigns µe(g)φ via the formula

(1.3) Wµe(g)φ(x, ξ) = Wφ

(
g−1 · (x, ξ)

)
,

where Wφ(x, ξ) =
∫
Rd e

−2πi〈ξ,y〉φ(x+ y/2)φ(x− y/2) dy. The function µe(g)φ
of formula (1.3) is defined up to a phase factor, since the Wigner distribution
identifies square integrable functions up to phase factors. As the outcome of
(1.3), we obtain the extended projective metaplectic representation µe. The
name extended comes from the fact that we add phase space translations repre-
sented as R2d to the linear action of Sp(d,R). The name metaplectic is usually
used for the (non-projective, i.e. exact, as far as the phase factors are con-
cerned) representation of the double cover of Sp(d,R), satisfying (1.3). For a
comprehensive treatment of the metaplectic representation, from the point of
view of analysis in phase space, we refer the reader to books by Folland [15],
Gröchenig [18], De Gosson [10], and the survey article by De Mari-De Vito [12].

The classical interpretation of the Wigner distribution identifies it as the
best possible surrogate of the non-existent joint probability distribution of po-
sition and momentum. It is a well established expectation of the mathematical
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physics community that reproducing formulae should be in one to one corre-
spondence with phase space coverings obtained via the Wigner distribution. It
is therefore of primary importance to identify and investigate all reproducing
formulae for L2(Rd) constructed out of restrictions of the extended metaplectic
representation to connected Lie subgroups of R2d � Sp(d,R). A subgroup of
R2d�Sp(d,R) is called reproducing, if it is possible to construct a reproducing
formula out of its action on L2(Rd), just by properly choosing the generat-
ing function. All one-dimensional, i.e. with d = 1, reproducing formulae of
this type were classified up to a conjugation by an affine transformation of
the time-frequency plane in [13], [14]. As a particular consequence, the clas-
sification demonstrated, that in one dimension none of the one-dimensional
connected Lie subgroups of R2 � Sp(1,R) is reproducing. The situation is dif-
ferent in two dimensions, i.e. for d = 2. It is possible to construct reproducing
formulae for L2(R2) out of restrictions of the extended projective metaplectic
representation to two-dimensional connected Lie subgroups of R4 � Sp(2,R).
All reproducing formulae, constructed out of restrictions of the projective meta-
plectic representation of Sp(2,R) to connected Lie subgroups of type E2, were
classified up to a conjugation by a linear transformation of the phase space R4

in [2] and [3]. It came as a surprise that in two dimensions also two-dimensional
reproducing subgroups are possible. The other possible dimensions of reproduc-
ing subgroups are three and four. All one-dimensional reproducing formulae
classified in [13], [14] may be interpreted geometrically as corresponding to
coverings of the time-frequency plane constructed via the action of the repro-
ducing subgroup applied to a compact set. The same phase space geometric
interpretation is valid for all other standard reproducing formulae, but not
for the two-dimensional reproducing Lie subgroups of Sp(2,R) of type E2. In
these special cases the set providing the phase space covering via the action of
the reproducing subgroup must be non-compact. We refer the reader to [20]
for detailed descriptions of phase space coverings corresponding to the two-
dimensional lifts of Shannon wavelets. All these lifts are adaptable via unitary
maps, introduced below in Table 2, to all representations treated in the current
paper.

Let Q be the standard maximal parabolic subgroup of Sp(d,R) consisting
of matrices of the form

(1.4)

[
h 0
σh th−1

]
,

where h ∈ GL(d,R), σ ∈ Sym(d,R). Let us recall that GL(d,R) consists of all
d × d invertible matrices, and Sym(d,R) of all d × d symmetric matrices. In
both cases the coefficients are real. Any g ∈ Q may be factored out as

(1.5) g =

[
1 0
σ 1

] [
m 0
0 tm−1

] [
a 0
0 a−1

]
,
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where a ∈ R, a �= 0, and m ∈ SL(d,R), i.e. m ∈ GL(d,R), detm = 1.
Formulas (1.4), (1.5) show that

Q = Sym(d,R)�GL(d,R),

with the group law

(σ, h) · (σ′, h′) =
(
σ + th−1σ′h−1, hh′) .

A subgroup of Q is called of type Ed if it is of the form Σ�H , where 0 �= Σ ⊂
⊂ Sym(d,R) is a vector space, and 1 �= H ⊂ GL(d,R) a connected Lie sub-
group. For a group of type Ed represented as Σ � H, we have a very explicit
form of the projective metaplectic representation, namely

(1.6) µe(σ, h)f(x) = |deth|−
1
2 e−2πiΦ(x)σf

(
h−1x

)
,

where for x ∈ Rd, functional Φ(x) ∈ Σ∗ is defined as Φ(x)σ = − 1
2σx · x.

Function Φ : Rd → Σ∗ is called the symbol associated to Σ.

Table 1 presents a complete list of non-conjugate, two-dimensional repro-
ducing groups of type E2, obtained in [2], [3]. Conjugacy is defined via inner
automorphisms of Sp(2,R).

Subgroup Type Σ H Φ
u ∈ R t ∈ R

I, α ∈ [−1, 0)

[
u 0
0 0

] [
eαt 0
0 e(α+1)t

]
− 1

2x
2
1

II

[
u 0
0 0

]
et
[

1 0
t 1

]
− 1

2x
2
1

III, α ∈ [0,∞)

[
u 0
0 u

]
et
[

cosαt sinαt
− sinαt cosαt

]
−1

2 (x
2
1 + x2

2)

IV, α ∈ [0,∞)

[
u 0
0 −u

]
et
[

coshαt sinhαt
sinhαt coshαt

]
− 1

2 (x
2
1 − x2

2)

Table 1

In Table 1 rows describe the choices of representatives of non-conjugate
conjugacy classes of subgroups. Columns identify parameters of direct products
and the projective metaplectic representation. The authors of [2], [3] identified
explicitly admissibility conditions in all of the cases of reproducing subgroups
listed in Table 1. They developed general tools in Theorems 2–5 of [3], and
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then applied them directly. An introduction of orbit equivalence in Section 3
of [3] allowed them to treat each of the cases I, III, IV, parametrized by α, in
a uniform fashion.

