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Abstract. The convergence order of numerous iterative methods is ob-
tained using derivatives of higher order, although these derivatives are not
involved in the methods. Therefore, these methods cannot be used to
solve equations with functions that do not have such high order deriva-
tives, since their convergence is not guaranteed. In this paper, we study
local convergence of an efficient eighth order method under hypotheses
only on the first derivative. That is how we expand the applicability of
some popular methods. Moreover, the study of local convergence of it-
eration functions is important because it provides the degree of difficulty
for choosing initial points. We also verify the theoretical results on some
numerical problems. Finally, stability of the method is checked through
complex geometry shown by drawing basins of attraction of the solutions.

1. Introduction

Let B1, B2 be Banach spaces and Ω be a convex subset of B1. Further,
suppose that L(B1, B2) is the set of bounded linear operators from B1 into B2.
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In applied mathematics many problems can be formulated in the form

(1.1) F (x) = 0,

wherein F : Ω ⊂ B1 → B2 is a differentiable operator in the sense of Fréchet.
Most of the methods for finding a solution x∗ of (1.1) are iterative, because
closed form solutions can be found only in some special cases (see [4, 10]).

Cordero et al. in [8] considered an eighth order iterative method for ap-
proximating a solution of the nonlinear equation F (x) = 0, where F : Ω ⊂
⊂ Rm → Rm is a differentiable nonlinear function. In this paper, we study
the method developed in [8] using hypotheses only on first derivative of the
function. Precisely, we present the local convergence analysis of the method
defined for n = 0, 1, 2...., by

yn = xn − F ′(xn)
−1F (xn),

zn = yn −
(5
4
I − 1

2
F ′(yn)

−1F ′(xn) +
1

4
(F ′(yn)

−1F ′(xn))
2
)
×

× F ′(yn)
−1F (yn),

xn+1 = zn −
(3
2
I − F ′(yn)

−1F ′(xn) +
1

2
(F ′(yn)

−1F ′(xn))
2
)
×

× F ′(yn)
−1F (zn),

(1.2)

where x0 ∈ Ω is an initial point.

The convergence of the method (1.2) was shown using Taylor expansion and
conditions reaching up to the eighth derivative of F . Such assumptions restrict
the applicability of method, especially since only first derivative is used in the
method. As a motivational example, consider a function F on Ω = [− 5

2 , 2] and
B1 = B2 = R, by

F (x) =

{
x3 log(π2x2) + x5sin 1

x , x �= 0,

0, x = 0.

We have that

F ′(x) = 2x2 − x3cos
( 1

x

)
+ 3x2 log(π2x2) + 5x4sin

( 1

x

)
,

F ′′(x) =− 8x2cos
( 1

x

)
+ 2x(5 + 3 log(π2x2)) + x(20x2 − 1)sin

( 1

x

)

and

F ′′′(x) =
1

x

[
(1− 36x2)cos

( 1

x

)
+ x

(
22 + 6 log(π2x2) + (60x2 − 9)sin

( 1

x

))]
.
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It is clear that F ′′′(x) is not bounded on Ω, so earlier results cannot be applied.
In our convergence analysis, we only used hypotheses on the first derivative.
Therefore, our results can be applied. Hence, we extend the applicability of
method (1.2). Many authors have studied convergence analysis of iterative
methods, see, for example [1, 2, 3, 4, 5, 6, 7, 11, 13, 15].

We summarize the contents of the paper. In section 2, the local convergence
analysis of method (1.2) is presented. The numerical examples are performed in
section 3. Section 4 is devoted to check the convergence domain of the iterative
technique geometrically by means of drawing basin of attractors. Concluding
remarks are given in section 5.

2. Convergence analysis

We shall first introduce some scaler functions and parameters that appear in
the local convergence analysis of method (1.2) that follows in Theorem 2.1. Let
w0 : [0,∞) → [0,∞) be a continuous and increasing function with w0(0) = 0.
Suppose that equation

(2.1) w0(t) = 1,

has at least one positive solution. Denote by δ0 the smallest such solution. Let
also w : [0, δ0) → [0,+∞), w1 : [0, δ0) → [0,+∞) be continuous and increasing
functions such that w(0) = 0. Define functions ϕ1 and ϕ̄1 on the interval [0, δ0)
by

ϕ1(t) =

1∫
0

w((1− θ)t)dθ

1− w0(t)

and
ϕ̄1(t) = ϕ1(t)− 1.

