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Abstract. We shall show that 2 and 9 are the only biunitary superper-
fect numbers and give biunitary multiply superperfect numbers below 232,
posing some related problems.

1. Introduction

As usual, we let σ(N) and ω(N) denote respectively the sum of divisors
and the number of distinct prime factors of a positive integer N . N is called
to be perfect if σ(N) = 2N . It is a well-known unsolved problem whether or
not an odd perfect number exists. Interest to this problem has produced many
analogous notions and problems concerning divisors of an integer. For example,
Suryanarayana [14] called N superperfect if σ(σ(N)) = 2N and showed that
the even superperfect numbers are exactly the numbers 2p−1 with 2p−1 prime.
It is asked in this paper and still unsolved whether there were odd superperfect
numbers. Extending the notion of superperfect numbers further, G. L. Cohen
and te Riele [4] indroduced the notion of (m, k)-perfect numbers, a positive
integer N for which σm(N) = kN , where σm denotes the m-th iteration of σ.

Some special classes of divisors have also been studied in several papers.
One of them is the class of unitary divisors defined by Eckford Cohen [2]. A
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divisor d ofN is called a unitary divisor if gcd(d,N/d) = 1. Wall [15] introduced
the notion of biunitary divisors. A divisor d of a positive integer n is called a
biunitary divisor if gcd1(d, n/d) = 1, where gcd1(a, b) is the greatest common
unitary divisor of a and b.

According to E. Cohen [2] and Wall [15] respecitvely, we let σ∗(N) and
σ∗∗(N) denote the sum of unitary and biunitary divisors of N . Moreover, we
write d || N if d is a unitary divisor of N . Hence, for a prime p, we have pe || N
if p divides N exactly e times. Replacing σ by σ∗, Subbarao and Warren [13]
introduced the notion of a unitary perfect number. N is called to be unitary
perfect if σ∗(N) = 2N . They proved that there are no odd unitary perfect
numbers and 6, 60, 90, 87360 are the first four unitary perfect numbers. Later
the fifth unitary perfect number was found by Wall [16], but no further instance
has been found. Subbarao [12] conjectured that there are only finitely many
unitary perfect numbers.

Similarly, a positive integers N is called biunitary perfect if σ∗∗(N) = 2N .
Wall [15] showed that 6, 60 and 90, the first three unitary perfect numbers, are
the only biunitary perfect numbers.

Combining the notion of superperfect numbers and the notion of unitary
divisors, Sitaramaiah and Subbarao [8] studied unitary superperfect numbers,
integers N satisfying σ∗(σ∗(N)) = 2N . They found all unitary super perfect
numbers below 108 (Further instances are given in A038843 in OEIS [9]). The
first ones are 2, 9, 165, 238. Thus there are both even and odd ones. The author
[17] showed that 9, 165 are all of the odd ones.

Now we can call an integer N satisfying σ∗∗(σ∗∗(N)) = 2N to be biunitary
superperfect. We can see that 2 and 9 are biunitary superperfect as well as
unitary superperfect, while 2 is also superperfect (in the ordinary sense).

In this paper, we shall determine all biunitary superperfect numbers.

Theorem 1.1. 2 and 9 are the only biunitary superperfect numbers.

Theorem 1.1 can be thought to be the analogous result for unitary super-
perfect numbers by the author [17]. Our proof is completely elementary but
has some different character from the proof of the unitary analogue. Our ar-
gument leads to a contradiction that σ∗∗(σ∗∗(N))/N > 2 in many cases, while
Yamada [17] leads to a contradiction that σ∗(σ∗(N))/N < 2. Moreover, in
the biunitary case, we can determine all (odd or even) biunitary superperfect
numbers.

Our method does not seem to work to find all odd superperfect numbers.
It prevents us from bounding ω(N) and ω(σ(N)) that σ(pe) with p odd takes
an odd value if e is even. All that we know is the author’s result [18] that
there are only finitely many odd superperfect numbers N with ω(N) ≤ k or
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ω(σ(N)) ≤ k for each given k. We note that Sándor and Kovács [7] showed
that N = 2 is the only even integer for which σ(σ∗∗(N)) = 2N .

Finally, analogous to G. L. Cohen and te Riele [4], we can define a positive
integer N to (m, k)-biunitary perfect if its m-th iteration of σ∗∗ equals to kN .
We searched for numbers which are (2, k)-biunitary perfect for some k (or
biunitary multiply superperfect numbers) and exhaustive search revealed that
there exist exactly 185 integers N below 232 dividing σ∗∗(σ∗∗(N)) including 1,
which are given in Table 1.