The main result of the current paper is summarized in Table 2. For each
of the cases listed in Table 1 we identify a coordinate system providing unitary
equivalence with case I , α = −1.

Subgroup Type U New Coordinates Original H Resulting H

I , α ∈ [−1, 0) y
α+1
2α

1 fc(y1, y2)

{
y1 = x1

y2 = x
−α+1

α
1 x2

L2(R+ × R) L2(R+ × R)

II y
1
2
1 fc(y1, y2)

{
y1 = x1

y2 = x2−x1 log x1
x1

L2(R+ × R) L2(R+ × R)

III, α ∈ [0,∞) (r′)
1
2 fc(r

′, θ′)

{
r′ = r

θ′ = θ − α log r
L2(R2) L2(R+ × T)

IV, α ∈ [0,∞) (r′)
1
2 fc(r

′, θ′)

{
r′ = r

θ′ = θ − α log r
L2(R+ × R) L2(R+ × R)

Table 2

In Table 2 column U describes unitary maps, and fc expresses f in new
coordinates. In cases III, IV r, θ represent standard polar and hyperbolic polar
coordinates respectively. There is a clear intuitive explanation of the choices of
coordinate systems of Table 2, which are described in more detail in formulas
(3.7), (3.8), (3.9), (3.10) of Section 3. The general guideline for the choices is:
remove the effect of dilations from the second coordinate. We present relevant
calculations for all of the cases I-IV. Left hand sides refer to the values of the
second coordinate occurring in the proof of (i) of Theorem 3.1, right before the
main substitution,

I.
(
s−αx1

)−α+1
α s−(α+1)x2 = x

−α+1
α

1 x2,

II.
sx2 + sx1 log s− sx1 log(sx1)

sx1
=

sx2 + sx1 log x1

sx1
=

x2 + x1 log x1

x1
,

III., IV. θ + α log s− α log(sr) = θ − α log r.

Our proofs are independent of the work done in [2], [3] and our results go
one step further by identifying explicitly the relationships between cases I–IV.
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Our approach is direct and avoids the usage of advanced integration theory
tools. The guidelines are clear, perform an appropriate change of coordinates,
so that the action of the representation is removed from the second coordinate.
The authors of the current paper expect that, with an appropriate adaptation,
the orbit equivalence method of Section 3 of [3] is also applicable to the current
context.

In Section 2 we introduce representations µ(l), µ(q), with µ(l) allowing direct
adaptations of Shannon lifts results and constructions of [20] to the current
setup, where we make a transition to the Fourier transform domain, and we
restrict to positive frequencies, and with µ(q) allowing their further transfer to
the context of Sp(2,R), in the case I, α = −1 of Table 1. The case I, α = −1
allows still further transfers to all the µJ cases, described in Table 1. In Section
3 we introduce and study the unitary maps of Table 2 allowing reductions
of all currently known reproducing formulae of L2(R2) with two dimensional
parameterizations of the cases of µJ to the case I, α = −1.

The book by Führ [17] approaches constructions of wavelet type expan-
sions via powerful tools of representation theory. The existence of a generating
function for µ(l) is guaranteed by the general theory of wavelet transforms de-
veloped there. It is enough to observe that µ(l) is unitarily equivalent to a
countably infinite multiple of the standard, square-integrable representation σ
of the ax + b group acting on L2(R+), i.e. µ(l) = ⊕n∈Nσn. The existence of
a generating function or an admissible vector (as it is called in [17]) for µ(l)

follows from Corollary 4.27 of [17], since each σn has an admissible vector and
the ax+ b group is type I and nonunimodular.

The paper by Aronszajn [4] discusses the origins of the theory of repro-
ducing kernels. The book by Ali-Antoine-Gazeau [1] presents both the current
stage of development of the theory of reproducing formulae, as well as the back-
ground results. Our current results follow the approaches of De Mari-Nowak
[13], [14], Cordero-De Mari-Nowak-Tabacco [5], [6], [7], De Mari-De Vito and
collaborators [11], [2], [3], [12], Cordero-Tabacco [8]. The books by Daubechies
[9], Gröchenig [18], Folland [15], Wojtaszczyk [22] are comprehensive refer-
ences on phase-space analysis and wavelets. We refer the reader to books by
�Lojasiewicz [19], Rudin [21], and Folland [16] for the background results we use
in our proofs.

2. Expansions via one-dimensional affine and wavelet lattice actions

We define two reference representations µ(l), µ(q). Letters l, q stand for
linear and quadratic oscillations respectively. Let (Y, κ) be a measure space
equipped with a non-negative, complete, σ-finite measure κ. Let H denote the
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space L2(R+ × Y, dx × dκ(y)), where dx is the Lebesgue measure on R+, and
dx × dκ(y) is the completion of the product measure defined on R+ × Y . For
f ∈ H we define

µ
(l)
(u,s)f(ξ, y) = s1/2f(sξ, y)e2πiuξ, s > 0, u ∈ R,(2.1)

µ
(q)
(v,t)f(r, y) = t1/2f(tr, y)eπivr

2

, t > 0, v ∈ R.(2.2)

The maps (u, s) �→ µ
(l)
(u,s), (v, t) �→ µ

(q)
(v,t) are unitary representations on H of

groups G(l) = {(u, s) |u ∈ R, s > 0}, with the composition rule (u′, s′)◦(u, s) =
= (s′u+ u′, s′s) and the left Haar measure du ds

s2 , and G(q) = {(v, t) | v ∈ R,
t > 0}, with the composition rule (v′, t′) ◦ (v, t) =

(
(t′)2v + v′, t′t

)
and the

left Haar measure dv dt
t3 . Representation (2.1) is the standard one-dimensional

wavelet action applied to the first coordinate, represented in the frequency
domain, and restricted to positive frequencies. Representation (2.2) is an
adaptation of (2.1) to the context of the projective metaplectic representa-
tion of Sp(2,R), where only quadratic oscillations occur. The lattice Λ(l) =
=

{
(2km, 2k)

}
k,m∈Z properly discretizes µ(l), G(l), and Λ(q) =

{
(2k+1m,

2k/2)
}
k,m∈Z is its appropriate adaptation to µ(q), G(q).

