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Abstract. We shall show that 2 and 9 are the only biunitary superper-
fect numbers and give biunitary multiply superperfect numbers below 232,
posing some related problems.

1. Introduction

As usual, we let o(N) and w(N) denote respectively the sum of divisors
and the number of distinct prime factors of a positive integer N. N is called
to be perfect if o(N) = 2N. It is a well-known unsolved problem whether or
not an odd perfect number exists. Interest to this problem has produced many
analogous notions and problems concerning divisors of an integer. For example,
Suryanarayana [14] called N superperfect if o(c(N)) = 2N and showed that
the even superperfect numbers are exactly the numbers 2P~ with 2P — 1 prime.
It is asked in this paper and still unsolved whether there were odd superperfect
numbers. Extending the notion of superperfect numbers further, G. L. Cohen
and te Riele [4] indroduced the notion of (m,k)-perfect numbers, a positive
integer N for which ¢™(N) = kN, where ¢™ denotes the m-th iteration of o.

Some special classes of divisors have also been studied in several papers.
One of them is the class of unitary divisors defined by Eckford Cohen [2]. A
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divisor d of N is called a unitary divisorif ged(d, N/d) = 1. Wall [15] introduced
the notion of biunitary divisors. A divisor d of a positive integer n is called a
biunitary divisor if ged, (d,n/d) = 1, where ged, (a,b) is the greatest common
unitary divisor of a and b.

According to E. Cohen [2] and Wall [15] respecitvely, we let o*(N) and
o**(N) denote the sum of unitary and biunitary divisors of N. Moreover, we
write d || N if d is a unitary divisor of N. Hence, for a prime p, we have p® || N
if p divides N exactly e times. Replacing o by ¢*, Subbarao and Warren [13]
introduced the notion of a unitary perfect number. N is called to be unitary
perfect if 0*(N) = 2N. They proved that there are no odd unitary perfect
numbers and 6,60, 90, 87360 are the first four unitary perfect numbers. Later
the fifth unitary perfect number was found by Wall [16], but no further instance
has been found. Subbarao [12] conjectured that there are only finitely many
unitary perfect numbers.

Similarly, a positive integers N is called biunitary perfect if o**(N) = 2N.
Wall [15] showed that 6,60 and 90, the first three unitary perfect numbers, are
the only biunitary perfect numbers.

Combining the notion of superperfect numbers and the notion of unitary
divisors, Sitaramaiah and Subbarao [8] studied wunitary superperfect numbers,
integers N satisfying c*(¢*(N)) = 2N. They found all unitary super perfect
numbers below 10% (Further instances are given in A038843 in OEIS [9]). The
first ones are 2,9, 165, 238. Thus there are both even and odd ones. The author
[17] showed that 9,165 are all of the odd ones.

Now we can call an integer N satisfying o**(c**(N)) = 2N to be biunitary
superperfect. We can see that 2 and 9 are biunitary superperfect as well as
unitary superperfect, while 2 is also superperfect (in the ordinary sense).

In this paper, we shall determine all biunitary superperfect numbers.

Theorem 1.1. 2 and 9 are the only biunitary superperfect numbers.

Theorem 1.1 can be thought to be the analogous result for unitary super-
perfect numbers by the author [17]. Our proof is completely elementary but
has some different character from the proof of the unitary analogue. Our ar-
gument leads to a contradiction that ¢**(¢**(N))/N > 2 in many cases, while
Yamada [17] leads to a contradiction that ¢*(c*(N))/N < 2. Moreover, in
the biunitary case, we can determine all (odd or even) biunitary superperfect
numbers.

Our method does not seem to work to find all odd superperfect numbers.
It prevents us from bounding w(N) and w(o(N)) that o(p®) with p odd takes
an odd value if e is even. All that we know is the author’s result [18] that
there are only finitely many odd superperfect numbers N with w(N) < k or
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w(o(N)) < k for each given k. We note that Sdndor and Kovdcs [7] showed
that N = 2 is the only even integer for which o(c**(N)) = 2N.

Finally, analogous to G. L. Cohen and te Riele [4], we can define a positive
integer N to (m, k)-biunitary perfect if its m-th iteration of o** equals to kN.
We searched for numbers which are (2, k)-biunitary perfect for some k (or
biunitary multiply superperfect numbers) and exhaustive search revealed that
there exist exactly 185 integers N below 232 dividing o**(¢**(N)) including 1,
which are given in Table 1.

Based on our theorem and our search result, we can pose the following
problems:

e For each integer k > 3, are there infinitely or only finitely many integers
N for which o**(c**(N)) = kN? In particular, are the 24 given integers
N all for which o**(¢**(N)) = kN with k& <57

e For each integer kK = 19 or k > 21, does there exist at least one or no
integer N for which o**(c**(N)) = kN?

e Are N =9,15,21,1023,8925, 15345 all odd integers diving o**(c**(N))?