We have ϕ̄1(0) = −1 and ϕ̄1(t) → ∞ as t → δ−0 . Then, intermediate value
theorem guarantees that the equation ϕ̄1(t) = 0 has at least one solution in
(0, δ0). Denote by r1 the smallest such solution. Suppose that equation

(2.2) w0(ϕ1(t)t) = 1,

has at least one positive solution. Denote by δ1 the smallest such solution.
Define functions ϕ2 and ϕ̄2 on [0, δ1) by

ϕ2(t) =
[

1∫
0

w((1− θ)ϕ1(t)t)dθ

1− w0(ϕ1(t)t)
+
1

4

(w0(ϕ1(t)t) + w0(t))
2

1∫
0

w1(θϕ1(t)t)dθ

(1− w0(ϕ1(t)t))3

]
ϕ1(t)
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and
ϕ̄2(t) = ϕ2(t)− 1.

We get ϕ̄2(0) = −1 and ϕ̄2(t) → ∞ as t → δ−1 . Denote by r2 the smallest
solution of equation ϕ̄2(t) = 0 in (0, δ1). Suppose that equation

(2.3) w0(ϕ2(t)t) = 1,

has at least one positive solution. Denote by δ2 the smallest such solution. Set
δ = min{δ1, δ2}. Define functions ϕ3 and ϕ̄3 on [0, δ) by

ϕ3(t) =
[

1∫
0

w((1− θ)ϕ2(t)t)dθ

1− w0(ϕ2(t)t)
+

(w0(ϕ2(t)t) + w0(ϕ1(t)t))
1∫
0

w1(θϕ2(t)t)dθ

(1− w0(ϕ2(t)t))(1− w0(ϕ1(t)t))
+

+
1

2

(w0(ϕ1(t)t) + w0(t))
2

1∫
0

w1(θϕ2(t)t)dθ

(1− w0(ϕ1(t)t))3

]
ϕ2(t)

and
ϕ̄3(t) = ϕ3(t)− 1.

We obtain ϕ̄3(0) = −1 and ϕ̄3(t) → ∞ as t → δ−. Denote by r3 the smallest
solution of equation ϕ̄3(t) = 0 in (0, δ). Define a radius of convergence r by

(2.4) r = min{rj} j = 1, 2, 3.

It follows from (2.4) that for each t ∈ [0, r)

(2.5) 0 ≤ w0(t) ≤ 1,

(2.6) 0 ≤ w0(ϕ1(t)t) ≤ 1,

(2.7) 0 ≤ w0(ϕ2(t)t) ≤ 1

and

(2.8) 0 ≤ ϕj(t) ≤ 1.

Let S(µ, λ) and S̄(µ, λ) stand for the open and closed balls in B1, respectively
with center µ ∈ B1 and of radius λ > 0.
The following conditions shall be used in the local convergence analysis (A):

(a1) F : Ω → B2 is continuously differentiable in the sense of Frèchet and
there exists x∗ ∈ Ω such that F (x∗) = 0 and F ′(x∗)

−1 ∈ L(B2, B1).
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(a2) There exists function w0 : [0,∞) → [0,∞) with w0(0) = 0 continuous
and increasing such that for each x ∈ Ω

‖F ′(x∗)
−1(F ′(x)− F ′(x∗))‖ ≤ w0(‖x− x∗‖).

Set Ω0 = Ω ∩ S(x∗, δ0), where δ0 is given in (2.1).

(a3) There exist functions w : [0, δ0) → [0,∞), w1 : [0, δ0) → [0,+∞), contin-
uous and increasing with w(0) = 0 such that for each x, y ∈ Ω0

‖F ′(x∗)
−1(F ′(y)− F ′(x))‖ ≤ w(‖y − x‖)

and

‖F ′(x∗)
−1F ′(x)‖ ≤ w1(‖x− x∗‖).

(a4) S̄(x∗, r) ⊂ Ω, where r is defined in (2.4).

(a5) There exists R ≥ r such that

1∫

0

w0(θR)dθ < 1.

Set Ω1 = Ω ∩ S̄(x∗, R).

Next, we present the local convergence analysis of method (1.2) using the
preceding notation and the conditions (A).