Based on our theorem and our search result, we can pose the following
problems:

• For each integer k ≥ 3, are there infinitely or only finitely many integers
N for which σ∗∗(σ∗∗(N)) = kN? In particular, are the 24 given integers
N all for which σ∗∗(σ∗∗(N)) = kN with k ≤ 5?

• For each integer k = 19 or k ≥ 21, does there exist at least one or no
integer N for which σ∗∗(σ∗∗(N)) = kN?

• Are N = 9, 15, 21, 1023, 8925, 15345 all odd integers diving σ∗∗(σ∗∗(N))?

2. Preliminary Lemmas

In this section, we shall give several preliminary lemmas concerning the sum
of biunitary divisors used to prove our main theorems.

Before all, we introduce two basic facts from [15]. The sum of biunitary
divisors function σ∗∗ is multiplicative. Moreover, if p is prime and e is a positive
integer, then

(2.1) σ∗∗(pe) =

{
pe + pe−1 + · · ·+ 1 = pe+1−1

p−1 , if e is odd;
pe+1−1
p−1 − pe/2 = (pe/2−1)(pe/2+1+1)

p−1 , if e is even.

We note that, using the floor function, this can be represented by the single
formula:

(2.2) σ∗∗(pe) =

(
p�

e+2
2 � + 1

)(
p�

e+1
2 � − 1

)

p− 1
.

From these facts, we can deduce the following lemmas almost immediately.
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k #N ’s N

1 1 1

2 2 2, 9

3 4 8, 10, 21, 512

4 8 15, 18, 324, 1023, 1404, 3276, 8925, 15345

5 9 24, 30, 144, 288, 1428, 1536, 2046, 14976, 23040

6 13 42, 60, 160, 270, 630, 2880, 4092, 4608, 11550, 35700, 410000,
50918400, 673254400

7 13 240, 1200, 2400, 16368, 82944, 139968, 326592, 359424, 748800, 838656,
2895984, 10723328, 171196416

8 18 648, 2808, 3570, 6552, 17850, 30690, 41472, 225680, 390320, 449820,
1128400, 1474470, 1801800, 2829060, 3022500, 522746224, 887978000,
1062892908

9 26 168, 960, 10368, 10752, 44928, 46200, 52920, 65472, 69120, 104832,
161280, 360000, 571200, 982080, 2176000, 2257920, 2956800, 4055040,
9369360, 13434624, 18054400, 28828800, 148403200, 153990144,
187765760, 769600000

10 19 480, 2856, 13824, 32736, 33264, 74256, 149760, 182784, 1782144,
5658120, 10213632, 46126080, 96509952, 148599360, 362119680,
526156800, 545965056, 627720192, 2125785816

11 9 321408, 1392768, 2142720, 3628800, 14622720, 15724800, 73113600,
125706240, 3509345280

12 27 4320, 10080, 14280, 36960, 71400, 184800, 342720, 720720, 913920,
4569600, 7856640, 8910720, 11531520, 13219200, 14443520, 22932000,
28959840, 44553600, 48360000, 56619648, 57657600, 84084000,
164633040, 245351808, 297198720, 779688000, 1279184640

13 10 57120, 17821440, 32006016, 33480000, 129948000, 202368000,
209986560, 942120960, 1505520000, 1948320000

14 13 103680, 217728, 449280, 108732000, 115153920, 297872640, 298721280,
724239360, 773760000, 1165933440, 1508855040, 3053635200,
3567037824

15 4 1827840, 181059840, 754427520, 1616855040

16 5 23591520, 166333440, 243540000, 594397440, 3102010560

17 1 898128000

18 2 374250240, 4070926080

20 1 11975040

Table 1. All positive integers N ≤ 232 such that σ∗∗(σ∗∗(N)) = kN for some
integer k
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Lemma 2.1. σ∗∗(n) is odd if and only if n is a power of 2 (including 1). More
exactly, σ∗∗(n) is divisible by 2 at least ω(n) times if n is odd and at least
ω(n)− 1 times if n is even.