Proposition 2.1. Let U : H → H be defined as Uf(r, y) = (2r)1/2f(r2, y).

(i) The operator U is unitary, and it intertwines representations µ(l) and µ(q),

(2.3) µ
(l)
(u,s) = U∗µ

(q)

(2u,s1/2)
U.

(ii) Let ψ ∈ H. The system
{
µ
(l)
(u,s)ψ

}
u∈R
s>0

⊂ H, with the parameter measure

du ds
s2 , is reproducing if and only if the system

{
µ
(q)
(v,t)Uψ

}
v∈R
t>0

⊂ H, with the

parameter measure dv dt
t3 , is reproducing.

(iii) Let ψ ∈ H. The system
{
µ
(l)
λ ψ

}
λ∈Λ(l)

⊂ H is reproducing if and only if

the system
{
µ
(q)
λ Uψ

}
λ∈Λ(q)

⊂ H is reproducing. In both cases the parameter

measure is the counting measure.

Proof. We start with the proof of (i). A direct calculation shows that

U−1f(r, y) =
(
2r1/2

)−1/2
f(r1/2, y). Simple changes of variables verify that



60 B. Boyer, K. Nowak and M. Pap

both U and U−1 preserve the norm of H. For f, g ∈ H we have

〈
f, µ

(l)
(u,s)g

〉
=

∫

Y

∫

R+

f(ξ, y)s1/2g(sξ, y)e−2πiuξdξ dκ(y) =

=

∫

Y

∫

R+

f(r2, y)s1/2g(sr2, y)e−2πiur22rdr dκ(y) =

=

∫

Y

∫

R+

(2r)
1/2

f(r2, y)t1/2 (2tr)
1/2

g((tr)2, y)e−πivr2dr dκ(y) =

=
〈
Uf, µ

(q)
(v,t)Ug

〉
=

〈
f, U∗µ

(q)
(v,t)Ug

〉
,

where we have substituted ξ by r2, s by t2, and 2u by v. From the formula
above we obtain

µ
(l)
(u,s) = U∗µ

(q)
(v,t)U,

and this finishes the proof of (i). We apply (i) in order to prove (ii). Substitu-
tions v

2 for u, and t2 for s give

∫

R+

∫

R

∣∣∣
〈
f, µ

(l)
(u,s)ψ

〉∣∣∣
2 du ds

s2
=

∫

R+

∫

R

∣∣∣
〈
Uf, µ

(q)
(v,t)Uψ

〉∣∣∣
2 dv dt

t3
.

The polarization formula and the fact that U is unitary allow us to conclude
(ii). The proof of (iii) follows in the same way as (ii), with integrals substituted
by sums. �

Theorem 2.2. Let us consider ψ ∈ H. The system

{
µ
(l)
(u,s)ψ

}
u∈R
s>0

⊂ H,

with the parameter measure du ds
s2 , is reproducing if and only if the map

g �→
∫

Y

ψ (s, y)g(y) dκ(y),

from L2(Y, dκ(y)) into L2(R+,
ds
s ), preserves inner products.

Proof. Let f ∈ H have the form f(ξ, y) = f1(ξ) f2(y), with f1 ∈ L1 ∩ L∞

defined on R+, with measure dξ, and f2 ∈ L1∩L∞ defined on Y , with measure
dκ(y). In the first step, we express the inner product as an iterated integral.
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We obtain

∫

R2
+

∣∣〈f, µ(l)
(u,s)ψ〉

∣∣2 du ds

s2
=

∫

R2
+

∣∣∣∣
∫

R+

∫

Y

f(ξ, y)ψ(sξ, y) dκ(y) e−2πiuξdξ

∣∣∣∣
2
du ds

s
.

(2.4)

Representation of the inner product as an iterated integral is justified by the

fact, that for u, s fixed, function f(ξ, y)µ
(l)
(u,s)ψ(ξ, y) is integrable with respect

to dξ× dκ(y). In the second step we change the outer integral over R2
+ into an

iterative form, with the integration with respect to u performed internally and
with respect to s externally. The change into an iterated form is justified by the
non-negativity of the expression under the integral sign. We apply Plancherel’s
formula with respect to u and formula (2.4) becomes

∫

R2
+

∣∣〈f, µ(l)
(u,s)ψ〉

∣∣2 du ds

s2
=

∫

R+

∫

R+

∣∣∣∣
∫

Y

f1(ξ)f2(y))ψ(sξ, y) dκ(y)

∣∣∣∣
2

dξ
ds

s
.(2.5)

In the third step we change the order of integration with respect to ξ and s
and we apply multiplicative invariance of measure ds

s . Formula (2.5) becomes

∫

R2
+

∣∣〈f, µ(l)
(u,s)ψ〉

∣∣2 du ds

s2
=

∫

R+

∣∣f1(ξ)
∣∣2 dξ

∫

R+

∣∣∣∣
∫

Y

f2(y)ψ(s, y) dκ(y)

∣∣∣∣
2
ds

s
.(2.6)

Change of the order of integration is justified by the non-negativity of the
expression under the integral sign.

If the system
{
µ
(l)
(u,s)ψ

}
u∈R,s>0

is reproducing, then the integrals considered

above are finite, and via formula (2.6) we conclude that the map
f �→

∫
Y
ψ (s, y)f(y) dκ(y) restricted to f ∈ L1∩L∞ preserves norms. Standard

density, polarization arguments allow us to conclude that it extends to an isom-
etry from L2(Y, dκ(y)) into L2(R+,

ds
s ), and that it preserves inner products.