Theorem 2.1. Suppose that the conditions (A) hold. Then, for x0 ∈ S(x∗, r)−
−{x∗} sequence {xn} generated by method (1.2) is well defined, remains in
S(x∗, r) for each n = 0, 1, 2...... and converges to x∗. Moreover, the following
error bounds hold

‖yn − x∗‖ ≤ ϕ1(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖ < r,(2.9)

‖zn − x∗‖ ≤ ϕ2(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖(2.10)

and

‖xn+1 − x∗‖ ≤ ϕ3(‖xn − x∗‖)‖xn − x∗‖ ≤ ‖xn − x∗‖,(2.11)

where the functions ϕj are given previously and r is defined in (2.4). Further-
more, the limit point x∗ is only solution of equation F (x) = 0 in Ω1 given in
(a5).
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Proof. We base our proof on mathematical induction. Choose x ∈ S(x∗, r)−
−{x∗}. Then, by (2.4), (a1) and (a2), we obtain in turn that

(2.12) ‖F ′(x∗)
−1

(
F ′(x)− F ′(x∗)

)
‖ ≤ w0(‖x− x∗‖) < w0(r) ≤ 1.

It follows by (2.12) and the Banach lemma on invertible operators [4] that
F ′(x)−1 ∈ L(B2, B1) and

(2.13) ‖F ′(x)−1F ′(x∗)‖ ≤ 1

1− w0(‖x− x∗‖)
.

We also have that y0 is well defined by (2.13). Using (2.4), (2.8) (for j = 1),
(a1)–(a3), (2.13) and the first substep of method (1.2) for n = 0, we get in turn
that

‖y0 − x∗‖ = ‖x0 − x∗ − F ′(x0)
−1F (x0)‖ =

= ‖F ′(x0)
−1F ′(x∗)‖

∥∥∥
1∫

0

F ′(x∗)
−1(F ′(x∗ + θ(x0 − x∗))−

− F ′(x0))dθ(x0 − x∗)
∥∥∥ ≤

≤

1∫
0

w((1− θ)‖x0 − x∗‖)dθ‖x0 − x∗‖

1− w0(‖x0 − x∗‖)
=

= ϕ1(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

(2.14)

which shows (2.9) for n = 0 and y0 ∈ S(x∗, r). We can write by (a1) that

(2.15) F (x) = F (x)− F (x∗) =

1∫

0

F ′(x∗ + θ(x− x∗))dθ(x− x∗).

Then, by the second condition in (a3) and (2.15), we get that

(2.16) ‖F ′(x∗)
−1F (x)‖ ≤

1∫

0

w1(θ‖x− x∗‖)dθ · ‖x− x∗‖.

The iterates z0 and x1 are well defined by (2.13) for x = y0. We have by the
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second substep of method (1.2) for n = 0

(2.17)

z0 − x∗ = y0 − x∗ − F ′(y0)
−1F (y0)−

−
(1
4
I − 1

2
F ′(y0)

−1F (x0) +
1

4
(F ′(y0)

−1F ′(x0))
2
)
F ′(y0)

−1F (y0) =

= y0 − x∗ − F ′(y0)
−1F (y0)+

+
1

4

(
F ′(y0)

−1
(
(F ′(y0)− F ′(x∗)) + (F ′(x∗)− F ′(x0))

))2

×

×F ′(y0)
−1F (y0),

since

1

4
I − 1

2
F ′(y0)

−1F ′(x0)+
1

4
(F ′(y0)

−1F ′(x0))
2 =

=
1

4

(
I − 2F ′(y0)

−1F ′(x0) + (F ′(y0)
−1F ′(x0))

2
)
=

=
1

4
(I − F ′(y0)

−1F ′(x0))
2 =

=
1

4

(
F ′(y0)

−1(F ′(y0)− F ′(x0))
)2
.

In view of (2.4), (2.8) (for j = 2), (2.13) (for x = y0), (2.14), (2.16) (for
x = y0) and (2.17), we have that

(2.18)

‖z0 − x∗‖ ≤ ‖y0 − x∗ − F ′(y0)
−1F (y0)‖+

+
1

4
‖F ′(y0)

−1F ′(x∗)‖2
(
‖F ′(x∗)

−1(F ′(y0)− F ′(x∗))‖+

+‖F ′(x∗)
−1(F ′(x0)− F ′(x∗))‖

)2

≤

≤
(

1∫
0

w((1− θ)‖y0 − x∗‖)dθ

1− w0(‖y0 − x∗‖)
+

+
1

4

(
w0(‖y0 − x∗‖) + w0(‖x0 − x∗‖)