2. Preliminary Lemmas

In this section, we shall give several preliminary lemmas concerning the sum
of biunitary divisors used to prove our main theorems.

Before all, we introduce two basic facts from [15]. The sum of biunitary
divisors function o** is multiplicative. Moreover, if p is prime and e is a positive
integer, then

_ e+1_q . .
pepe 4 1= =1 if e is odd;

2.1 k% e — . e pf}

(2.1) o™ (p°) {,);11_1;06/2_@“1;(101/“41)7 if e is even.

We note that, using the floor function, this can be represented by the single
formula:

(pteﬂ + 1) (pLTJ - 1)

(22) 0" () = p—

From these facts, we can deduce the following lemmas almost immediately.
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k| #Ns | N

1 1 1

2 2 |29

3 4 | 8,10,21,512

4 8 15,18, 324,1023, 1404, 3276, 8925, 15345

5 9 | 24,30,144, 288, 1428, 1536, 2046, 14976, 23040

6 13 42,60, 160, 270, 630, 2880, 4092, 4608, 11550, 35700, 410000,
50918400, 673254400

7 13 240, 1200, 2400, 16368, 82944, 139968, 326592, 359424, 748800, 838656,
2895984,10723328,171196416

8 18 648, 2808, 3570, 6552, 17850, 30690, 41472, 225680, 390320, 449820,
1128400, 1474470, 1801800, 2829060, 3022500, 522746224, 887978000,
1062892908

9 | 26 | 168,960, 10368, 10752, 44928, 46200, 52920, 65472, 69120, 104832,
161280, 360000, 571200, 982080, 2176000, 2257920, 2956800, 4055040,
9369360, 13434624, 18054400, 28828800, 148403200, 153990144,
187765760, 769600000

10 19 480, 2856, 13824, 32736, 33264, 74256, 149760, 182784, 1782144,
5658120, 10213632, 46126080, 96509952, 148599360, 362119680,
526156800, 545965056, 627720192, 2125785816

11 9 321408, 1392768, 2142720, 3628800, 14622720, 15724800, 73113600,
125706240, 3509345280

12 27 4320, 10080, 14280, 36960, 71400, 184800, 342720, 720720, 913920,
4569600, 7856640, 8910720, 11531520, 13219200, 14443520, 22932000,
28959840, 44553600, 48360000, 56619648, 57657600, 84084000,
164633040, 245351808, 297198720, 779688000, 1279184640

13 10 57120, 17821440, 32006016, 33480000, 129948000, 202368000,
209986560, 942120960, 1505520000, 1948320000

14 13 103680, 217728, 449280, 108732000, 115153920, 297872640, 298721280,
724239360, 773760000, 1165933440, 1508855040, 3053635200,
3567037824

15 4 1827840, 181059840, 754427520, 1616855040

16 5 23591520, 166333440, 243540000, 594397440, 3102010560

17 1 898128000

18 2 374250240, 4070926080

20 1 11975040

Table 1. All positive integers N < 232 such that o**(c**(N)) = kN for some
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Lemma 2.1. ¢**(n) is odd if and only if n is a power of 2 (including 1). More
exactly, o**(n) is divisible by 2 at least w(n) times if n is odd and at least
w(n) — 1 times if n is even.

Proof. Whether e is even or odd, o**(p°) is odd if and only if p = 2 by (2.1).
Factoring n = 2°¢ H::1 pS* into distinct odd primes p1, pa, ..., p, with e > 0 and

3

e1,€2,...,e, >0, each o**(pf") is even. Hence, o**(n) = o**(2°) [[;_, o** (p}")
is divisible by 2 at least r times, where 7 = w(n) if n is odd and w(n) — 1 if n
is even. |

Lemma 2.2. For any prime p and any positive integer e, o**(p®)/p® > 1 +
+1/p?. Moreover, o**(p®)/p® > 1+ 1/p unless e = 2 and o**(p°)/p® > (1 +
+1/p)(1 + 1/p?) if e > 3. More generally, for any positive integers m and
e > 2m — 1, we have o**(p®)/p® > o**(p*™)/p*™ and, unless e = 2m,
o (p)/p° =1+ 1/p+ -+ 1/p™.

Proof. If ¢ > 2m — 1 and e is odd, then p¢,p®~!,...,p, 1 are biunitary divisors
of p°. If e > 2m and e is even, then p® p°®~!,...,p® ™ are biunitary divisors
of p® since e —m > e/2. Hence, if ¢ > 2m — 1 and e # 2m, then o**(p°) =
=pt+ptt+ o+l >pi e+ po™ =p¢(14+1/p+ -+ 1/p™). Since
o (PP /™ < 1+ 1/p+ -+ 1/p™, o**(p°)/p¢ with e > 2m — 1 takes its
minimum value at e = 2m. |

Now we shall quote the following lemma of Bang [1], which has been re-
discovered (and extended into numbers of the form a™ — b™) by many authors
such as Zsigmondy[19], Dickson[5] and Kanold[6]. See also Theorem 6.4A.1 in
Shapiro [10].