Conversely, if the map f �→
∫
Y
ψ (s, y)f(y) dκ(y) preserves inner products,

then it preserves norms, the integrals considered above are finite, and (2.6)
allows us to conclude via polarization that for f, g ∈ H being finite sums of
tensor products of the form f1(x) f2(y), g1(x) g2(y), with f1, f2, g1, g2 ∈ L1∩L∞

we have ∫

R2
+

〈f, µ(l)
(u,s)ψ〉〈µ

(l)
(u,s)ψ, g〉

du ds

s2
= 〈f, g〉.

A standard density argument allows us to extend the equality to all f, g ∈ H.

�
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Corollary 2.3. Let us consider ψ ∈ H. The system

{
µ
(q)
(v,t)ψ

}
v∈R
t>0

⊂ H,

with the parameter measure dv dt
t3 , is reproducing if and only if the map

g �→
∫

Y

ψ (r, y)g(y) dκ(y),

from L2(Y, dκ(y)) into L2(R+,
dr
r2 ), preserves inner products.

Proof. The result is a direct consequence of Proposition 2.1 (ii) and Theo-
rem 2.2. �

For a measurable function f , defined on a topological space X, equipped
with a Borel measure ν, we define its essential support ess-supp f as the in-
tersection of all closed sets F , satisfying f(x) = 0 for ν-almost every x in the
complement of F . We will need the following standard representation of the
inner product on L2(R), valid for band limited functions (see e.g. Lemma 2.1
in [20])

Lemma 2.4. Let us suppose that for f, g ∈ L2(R) we have ess-supp f, g ⊂
⊂ [0, 2−k]. Then

2−k∫

0

f(ξ)g(ξ) dξ = 2k
∑
m∈Z

f̂
(
2km

)
ĝ (2km).

Theorem 2.5. Let us consider ψ ∈ H. Suppose that for almost every y ∈ Y
ess-suppψ(·, y) ⊂ [0, 1]. The system

{
µ
(l)
λ ψ

}
λ∈Λ(l)

⊂ H,

with the parameter measure being the counting measure on Λ(l), is reproducing
if and only if for every pair f, g ∈ L2(Y, dκ(y)) the equality

(2.7) 〈f, g〉 =
∑
k

∫

Y

ψ (2kξ, y)f(y) dκ(y)

∫

Y

ψ
(
2kξ, y

)
g(y) dκ(y)

holds for almost every ξ ∈ R+.
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Proof. We assume that f(ξ, y) = f1(ξ) f2(y), with f1 ∈ L1 ∩ L∞ on R+,
and f2 ∈ L1 ∩ L∞ on Y . In the first step we express the inner product as an
iterated integral. We obtain

∑
λ∈Λ(l)

∣∣〈f, µ(l)
λ ψ〉

∣∣2 =
∑

k,m∈Z

∣∣∣∣
∫

R+

∫

Y

f(ξ, y)2k/2ψ(2kξ, y) dκ(y) e−2πi2kmξdξ

∣∣∣∣
2

.

(2.8)

Representation of the inner products as iterated integrals is justified by the fact,

that for λ fixed, functions f(ξ, y)µ
(l)
λ ψ(ξ, y), g(ξ, y)µ

(l)
λ ψ(ξ, y)are integrable

with respect to dξ × dκ(y). In the second step we change the summation
over k,m ∈ Z into an iterative form, with the summation with respect to m
performed internally and with respect to k externally. Non-negativity of the
summation terms justifies the transition. We are allowed to apply Lemma 2.4
and formula (2.8) becomes

∑
λ∈Λ(l)

∣∣〈f, µ(l)
λ ψ〉

∣∣2 =
∑
k∈Z

∫

R+

∣∣∣∣
∫

Y

f1(ξ)f2(y))ψ(2kξ, y) dκ(y)

∣∣∣∣
2

dξ.(2.9)

The usage of Lemma 2.4 is justified by the fact that for almost every
y ∈ Y we have ess-suppψ(2k·, y) ⊂

[
0, 2−k

]
. We represent the square inte-

grable kernel ψ(2k·, ·), defined on R+ × Y , k is fixed, as an infinite sum of
orthogonal tensor products of functions, with compact support, with respect
to the first coordinate, and square integrable, with respect to the second coor-
dinate. Then, we apply Lemma 2.4 to finite sums, and next we pass to norm
limits in both expressions, the original one, and the one obtained by an appli-
cation of Lemma 2.4. In the third step we change the order of integration with
respect to ξ and summation with respect to k. Formula (2.9) becomes

∑
λ∈Λ(l)

∣∣〈f, µ(l)
λ ψ〉

∣∣2 =

∫

R+

|f1(ξ)|2
∑
k∈Z

∣∣∣∣
∫

Y

f2(y)ψ(2kξ, y) dκ(y)

∣∣∣∣
2

dξ.(2.10)

Change of the order of integration and summation is justified by non-negativity
of the terms.

If the system
{
µ
(l)
λ ψ

}
λ∈Λ(l)

is reproducing, then, via formula (2.10), we

have ∫

R+

|f1(ξ)|2
∑
k

∣∣∣∣
∫

Y

f2(y)ψ(2kξ, y) dκ(y)

∣∣∣∣
2

dξ = ||f1||2||f2||2,

for all f1 ∈ L1 ∩ L∞ on R+, and f2 ∈ L1 ∩ L∞ on Y . Therefore for every
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f ∈ L1 ∩ L∞ on Y

(2.11)
∑
k

∣∣∣∣
∫

Y

ψ(2kξ, y)f(y) dκ(y)

∣∣∣∣
2

= ||f ||2,

for almost every ξ ∈ R+. A standard density argument, making use of the
convergence in the mixed norm space L∞(l2), allows us to conclude that for
every f ∈ L2(Y, dκ(y)) (2.11) holds for almost every ξ ∈ R+. The fact that for
every pair f, g ∈ L2(Y, dκ(y)) the equality (2.7) holds for almost every ξ ∈ R+

follows by polarization. Conversely, if for every pair f, g ∈ L2(Y, dκ(y)) the
equality (2.7) holds for almost every ξ ∈ R+, then (2.10) allows us to conclude,
via polarization, that for f, g ∈ H being finite sums of tensor products of the
form f1(ξ) f2(y), g1(ξ) g2(y), with f1, g1 ∈ L1∩L∞ on R+, and f2, g2 ∈ L1∩L∞

on Y . we have ∑
λ∈Λ(l)

〈f, µ(l)
λ ψ〉〈µ(l)

λ ψ, g〉 = 〈f, g〉.