Proof. Whether e is even or odd, σ∗∗(pe) is odd if and only if p = 2 by (2.1).
Factoring n = 2e

∏r
i=1 p

ei
i into distinct odd primes p1, p2, . . . , pr with e ≥ 0 and

e1, e2, . . . , er > 0, each σ∗∗(peii ) is even. Hence, σ∗∗(n) = σ∗∗(2e)
∏r

i=1 σ
∗∗(peii )

is divisible by 2 at least r times, where r = ω(n) if n is odd and ω(n)− 1 if n
is even. �

Lemma 2.2. For any prime p and any positive integer e, σ∗∗(pe)/pe ≥ 1 +
+1/p2. Moreover, σ∗∗(pe)/pe ≥ 1 + 1/p unless e = 2 and σ∗∗(pe)/pe ≥ (1 +
+1/p)(1 + 1/p3) if e ≥ 3. More generally, for any positive integers m and
e ≥ 2m − 1, we have σ∗∗(pe)/pe ≥ σ∗∗(p2m)/p2m and, unless e = 2m,
σ∗∗(pe)/pe ≥ 1 + 1/p+ · · ·+ 1/pm.

Proof. If e ≥ 2m−1 and e is odd, then pe, pe−1, . . . , p, 1 are biunitary divisors
of pe. If e > 2m and e is even, then pe, pe−1, . . . , pe−m are biunitary divisors
of pe since e − m > e/2. Hence, if e ≥ 2m − 1 and e �= 2m, then σ∗∗(pe) =
= pe + pe−1 + · · · + 1 > pe + · · · + pe−m = pe(1 + 1/p + · · · + 1/pm). Since
σ∗∗(p2m)/p2m < 1 + 1/p + · · · + 1/pm, σ∗∗(pe)/pe with e ≥ 2m − 1 takes its
minimum value at e = 2m. �

Now we shall quote the following lemma of Bang [1], which has been re-
discovered (and extended into numbers of the form an − bn) by many authors
such as Zsigmondy[19], Dickson[5] and Kanold[6]. See also Theorem 6.4A.1 in
Shapiro [10].

Lemma 2.3. If a > b ≥ 1 are coprime integers, then an−1 has a prime factor
which does not divide am − 1 for any m < n, unless (a, n) = (2, 1), (2, 6) or
n = 2 and a + b is a power of 2. Furthermore, such a prime factor must be
congruent to 1 modulo n.

As a corollary, we obtain the following lemma:

Lemma 2.4. Let p, q be odd primes and e be a positive integer. If σ∗∗(pe) =
= 2aqb for some integers a and b, then a) e = 1, b) e = 2 and p2 + 1 = 2qb,
c) e = 3, p = 2a−1 − 1 is a Mersenne prime and p2 + 1 = 2qb or d) e = 4,
p = 2(a−1)/2−1 is a Mersenne prime and p2−p+1 = qb. Moreover, if σ∗∗(2e)
is a prime power, then e ≤ 4.

Proof. Let p be an arbitrary prime, which can be 2. We set m = e/2,
l = e/2 + 1 if e is even and m = l = (e+ 1)/2 if e is odd. Now (2.2) gives that
σ∗∗(pe) = (pl + 1)(pm − 1)/(p− 1) if e is even or odd.
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If m ≥ 3, then, by Lemma 2.3, (pm − 1)/(p − 1) must have an odd prime
factor and pl+1 (if e is even or odd) must have another odd prime factor. Hence,
we have m ≤ 2 and therefore e ≤ 4. If e = 1, then σ∗∗(pe) = σ∗∗(p) = p + 1,
which must be the case a). If e = 2, then σ∗∗(pe) = p2 + 1, which must be the
case b). If e = 3, then σ∗∗(pe) = σ∗∗(p3) = (p + 1)(p2 + 1). If p is odd, then
p+ 1 = 2a−1 and p2 + 1 = 2qb for some odd prime q since p2 + 1 ≡ 2 (mod 4).
If e = 4, then σ∗∗(pe) = (p+ 1)(p3 + 1) = (p+ 1)2(p2 − p+ 1), which must be
the case d). �

3. The even case

Let N be an even biunitary superperfect number. Firstly, we assume that
σ∗∗(N) is odd. By Lemma 2.1, N = 2e must be a power of 2.

If e = 2s − 1 is odd and s > 1, then σ∗∗(N) = σ∗∗(22s−1) = 22s − 1 =
= (2s−1)(2s+1) and σ∗∗(σ∗∗(N)) = σ∗∗(2s−1)σ∗∗(2s+1) ≥ 2s(2s+2) > 22s,
which clearly contradicts that σ∗∗(σ∗∗(N)) = 2N = 22s+1.

If e = 2s is even, then σ∗∗(N) = σ∗∗(22s) = (2s − 1)(2s+1 + 1). For odd
s > 1, we have σ∗∗(σ∗∗(N)) = σ∗∗(2s − 1)σ∗∗(2s+1 + 1) > 2s(2s+1 + 2) >
> 22s+1. For even s, we have 3 | 2s − 1 | σ∗∗(N) and therefore σ∗∗(σ∗∗(N)) ≥
≥ (10/9)σ∗∗(N) = (10/9)(2s − 1)(2s+1 + 1) > 2s(2s+1 + 1) > 22s+1. Hence, if
e = 2s (with s even or odd) and s > 1, then σ∗∗(σ∗∗(N)) > 2N , a contradiction
again.