Lemma 2.3. Ifa > b > 1 are coprime integers, then ' —1 has a prime factor
which does not divide a™ — 1 for any m < n, unless (a,n) = (2,1),(2,6) or
n =2 and a + b is a power of 2. Furthermore, such a prime factor must be
congruent to 1 modulo n.

As a corollary, we obtain the following lemma:

Lemma 2.4. Let p, q be odd primes and e be a positive integer. If o**(p©) =
= 2" for some integers a and b, then a) e = 1, b) e = 2 and p*> + 1 = 2¢°,
c)e=3,p=2""1—1is a Mersenne prime and p> + 1 = 2¢” or d) e = 4,
p =20"1/2_1 is a Mersenne prime and p*> —p~+1 = q°. Moreover, if o**(2°)
s a prime power, then e < 4.

Proof. Let p be an arbitrary prime, which can be 2. We set m = e/2,
l=e/24+1ifeiseven and m =1= (e+1)/2 if e is odd. Now (2.2) gives that
a**(p?) = (p' + 1)(p™ — 1)/(p — 1) if e is even or odd.
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If m > 3, then, by Lemma 2.3, (p™ — 1)/(p — 1) must have an odd prime
factor and p'+1 (if e is even or odd) must have another odd prime factor. Hence,
we have m < 2 and therefore e < 4. If e = 1, then o**(p®) = o™ (p) = p + 1,
which must be the case a). If e = 2, then o**(p®) = p? + 1, which must be the
case b). If e = 3, then o**(p®) = o™ (p*) = (p+ 1)(p*> + 1). If p is odd, then
p+1=2%"1and p? + 1 = 2¢" for some odd prime ¢ since p*> + 1 =2 (mod 4).
If e = 4, then o**(p°) = (p+ 1)(p* + 1) = (p+ 1)%(p* — p+ 1), which must be
the case d). [ |

3. The even case

Let N be an even biunitary superperfect number. Firstly, we assume that
o**(N) is odd. By Lemma 2.1, N = 2¢ must be a power of 2.

If e = 25 — 1 is odd and s > 1, then o**(N) = o**(22571) = 22° — 1 =
= (2°—1)(2°+1) and o** (0**(N)) = 0**(2° —1)o** (25 +1) > 25(2° +2) > 225,
which clearly contradicts that o**(o**(N)) = 2N = 225+1,

If e = 2s is even, then o**(N) = o**(2%%) = (2° — 1)(2°*! + 1). For odd
s > 1, we have o**(0**(N)) = o**(2° — 1)o™ (25! + 1) > 25(25%! +2) >
> 2251 For even s, we have 3 | 2° — 1 | 0**(N) and therefore o**(c**(N)) >
> (10/9)0**(N) = (10/9)(2% — 1)(25T + 1) > 25(25FL + 1) > 225FL. Hence, if
e = 2s (with s even or odd) and s > 1, then 0**(c**(N)) > 2N, a contradiction
again.

Now we have e < 2 and we can easily confirm that 2 is biunitary superperfect
but 4 not. Hence, N = 2 is the only one in the case c**(N) is odd.

Nextly, we assume that o**(N) is even and 2¢ || N, 2/ || **(N). We can
easily see that

3.1) 0 T ST eey) N O

If e # 2 and f # 2, then Lemma 2.2 gives that (o**(2/)/27)(c**(2°)/2°) >
> (3/2)? > 2, which contradicts (3.1). If e = 2 and f > 3, then o**(27)/2f >
> 27/16 and (o**(21)/27)(c**(2°)/2°) > (27/16)(5/4) > 2, a contradiction
again. Similarly, we cannot have e > 3 and f = 2.

If (e, f) = (2,1), then 0**(2) = 3 | N and therefore, by Lemma 2.2,

N

% (o f *k (e
J10 0(2) o) 10 15,
9 2f 2¢ 9 8

(3.2)
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which contradicts the assumption that o**(¢**(N)) = 2N. Similarly, it is
impossible that (e, f) = (1,2).

The last remaining case is the case (e, f) = (2,2). Now we see that
0**(2%) = 5 must divide both N and ¢**(N). Let 59 || N and 5" || o**(N). If
g # 2 and h # 2, then o**(¢**(N))/N > (5/4)%(6/5)* > 2, which is a contra-
diction again. If g # 2 and h = 2, then 13 = (52+41)/2 must divide N. We must
have 132 || N since otherwise o**(c**(N))/N > (5/4)%(6/5)(26/25)(14/13) >
> 2, a contradiction. Since o**(13%) = 2-5-17, 17 must divide **(N). Pro-
ceeding as above, 172 must divide ¢**(N) and 29 = ¢**(172)/10 must divide
N. Hence, three odd primes 5,13 and 29 must divide N and 2® must divide
o™*(N) in view of Lemma 2.1, which contradicts that f = 2.