Again, a standard density argument allows us to extend the equality to all
f, g ∈ H. �

Corollary 2.6. Let us consider ψ ∈ H. Suppose that for almost every y ∈ Y
ess-suppψ(·, y) ⊂ [0, 1]. The system

{
µ
(q)
λ ψ

}
λ∈Λ(q)

⊂ H,

with the parameter measure being the counting measure on Λ(q), is reproducing
if and only if for every pair f, g ∈ L2(Y, dκ(y)) the equality

〈f, g〉 = 1

2r

∑
k

2−k/2

∫

Y

ψ
(
2k/2 r, y

)
f(y) dκ(y)

∫

Y

ψ
(
2k/2 r, y

)
g(y) dκ(y)

holds for almost every r ∈ R+.

Proof. The result is a direct consequence of Proposition 2.1 (iii) and Theo-
rem 2.5. �

Let ψS(ξ) = χ(1,2](ξ). The system
{
ψS
λ

}
λ∈Λ(l) ⊂ L2(R+), with

ψS
λ (ξ) = 2k/2χ(1,2]

(
2kξ

)
e2πi2

kmξ,

is the Shannon wavelet system adapted to R+, with L2(R+) representing the
Fourier transform domain. It is a family of standard trigonometric systems
adapted to the dyadic partition of R+. We describe its lifts to L2(R+ × Y ),
with Y being R and T, lifts adapting the constructions done in [20] to the
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current context. First, we do it for µ(l), and then we transfer the resulting
systems to µ(q) via the unitary map of Proposition 2.1.

We move now to L2(R+×Y ). We introduce ek,l(y) = χ(k,k+1](y) e
2πily, with

k, l ∈ Z, and fm(s) = χ(2−m,2−m+1](s), with m ≥ 1,m ∈ Z, i.e. m ∈ N. The

system {ek,l}k,l∈Z is an orthonormal basis of L2(R), and
{
c−1
f fm

}
m≥1

, where

cf = (log 2)1/2, is an orthonormal system of L2(R+,
ds
s ). Let DR : Z × Z →

→ N, DT : Z → N be two bijections. We define the corresponding generating
functions ψDR ∈ L2(R+ × R), ψDT ∈ L2(R+ × T) as

(2.12) ψDR(ξ, y) =
∑
k,l∈Z

fDR(k,l)(ξ)ek,l(y),

(2.13) ψDT(ξ, y) =
∑
l∈Z

fDT(l)(ξ)e0,l(y).

The following two lemmas summarize the basic properties of the generating
functions ψDR , ψDT . Their proofs follow exactly the steps of the proof of Lemma
2.2 of [20], and are omitted from the current presentation.

Lemma 2.7. Let ψDR be the generating function defined in (2.12). Then

(i) the sum (2.12) representing ψDR(ξ, y) consists of a single term

fDR(k,l)(ξ)ek,l(y), for ξ ∈ (0, 1], with the unique k, l satisfying

ξ ∈ (2−DR(k,l), 2−DR(k,l)+1], and it contains no non-zero terms for

ξ /∈ (0, 1],

(ii) ess-suppψDR(·, y) ⊂ [0, 1] for every y ∈ R,

(iii)

∫

R+×R

∣∣ψDR(ξ, y)
∣∣2 dy dξ = 1,

(iv)SDR
N (ξ, y) =

∑
|k|≤N,|l|≤N

fDR(k,l)(ξ)ek,l(y) converges to ψDR(ξ, y)

in L2(R+ × R), as N → ∞.
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Lemma 2.8. Let ψDT be the generating function defined in (2.13). Then

(i) the sum (2.13) representing ψDT(ξ, y) consists of a single term

fDT(l)(ξ)e0,l(y), for ξ ∈ (0, 1], with the unique l satisfying

ξ ∈ (2−DT(l), 2−DT(l)+1], and it contains no non-zero terms for

ξ /∈ (0, 1],

(ii) ess-suppψDT(·, y) ⊂ [0, 1] for every y ∈ R,

(iii)

∫

R+×T

∣∣ψDT(ξ, y)
∣∣2 dy dξ = 1,

(iv)SDT
N (ξ, y) =

∑
|l|≤N

fDT(l)(ξ)e0,l(y) converges to ψDT(ξ, y)

in L2(R+ × T), as N → ∞.

Theorem 2.9. The systems
{
c−1
f µ

(l)
(u,s)ψ

DR
}
u∈R,s>0

,
{
c−1
f µ

(l)
(u,s)ψ

DT
}
u∈R,s>0

,

with generating functions ψDR , ψDT defined in (2.12), (2.13), both with the
same parameter measure du ds

s2 , are reproducing in L2(R+ × R), L2(R+ × T),
respectively.

Proof. Both proofs, based on Theorem 2.2, follow the steps of the proof
of Corollary 1.2 of [20], with the adjustments indicated in Lemmas 2.7, 2.8,
respectively. �

Theorem 2.10. The systems
{
µ
(l)
λ ψDR

}
λ∈Λ(l) ,

{
µ
(l)
λ ψDT

}
λ∈Λ(l) , with ψDR ,

ψDT defined in (2.12), (2.13), are orthonormal bases of L2(R+×R), L2(R+×T),
respectively.