Now we have e ≤ 2 and we can easily confirm that 2 is biunitary superperfect
but 4 not. Hence, N = 2 is the only one in the case σ∗∗(N) is odd.

Nextly, we assume that σ∗∗(N) is even and 2e || N, 2f || σ∗∗(N). We can
easily see that

(3.1)
σ∗∗(2f )

2f
· σ

∗∗(2e)

2e
<

σ∗∗(σ∗∗(N))

σ∗∗(N)
· σ

∗∗(N)

N
= 2.

If e �= 2 and f �= 2, then Lemma 2.2 gives that (σ∗∗(2f )/2f )(σ∗∗(2e)/2e) ≥
≥ (3/2)2 > 2, which contradicts (3.1). If e = 2 and f ≥ 3, then σ∗∗(2f )/2f ≥
≥ 27/16 and (σ∗∗(2f )/2f )(σ∗∗(2e)/2e) ≥ (27/16)(5/4) > 2, a contradiction
again. Similarly, we cannot have e ≥ 3 and f = 2.

If (e, f) = (2, 1), then σ∗∗(2) = 3 | N and therefore, by Lemma 2.2,

(3.2)
σ∗∗(σ∗∗(N))

N
≥ 10

9
· σ

∗∗(2f )

2f
· σ

∗∗(2e)

2e
=

10

9
· 15
8

> 2,
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which contradicts the assumption that σ∗∗(σ∗∗(N)) = 2N . Similarly, it is
impossible that (e, f) = (1, 2).

The last remaining case is the case (e, f) = (2, 2). Now we see that
σ∗∗(22) = 5 must divide both N and σ∗∗(N). Let 5g || N and 5h || σ∗∗(N). If
g �= 2 and h �= 2, then σ∗∗(σ∗∗(N))/N ≥ (5/4)2(6/5)2 > 2, which is a contra-
diction again. If g �= 2 and h = 2, then 13 = (52+1)/2 must divide N . We must
have 132 || N since otherwise σ∗∗(σ∗∗(N))/N ≥ (5/4)2(6/5)(26/25)(14/13) >
> 2, a contradiction. Since σ∗∗(132) = 2 · 5 · 17, 17 must divide σ∗∗(N). Pro-
ceeding as above, 172 must divide σ∗∗(N) and 29 = σ∗∗(172)/10 must divide
N . Hence, three odd primes 5, 13 and 29 must divide N and 23 must divide
σ∗∗(N) in view of Lemma 2.1, which contradicts that f = 2.

Finally, if g = 2, then 13 = σ∗∗(52)/2 divides both N and σ∗∗(N). Let
k be the exponent of 13 dividing σ∗∗(N). If any odd prime p other than 5
divides σ∗∗(13k), then three odd primes 5, 13 and p must divide N and 23

must divide σ∗∗(N), contradicting that f = 2 again. Hence, we must have
σ∗∗(13k) = 2a5b, which is impossible by Lemma 2.4 noting that σ∗∗(13) = 2 · 7
and σ∗∗(132) = 2 · 5 · 17. Now we have confirmed that 2 is the only even
biunitary superperfect number.

4. The odd case

Let N be an odd biunitary superperfect number. Since 2 || 2N =
= σ∗∗(σ∗∗(N)), by Lemma 2.1, we have σ∗∗(N) = 2fqg and σ∗∗(2f )σ∗∗(qg) =
= 2N for some odd prime q. Factor N =

∏
i p

ei
i into distinct odd primes pi’s.

Firstly, we consider the case f = 2m−1 is odd. Hence, σ∗∗(2f ) = 22m−1 =
= (2m − 1)(2m + 1).

Assume that m > 1 and take an arbitrary prime factor p of 2m − 1. Then
p ≤ 2m − 1 must divide N and therefore

(4.1)
σ∗∗(σ∗∗(N))

N
>

p2 + 1

p2
· 2

2m − 1

22m−1
>

22m

22m − 1
· 2

2m − 1

22m−1
= 2,

which is impossible. Hence, we must have m = f = 1 and σ∗∗(2f ) = 3 divides
N . But, since ω(N) ≤ m by Lemma 2.1, we must have N = 3e. By Lemma
2.4, we have e ≤ 4. Checking each e, we see that only N = 32 is appropriate.