)2 1∫
0

w1(θ‖y0 − x∗‖)dθ

(1− w0

(
‖y0 − x∗‖)

)3
)
×

×‖y0 − x∗‖ ≤

≤ ϕ2(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

so (2.10) holds for n = 0 and z0 ∈ S(x∗, r). Using the third substep of method
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(1.2) for n = 0, we get in turn that

x1 − x∗ = z0 − x∗ − F ′(z0)
−1F (z0) +

(
F ′(z0)

−1 − F ′(y0)
−1

)
F (z0)−(2.19)

− 1

2

(
I − 2F ′(y0)

−1F ′(x0) +
(
F ′(y0)

−1F ′(x0)
)2)

F ′(y0)
−1F (z0) =

=z0 − x∗ − F ′(z0)
−1F (z0) + F ′(z0)

−1
(
F ′(y0)− F ′(z0)

)
F ′(y0)

−1F (z0)−

− 1

2

(
F ′(y0)

−1
(
F ′(y0)− F ′(x0)

))2

F ′(y0)
−1F (z0).

Then, by (2.4), (2.8) (for j = 1), (2.13) (for x = y0, z0), (2.18) and (2.19), we
obtain in turn that

‖x1 − x∗‖ ≤ ‖z0 − x∗ − F ′(z0)
−1F (z0)‖+ ‖F ′(z0)

−1F ′(x∗)‖×(2.20)

×
(
‖F ′(x∗)

−1
(
F ′(z0)− F ′(x∗)

)
‖+ ‖F ′(x∗)

−1
(
F ′(y0)− F ′(x∗)

)
‖
)
×

× ‖F ′(x∗)
−1F (z0)‖+

1

2
‖F ′(y0)

−1F ′(x∗)‖2

(
‖F ′(x∗)

−1
(
F ′(y0)− F ′(x∗)

)
‖+ ‖F ′(x∗)

−1
(
F ′(x0)− F ′(x∗)

)
‖
)2

×

× ‖F ′(y0)
−1F ′(x∗)‖‖F ′(x∗)

−1F (z0)‖ ≤

≤
(

1∫
0

w((1− θ)‖z0 − x∗‖)dθ

1− w0(‖z0 − x∗‖)
+

+

(
w0(‖z0 − x∗‖) + w0(‖z0 − x∗‖)

) 1∫
0

w1(θ‖z0 − x∗‖)dθ
(
1− w0(‖z0 − x∗‖)

)(
1− w0(‖y0 − x∗‖)

) +

+
1

2

(
w0(‖y0 − x∗‖) + w0(‖x0 − x∗‖)

)2 1∫
0

w1(θ‖z0 − x∗‖)dθ
(
1− w0(‖y0 − x∗‖)

)3
)
‖z0 − x∗‖ ≤

≤ ϕ3(‖x0 − x∗‖)‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r,

so (2.11) holds for n = 0 and x1 ∈ S(x∗, r). If we replace x0, y0, z0, x1 by xi,
yi, zi, xi+1 in the preceding estimates, we complete the induction (2.9)-(2.11).
Then, it follows from the estimate

(2.21) ‖xi+1 − x∗‖ ≤ µ‖xi − x∗‖ < r,

where µ = ϕ3(‖x0 − x∗‖) ∈ [0, 1), we get that limi→∞xi = x∗ and xi+1 ∈
S(x∗, r).

The uniqueness part is shown by letting T =
1∫
0

F ′(x∗ + θ(y∗ − x∗))dθ for
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some y∗ ∈ Ω1 with F (y∗) = 0. Then, using (a5), we get that

‖F ′(x∗)
−1(T − F ′(x∗))‖ ≤

1∫

0

w0(θ‖x∗ − y∗‖)dθ ≤

≤
1∫

0

w0(θR)dθ < 1,

so T−1 ∈ L(B2, B1). Finally, by

0 = F (y∗)− F (x∗) = T (y∗ − x∗),

we deduce that x∗ = y∗. �

3. Numerical results

Example 1. Consider the motivational example as given in the introduction of
the paper. Note that x∗ = 0 is zero of this function. Then, we have w0(t) = Lt,
w(t) = Lt, w1(t) = 2, where L = 2

2π+1 (80+16π+(11+12 log 2)π2). Using the
definition, we obtain the parameter values are

r1 = 7.5648×10−3, r2 = 6.2566×10−3, r3 = 5.5908×10−3 and r = 5.5908×10−3.