Proof. Both proofs, based on Theorem 2.5, follow the steps of the proof
of Corollary 1.4 of [20], with the adjustments indicated in Lemmas 2.7, 2.8,
respectively. �

Corollary 2.11. The systems
{
c−1
f µ

(q)

(v,t)UψDR
}
v∈R,t>0

,
{
c−1
f µ

(q)

(v,t)UψDT
}
v∈R,t>0

,

with generating functions UψDR , UψDT , defined via an application of the uni-
tary map U of Proposition 2.1 to functions (2.12), (2.13), both systems with the
same parameter measure dv dt

t3 , are reproducing in L2(R+ × R), L2(R+ × T),
respectively.

Proof. Both proofs follow directly out of Theorem 2.9 and Proposition 2.1
(ii). �

Corollary 2.12. The systems
{
µ
(q)
λ UψDR

}
λ∈Λ(q) ,

{
µ
(q)
λ UψDT

}
λ∈Λ(q) , with

UψDR , UψDT defined via an application of the unitary map U of Proposition 2.1
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to functions (2.12), (2.13), are orthonormal bases of L2(R+ ×R), L2(R+ ×T),
respectively.

Proof. Both proofs follow directly out of Theorem 2.10 and Proposition 2.1
(iii). �

3. Unitary equivalence of restrictions to reproducing subgroups of
type E2

We list representatives, up to conjugation within Sp(2,R), of all reproduc-
ing formulae obtained out of restrictions of the projective metaplectic repre-
sentation of Sp(2,R) to two-dimensional, connected Lie subgroups of E2. Each
such reproducing formula is conjugate to exactly one reproducing formula of
the list. All reproducing formulae of the list are non-conjugate. We refer the
reader to [2], [3] for details and a comprehensive presentation of the topic. For
the sake of simplicity, we restrict attention to the cases of single connected
components of multiplicative actions on the first coordinate, and we choose R+

for them. The choice of R− can be treated in a similar manner. The transition
to two components R+ ∪ R− follows in a standard way, see e.g. [13], [3]. In
the parametrizations of two-dimensional subgroups of E2 listed below we use
u, t ∈ R.

I. Additional parameter α ∈ [−1, 0), Hilbert space H = L2(R+ ×R), action on
f ∈ H

(3.1) µIα
(u,t)f(x1, x2) = e−(2α+1)t/2eπiux

2
1f

(
e−αtx1, e

−(α+1)tx2

)
,

with the corresponding composition rule

(u′, t′) ◦ (u, t) =
(
u′ + e−2αt′u, t′ + t

)

and the left Haar measure −αdu e2αtdt.

II. No additional parameters, Hilbert space H = L2(R+×R), action on f ∈ H

(3.2) µII
(u,t)f(x1, x2) = e−teπiux

2
1f

(
e−t(x1, x2 − tx1)

)
,

with the corresponding composition rule

(u′, t′) ◦ (u, t) =
(
u′ + e−2t′u, t′ + t

)

and the left Haar measure du e2tdt.
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In order to describe case III, we introduce standard polar coordinates

(3.3)

{
x1 = r cos 2πθ

x2 = r sin 2πθ
,

r > 0, θ ∈ [0, 1), and we interpret the interval [0, 1) as the unit circle T. We
define rotations

Rθ =

[
cos 2πθ sin 2πθ
− sin 2πθ cos 2πθ

]
.

For a function f ∈ L2(R2), we write fp for its representation in polar coordi-
nates, i.e. fp(r, θ) = f(x1, x2).

III. In this case the additional parameter is α ∈ [0,∞). The Hilbert space H
is L2(R2), and the action of the representation on f ∈ H, is

(3.4) µIIIα
(u,t)f(x1, x2) = e−teπiu(x

2
1+x2

2)f
(
e−tR−αt(x1, x2)

)
,

with the corresponding composition rule

(u′, t′) ◦ (u, t) =
(
u′ + e−2t′u, t′ + t

)

and the left Haar measure du e2tdt.

In order to describe case IV, we introduce hyperbolic polar coordinates

(3.5)

{
x1 = r cosh θ

x2 = r sinh θ
,

r, θ ∈ R, and hyperbolic rotations

Aθ =

[
cosh θ sinh θ
sinh θ cosh θ

]
.

For a function f ∈ L2(R2), we write fh for its representation in hyperbolic
polar coordinates, i.e. fh(r, θ) = f(x1, x2).

IV. In this case the additional parameter is α ∈ [0,∞). The Hilbert space H
is L2(R+ × R), and the action of the representation on f ∈ H, is

(3.6) µIVα

(u,t)f(x1, x2) = e−teπiu(x
2
1−x2

2)f
(
e−tA−αt(x1, x2)

)
,

with the corresponding composition rule

(u′, t′) ◦ (u, t) =
(
u′ + e−2t′u, t′ + t

)

and the left Haar measure du e2tdt.
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In what follows we introduce coordinate systems needed for the reductions
of cases I–IV to µ(q).

I, −1 ≤ α < 0.

(3.7)

{
y1 = x1

y2 = x
−α+1

α
1 x2

,

{
x1 = y1

x2 = y
α+1
α

1 y2
, Jacobian =

∂x2

∂y2
= y

α+1
α

1 .

II.

(3.8)

{
y1 = x1

y2 = x2−x1 log x1

x1

,

{
x1 = y1

x2 = y1y2 + y1 log y1
, Jacobian =

∂x2

∂y2
= y1.

III, α ≥ 0.

(3.9)

{
r′ = r

θ′ = θ − α log r
,

{
r = r′

θ = θ′ + α log r′
, Jacobian =

∂θ

∂θ′
= 1,

where (r, θ) are the standard polar coordinates of (3.3).

IV, α ≥ 0.

(3.10)

{
r′ = r

θ′ = θ − α log r
,

{
r = r′

θ = θ′ + α log r′
, Jacobian =

∂θ

∂θ′
= 1,

where (r, θ) are the hyperbolic polar coordinates of (3.5).