Nextly, we consider the case f = 2m is even and σ∗∗(2f ) = (2m−1)(2m+1+
+1).

If 2m+1 + 1 is composite, then some prime p1 ≤
√
2m+1 + 1 must divide

2m+1+1. We observe that 2m+1+1 = p21, or equivalently 2m+1 = (p1−1)(p1+1)
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occurs only when (m, p1) = (2, 3). Moreover, it is impossible that p21+1 = 2m+1

since the left cannot be divisible by 4. Hence, we must have p21 ≤ 2m+1 − 3 or
(m, p1) = (2, 3). By the same argument as above, if p21 ≤ 2m+1 − 3, then we
should have

σ∗∗(σ∗∗(N))

N
>
p21 + 1

p21
· (2

m − 1)(2m+1 + 1)

22m
≥

≥2m+1 − 2

2m+1 − 3
· (2

m − 1)(2m+1 + 1)

22m
=

23m+1 − 3 · 22m + 1

23m − 3 · 22m−1
>

>2,

(4.2)

which is impossible. If m = 2 and p1 = 3, then, since σ∗∗(24) = 33, we must
have e1 = 3 or e1 = 4 and therefore, by Lemma 2.2,

(4.3)
σ∗∗(σ∗∗(N))

N
>

σ∗∗(24)

24
· σ

∗∗(3e1)

3e1
≥ 27

16
· 112
81

=
7

3
> 2,

which is impossible again.

Hence, p1 = 2m+1+1 must be a prime dividing N . By Lemma 2.4, we must
have e1 ≤ 4.

If e1 = 1, 3 or 4, then p1 + 1 = 2m+1 + 2 divides σ∗∗(N) and therefore
p1+1 = 2(2m+1) = 2ql. By Lemma 2.4, m = 3, 23+1 = 32 or 2m+1 must be
a prime. In the latter case, we must have m = 1 since 2m+1 and p1 = 2m+1+1
are both prime. Hence, we must have m = 1, p1 = 5 or m = 3, p1 = 17 and, in
both cases, q = 3.

In the former case (m, p1, q) = (1, 5, 3), we have σ∗∗(N) = 223g and there-
fore σ∗∗(5e1) = 2a3b. Hence, we must have e1 = 1 and N must have the other
prime factor p2 such that N = 5pe22 , σ∗∗(pe22 ) = 2 · 3g−1 and σ∗∗(3g) = 2pe22 .
We see that e2 = 1, p2 = 2 · 3g−1 − 1 and σ∗∗(3g) = 2p2. Since p2 �= 5, we must
have g �= 2 and therefore σ∗∗(3g) ≥ 4 · 3g−1 > 2p2, a contradiction. Hence,
we cannot have (m, p1, q) = (1, 5, 3). In the latter case (m, p1, q) = (3, 17, 3),
we have σ∗∗(N) = 263g and therefore σ∗∗(σ∗∗(N))/N > (119/64)(10/9) > 2 =
= σ∗∗(σ∗∗(N))/N , which is a contradiction again.

Now the remaining is the case p1 = 2m+1 + 1 is prime and e1 = 2, so that
p21 + 1 = 2ql. Since p1 must be a Fermat prime, we have p21 + 1 ≡ 0 (mod 5)
unless m = 1, p1 = 5. Hence, we must have p1 = 5 or p1 > 5, p21 + 1 = 2 · 5l.
If p21 + 1 = 2 · 5l, then Størmer’s result [11, p. 26] gives that p1 = 3 or 7,
neither of which can occur since p1 = 2m+1+1 must be a Fermat prime greater
than 5. Hence, the only possibility is that m = 1, p1 = 5 and q = 13. We
see that σ∗∗(N) = 2213g and N must have the other prime factor p2 such that
N = 52pe22 , σ∗∗(pe22 ) = 2 ·13g−1 and σ∗∗(13g) = 10pe22 . By Lemma 2.4, we must
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have e2 ≤ 4. However, if e2 > 2, then σ∗∗(pe22 ) must be divisible by 22, which
is impossible. If e2 = 2, then from Størmer’s result [11, p. 26] we obtain that
p2 = 239, σ∗∗(2392) = 2·134 and g = 5, noting that p2 �= 5. Thus 7 = (13+1)/2
must divide σ∗∗(σ∗∗(N))/2 = N = 52pe22 = 52 · 2392, which is absurd. Finally,
if e2 = 1, then p2 = 2 · 13g−1 − 1 and σ∗∗(13g) = 10p2 > 15 · 13g−1 > σ∗∗(13g),
which is a contradiction. Now our proof is complete.
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