Example 2. Suppose that the motion of an object in three dimensions is
governed by system of differential equations

f ′
1(x)− f1(x)− 1 = 0,

f ′
2(y)− (e− 1)y − 1 = 0,

f ′
3(z)− 1 = 0,

with x, y, z ∈ Ω for f1(0) = f2(0) = f3(0) = 0. Then, the solution of the system
is given for v = (x, y, z)T by function F := (f1, f2, f3) : Ω → R3 defined by

F (v) = (ex − 1,
e− 1

2
y2 + y, z)T .

The Fréchet-derivative is given by

F ′(v) =



ex 0 0
0 (e− 1)y + 1 0
0 0 1


 .
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Then, we have

w0(t) = (e− 1)t, w(t) = et, w1(t) =
e

2
.

Using the definition, the parameter values are given as

r1 = 0.324947, r2 = 0.276393, r3 = 0.248044 and r = 0.248044.

Example 3. Let us consider the function F := (f1, f2, f3) : Ω → R3 defined
by

F (x) = (10x1 + sin(x1 + x2)− 1, 8x2 − cos2(x3 − x2)− 1, 12x3 + sin(x3)− 1)T ,

where x = (x1, x2, x3)
T .

Fréchet-derivative of F (x) is given by

F ′(x) =



10 + cos(x1 + x2) cos(x1 + x2) 0

0 8 + sin2(x2 − x3) −sin2(x2 − x3)
0 0 12 + cos(x3)


 .

Then, we get that w0(t) = w(t) = 0.269812t and w1(t) = 1.08139. The param-
eters values of r1, r2, r3 and r for this example are given as

r1 = 2.47086, r2 = 2.13854, r3 = 1.96885 and r = 1.96885.

Example 4. Next, we consider Kepler’s equation

F (x) = x− βsin(x)−K = 0,

where 0 ≤ β < 1, 0 ≤ K ≤ π. A numerical study, for different values of β and
K, has been performed in [9]. In this example, we take values K = 0.1 and
β = 0.27, so the solution x∗ ≈ 0.13682853547099 . . . is obtained. Since

F ′(x) = 1− βcos(x),

we have

|F ′(x∗)
−1(F ′(x)− F ′(y))| = |β(cos(x)− cos(y))|

|1− βcos(x∗)|
=

=
2β|sin(x+y

2 )sin(x−y
2 )|

|1− βcos(x∗)|
≤

≤ β

|1− βcos(x∗)|
|x− y|
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and

|F ′(x∗)
−1F ′(x)| = |1− βcos(x)|

|1− βcos(x∗)|
≤ 1 + β

|1− βcos(x∗)|
.

Then, we have w0(t) = w(t) = 0.3685888t and w1(t) = 1.7337327. The
calculated values of parameters are given by

r1 = 1.8087, r2 = 1.5784, r3 = 1.4992 and r = 1.4992.

Example 5. Let B1 = C[0, 1], be the space of continuous functions defined on
the interval [0, 1] and be equipped with max norm. Let Ω = Ū(0, 1). Define
function F on Ω by

F (ϕ)(x) = φ(x)− 10

1∫

0

xθϕ(θ)3dθ.

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 30

1∫

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ Ω.

Then for x∗ = 0 we have that w0(t) = 15t, w(t) = 30t and w1(t) = 15
2 . The

parameters r1, r2, r3 and r are given by

r1 = 3.33333× 10−2, r2 = 2.48384× 10−2,

r3 = 2.02103× 10−2 and r = 2.02103× 10−2.

4. Complex geometry

The study of complex geometry of the rational function associated to an
iterative method gives important information about convergence and stability
of the method, see for example [14, 12]. To start with, let us recall some basic
dynamical concepts of rational function. Let φ : R → R be a rational function,
the orbit of a point x0 ∈ R is defined as the set

{x0, φ(x0), φ
2(x0), . . . , φ

m(x0), . . .}

of successive images of x0 by the rational function.