For J = Iα, II, IIIα, IVα we define the corresponding lattice ΛJ as the
image of Λ(q) via the inverse of (u, t) �→ (u, e−αt) for J = Iα, i.e. it is{(

2k+1m,− log 2
2α k

)}
m,k∈Z

, and via the inverse of (u, t) �→ (u, e−t) for J =

= II, IIIα, IVα, i.e. it is
{(

2k+1m,− log 2
2 k

)}
m,k∈Z

.

Theorem 3.1. Let µ(q) be defined in (2.2), with Y = R in cases I, II, IV, and
Y = T in case III. In all cases κ is the Lebesgue measure.

(i) In each case fc expresses f in the adequate coordinate system.

I. Let us define U Iαf(y1, y2) = y
α+1
2α

1 fc(y1, y2), where fc is the expression of f in
coordinates (3.7). Then U Iα is unitary and we have the following intertwining
property

U IαµIα
(u,t) = µ

(q)
(u,e−αt)U

Iα .
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II. Let us define U IIf(y1, y2) = y
1
2
1 fc(y1, y2), where fc is the expression of f in

coordinates (3.8). Then U II is unitary and we have the following intertwining
property

U IIµII
(u,t) = µ

(q)
(u,e−t)U

II .

III. Let us define U IIIαf(r′, θ′) = (r′)
1
2 fc(r

′, θ′), where fc is the expression of
fp in coordinates (3.9), and fp expresses f in standard polar coordinates (3.3).
Then U IIIα is unitary and we have the following intertwining property

U IIIαµIIIα
(u,t) = µ

(q)
(u,e−t)U

IIIα .

IV. Let us define U IVαf(r′, θ′) = (r′)
1
2 fc(r

′, θ′), where fc is the expression of fh
in coordinates (3.10), and fh expresses f in hyperbolic polar coordinates (3.5).
Then U IVα is unitary and we have the following intertwining property

U IVαµIVα

(u,t) = µ
(q)
(u,e−t)U

IVα .

(ii) In each of the cases J = Iα, II, IIIα, IVα the system
{
µJ
(u,t)ψ

}
u,t∈R, with

the Hilbert space and the left Haar measure described in (3.1), (3.2), (3.4),

(3.6), respectively, is reproducing, if and only if, the system
{
µ
(q)
(v,s)U

Jψ
}
v∈R
s>0

,

with the parameter measure dv ds
s3 , is reproducing in L2(R+ × Y ), Y = R in

cases I, II, IV, and Y = T in case III.

(iii) In each of the cases J = Iα, II, IIIα, IVα the system
{
µJ
λ ψ

}
λ∈ΛJ , with the

Hilbert space described in (3.1), (3.2), (3.4), (3.6), respectively, is reproducing,

if and only if, the system
{
µ
(q)
λ UJψ

}
λ∈Λ(q) is reproducing in L2(R+ × Y ),

Y = R in cases I, II, IV, and Y = T in case III. In all cases the parameter
measure is the counting measure.

Proof. We begin with the proof of (i) and handle all four subgroup types
simultaneously. We will freely identify h ∈ H with the real parameter t and
σ ∈ Σ with u as given in Table 1. Let P = R+ × R for J �= IIIα and = R2 if
J = IIIα, and endow P with Lebesgue measure. For f ∈ L2(P ), we write in
coordinate free form

µ
(J )
(σ,h)f(p) = | deth|−1/2f(h−1p)eπiσp·p.

We need two smooth change of coordinates in general. Let (x1, x2) be the
usual euclidean coordinates for P . For the real parameter t given in Table 1,
let s = e−t for subgroup type J �= Iα and s = e−αt for J = Iα. Let Y = T if
J = IIα and Y = R otherwise. The first change of coordinates is required for
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subgroup types IIIα and IVα. In particular, (x1, x2) → (ξ1, ξ2) with domain P
and codomain R+ × Y and must have the two properties

eπiσp·p = eπiuξ
2
1 , σ ∈ Σ,

f(h−1p) = f(sξ1, a(s, ξ1, ξ2)), h ∈ H,

where a(s, ξ1, ξ2) is a smooth function. For the sake of notation, we take
ξ1 = x1, ξ2 = x2 for J = Iα, II. The second change of coordinates (ξ1, ξ2) →
→ (y1, y2) on R+ × Y must satisfy the following three properties:

y1 = ξ1,

y2 = F (ξ1, ξ2), where F (ξ1, ξ2) is an H-invariant function,

sJ(sy1, y2) = | deth|−1J(y1, y2),

where J(y1, y2) is the Jacobian |∂(x1, x2)/∂(y1, y2)|. We note that the explicit
form of the H-invariance of F is

F (sξ1, a(s, ξ1, ξ2)) = F (ξ1, ξ2), s > 0.

Finally, we define the unitary maps U (J ) : L2(P ) → L2(R+ × Y ) by

U (J )f(p) = J1/2(y1, y2)fc(y1, y2).

We now verify the equivalence between µ
(q)
(u,s) and µ

(J )
(u,t):

µ
(q)
(u,s)U

(J )f(p) = µ
(q)
(u,s)

[
J1/2(y1, y2)fc(y1, y2)

]
=

= s1/2J1/2(sy1, y2)e
πiuy2

1fc(sy1, y2) =

= | deth|−1/2J1/2(y1, y2)e
πiuy2

1fc(sy1, y2) =

= U (J )
[
| deth|−1/2eπiuy

2
1fc(sy1, y2)

]
=

= U (J )µ
(J )
(u,t)f(p).

To finish, we give the explicit form for F (ξ1, ξ2) for each subgroup type and

verify its H-invariance. For type Iα, F (x1, x2) = x
−α+1

α
1 x2 (see (3.7)) and

(
e−αtx1

)−α+1
α e−(α+1)tx2 = x

−α+1
α

1 x2;

for type II, F (x1, x2) = (x2 − x1 log x1)/x1 (see (3.8)) and

sx2 + sx1 log s− sx1 log(sx1)

sx1
=

sx2 + sx1 log x1

sx1
=

x2 + x1 log x1

x1
.
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For the remaining two subgroup types, we must make the preliminary change of
coordinates: to polar coordinates (type IIIα) or to hyperbolic polar coordinates
(type IVα). For clarity, we use the appropriate notation of polar coordinates
instead of the generic variables ξ1, ξ2. For both types IIIα and IVα, F (r, θ) =
= θ − α log r (see (3.9), (3.10)) and

θ + α log s− α log(sr) = θ − α log r.

The transformation property of the Jacobian J(y1, y2) is straightforward to
verify.

We apply (i) in order to prove (ii). In case I substitution of e−αt by s gives

−α

∫

R

∫

R

∣∣〈f, µIα
(u,t)g

〉∣∣2du e2αtdt =
∫

R

∫

R

∣∣〈U Iαf, µ
(q)
(u,e−αt)U

Iαg
〉∣∣2du e2αtdt =

=

∫

R+

∫

R

∣∣〈U Iαf, µ
(q)
(u,s)U

Iαg
〉∣∣2 du ds

s3
.

In cases II, III, IV we substitute e−t by s. For J = II, IIIα, IVα we have∫

R

∫

R

∣∣〈f, µJ
(u,t)g

〉∣∣2du e2tdt = =

∫

R

∫

R

∣∣〈UJ f, µ
(q)
(u,e−t)U

J g
〉∣∣2du e2tdt =

=

∫

R+

∫

R

∣∣〈UJ f, µ
(q)
(u,s)U

J g
〉∣∣2 du ds

s3
.

Polarization formula and the fact that operators UJ , J = Iα, II, IIIα, IVα, are
unitary finish the proof in all cases. The proof of (iii) follows in the same way
as (ii), with integrals substituted by sums. �

Corollary 3.2. In each of the cases J = Iα, II, IIIα, IVα, the system{
µJ
(u,t)ψ

}
u,t∈R, with the Hilbert space and the parameter measure being the

left Haar measure, both described in (3.1), (3.2), (3.4), (3.6), respectively, is
reproducing if and only if the corresponding integral operator of the following
table preserves inner products.

Subgroup Type Integral Kernel Domain Codomain

I, α ∈ [−1, 0) ψ
(
r, r

α+1
α y

)
L2(R, dy) L2

(
R+, r

1−α
α dr

)

II ψ (r, ry + r log r) L2(R, dy) L2
(
R+,

dr
r

)

III, α ∈ [0,∞) ψp (r, y + α log r) L2(T, dy) L2
(
R+,

dr
r

)

IV, α ∈ [0,∞) ψh (r, y + α log r) L2(R, dy) L2
(
R+,

dr
r

)



Unitary equivalence 73

By ψp, ψh we denote the representations of ψ in polar and hyperbolic polar
coordinates, respectively.

Proof. The result is a direct consequence of Theorem 3.1 (ii) and Corol-
lary 2.3. �

Corollary 3.3. In each of the cases J = Iα, II, IIIα, IVα, the system{
µJ
λ ψ

}
λ∈ΛJ , with the Hilbert space described in (3.1), (3.2), (3.4), (3.6), respec-

tively, is a Parseval frame, if and only if the corresponding integral operator of
the following table preserves inner products for almost every r ∈ R+. Domains
of the operators are the same as in Corollary 3.2. Codomains are weighted
l2(Z) with the indicated weight.

Subgroup Type Integral Kernel Weight

I, α ∈ [−1, 0) 2−1/2r
1
2αψ

(
2k/2r,

(
2k/2r

)α+1
α y

)
2

k
2α

II 2−1/2ψ
(
2k/2r, 2k/2ry + 2k/2r log

(
2k/2r

))
1

III, α ∈ [0,∞) 2−1/2ψp

(
2k/2r, y + α log

(
2k/2r

))
1

IV, α ∈ [0,∞) 2−1/2ψh

(
2k/2r, y + α log

(
2k/2r

))
1

By ψp, ψh we denote the representations of ψ in polar and hyperbolic polar
coordinates. We assume that for almost every y ∈ Y , where Y = R for
J = Iα, II, IVα, and Y = T for J = IIIα, ess-suppψ(·, y) ⊂ [0, 1] in cases
J = Iα, II, and ess-suppψp(·, y) ⊂ [0, 1], ess-suppψh(·, y) ⊂ [0, 1] in cases
J = IIIα, IVα, respectively.

Proof. The result is a direct consequence of Theorem 3.1 (iii) and Corol-
lary 2.6. �

We define ψJ ,DR =
(
UJ )−1

UψDR , for J = Iα, II, IVα, and ψJ ,DT =

=
(
UJ )−1

UψDT , for J = IIIα, where ψDR , ψDT are defined in (2.12), (2.13),
respectively, and U is the unitary map of Proposition 2.1.

Corollary 3.4. Systems
{
c−1
f µJ

(u,t)ψ
J ,DR

}
u,t∈R, J = Iα, II, IVα,{

c−1
f µJ

(u,t)ψ
J ,DT

}
u,t∈R, J = IIIα, where cf = (log 2)

1/2
, with the Hilbert spaces

and the parameter measures the same as in Corollary 3.2, are reproducing.

Proof. The result is a direct consequence of Theorem 3.1 (ii) and Corol-
lary 2.11. �
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Corollary 3.5. Systems
{
µJ
λ ψJ ,DR

}
λ∈ΛJ , J = Iα, II, IVα,

{
µJ
λ ψJ ,DT

}
λ∈ΛJ ,

J = IIIα, with the Hilbert spaces the same as in Corollary 3.3, are orthonormal
bases.

Proof. The result is a direct consequence of Theorem 3.1 (iii) and Corol-
lary 2.12. �
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[17] Führ, H., Abstract Harmonic Analysis of Continuous Wavelet Trans-
forms, Lecture Notes in Mathematics, Vol. 1863, Springer, New York,
2005.
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