The dynamical behavior of the orbit of a point of R can be classified de-
pending on its asymptotic behavior. In this way, a point x0 ∈ R is a fixed
point of φ(α) if it satisfies φ(α) = α. Moreover, x0 is called a periodic point of
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period p > 1 if it is a point such that φp(x0) = x0 but φk(x0) �= x0, for each
k < p. Moreover, a point x0 is called pre-periodic if it is not periodic but there
exists a k > 0 such that φk(x0) is periodic. There exist different types of fixed
points depending on the associated multiplier |φk(x0)|. Taking the associated
multiplier into account, a fixed point x0 is called:

• attractor if |φk(x0)| < 1,

• superattractor if |φk(x0)| = 0,

• repulsor if |φk(x0)| > 1,

• parabolic if |φk(x0)| = 1.

If x∗ an attracting fixed point of the rational function φ, its basin of attrac-
tion A(x∗) is defined as the set of pre-images of any order such that

(4.1) A(x∗) = {x0 ∈ R : φm(x0) → x∗, m → ∞}.

The set of points whose orbits tend to an attracting fixed point x∗ defined
as the Fatou set. Its complementary set, called Julia set, is the closure of the
set consisting of repelling fixed points, and establishes the borders between
the basins of attraction. That means the basin of attraction of any fixed point
belongs to the Fatou set and the boundaries of these basins of attraction belong
to the Julia set.

We take the initial point as z0 ∈ Ω, where Ω is a rectangular region in
complex plane (C) containing all the roots of f(z) = 0. The numerical methods
starting at point z0 in a rectangle can converge to the zero of the function f(z)
or eventually diverge. We consider the stopping criterion for convergence as
10−3 up to a maximum of 25 iterations. If we have not obtained the desired
tolerance in 25 iterations, we do not continue and decide that the iterative
method starting at z0 does not converge to any root. The strategy taken into
account is following: A color is assigned to each starting point z0 in the basin of
attraction of a zero. If the iteration starting from the initial point z0 converges
then it represents the basins of attraction with that particular color assigned
to it and if it fails to converge in 25 iterations then it shows the black color. In
this way, we distinguish the attraction basins by their colors for the method.

To view complex geometry, we analyze the basins of attraction of the
method on following polynomials:

Test problem 1. Consider the polynomial P1(z) = z2 + 1 having two simple
zeros {−i, i}. The basin of attractors for this polynomial are shown in Figure 1.
From this figure, it can be observed that method (1.2) has very stable behavior.
In addition, the method does not exhibits chaotic behavior on the boundary
points.
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Figure 1. Basins of attraction of method (1.2) for test problem 1

Test problem 2. Let P2(z) = z3 − z having three simple zeros {−1, 0, 1}.
The basin of attractors for this polynomial are shown in Figure 2. From this
figure, we observe the stable behavior of method (1.2).
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Figure 2. Basins of attraction of method (1.2) for test problem 2

Test problem 3. Let P3(z) = z4 − 5z2 + 4 having four simple zeros {−1, 1,
− 5

2 ,
5
2}. The basin of attractors for this polynomial are shown in Figure 3. From

figure, it can be observed that method (1.2) has beautiful fractal geometry.
Few black spots at the borders between the basins of attraction indicate the
diverging points.

Test problem 4. Consider the polynomial P4(z) = z5− 29
4 z3+ 25

4 z having five
simple zeros {0,−1, 1,− 5

2 ,
5
2}. The basin of attractors are shown in Figure 4.

In this case we also observe the beautiful shapes of the basins of attraction of
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Figure 3. Basins of attraction of method (1.2) for test problem 3

different roots. However, few black spots at the borders between the basins of
attraction indicate the diverging nature.
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Figure 4. Basins of attraction of method (1.2) for test problem 4

5. Conclusions

In the forgoing study, we have studied the local convergence of an efficient
eighth order method by assuming conditions only on the first derivative of the
operator. The iterative scheme does not use second or higher-order derivative
of the considered function. However, in earlier study of convergence the hy-
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potheses used were based on Taylor series expansions reaching up to the eighth
or higher-order derivatives of function although the iterative scheme uses first-
order derivative. These conditions restrict the usage of the iterative scheme.
We have extended the suitability of method by considering suppositions only
on the first-order derivative. The local convergence we have studied is also
important in the sense that it provides estimates on radius of convergence and
error bounds of the solution. Such estimates are not provided in the procedures
that use Taylor expansions of higher derivatives which may not exist or may be
very expensive to compute. We have also verified the theoretical results so de-
rived on some numerical problems. Finally, we have checked the stability of the
method by means of using complex dynamics tool, namely, basin of attraction.
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