Finally, if ¢ = 2, then 13 = ¢**(52)/2 divides both N and o**(N). Let
k be the exponent of 13 dividing o**(N). If any odd prime p other than 5
divides ¢**(13%), then three odd primes 5,13 and p must divide N and 23
must divide o**(N), contradicting that f = 2 again. Hence, we must have
o**(13%) = 295" which is impossible by Lemma 2.4 noting that ¢**(13) = 2-7
and 0**(13%2) = 2-5-17. Now we have confirmed that 2 is the only even
biunitary superperfect number.

4. The odd case

Let N be an odd biunitary superperfect number. Since 2 || 2N =
= 0**(0**(N)), by Lemma 2.1, we have ¢**(N) = 2/¢9 and o**(27)0**(¢9) =
= 2N for some odd prime ¢. Factor N = [[, p;* into distinct odd primes p;’s.

Firstly, we consider the case f = 2m—1is odd. Hence, 0**(2) = 2?m —1 =
=2m-1)(2m+1).

Assume that m > 1 and take an arbitrary prime factor p of 2™ — 1. Then
p < 2" — 1 must divide N and therefore

O'**(U**(N)) p2 + 1 22m _ 1 22m 22m _ 1
N p2 22m—1 > 22m _ 1 92m-1 =2,

(4.1)

which is impossible. Hence, we must have m = f = 1 and ¢**(2/) = 3 divides
N. But, since w(N) < m by Lemma 2.1, we must have N = 3°. By Lemma
2.4, we have e < 4. Checking each e, we see that only N = 32 is appropriate.
Nextly, we consider the case f = 2m is even and o**(2/) = (2 —1)(2™*! +
+1).
If 2m+! + 1 is composite, then some prime p; < +/27+1 4+ 1 must divide
2m+1 41, We observe that 27141 = p?, or equivalently 27! = (p; —1)(p1+1)
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occurs only when (m, p1) = (2,3). Moreover, it is impossible that p?+1 = 2m*1
since the left cannot be divisible by 4. Hence, we must have p? < 2™ — 3 or
(m,p1) = (2,3). By the same argument as above, if p? < 2™+! — 3/ then we
should have

(4.2)
o™ (c™*(N)) >p? +1 @r-pEm4l)
N p% 22m —
2m+1 —_9 (Qm _ 1)(2m+1 + 1) 23m+1 - 3. 22m +1
—2m+1 -3 ’ 22177, = 23m - 3. 22m—1
>2,

which is impossible. If m = 2 and p; = 3, then, since ¢**(2%) = 33, we must
have e; = 3 or e; = 4 and therefore, by Lemma 2.2,

(@™ (N) o™ (24 o™ (3%) _ 27 112 7
4. . > . = _>9
(4.3) N T 35 —16 81 3 °

which is impossible again.

Hence, p; = 2™+ 41 must be a prime dividing N. By Lemma 2.4, we must
have e; < 4.

If e, = 1,3 or 4, then p; +1 = 2™+ + 2 divides 0**(N) and therefore
p1+1=2(2"+1) =2¢". By Lemma 2.4, m = 3,2% +1 = 3% or 2™ 4 1 must be
a prime. In the latter case, we must have m = 1 since 241 and p; = 2™+ +1
are both prime. Hence, we must have m = 1,p; =5 or m = 3,p; = 17 and, in
both cases, ¢ = 3.

In the former case (m,p1,q) = (1,5,3), we have o**(N) = 2239 and there-
fore o**(5°1) = 293", Hence, we must have e; = 1 and N must have the other
prime factor pp such that N = 5p5?, o**(p5?) = 2 - 397! and o**(39) = 2p52.
We see that eo = 1,py = 2-3971 — 1 and 0**(39) = 2ps. Since py # 5, we must
have g # 2 and therefore 0**(39) > 4 - 3971 > 2p,, a contradiction. Hence,
we cannot have (m,p1,q) = (1,5,3). In the latter case (m,p1,q) = (3,17,3),
we have o**(N) = 2639 and therefore o**(c**(N))/N > (119/64)(10/9) > 2 =
= o**(¢**(N))/N, which is a contradiction again.

Now the remaining is the case p; = 2! 4+ 1 is prime and e; = 2, so that
p? +1 = 2¢'. Since p; must be a Fermat prime, we have p? +1 = 0 (mod 5)
unless m = 1,p; = 5. Hence, we must have p; = 5 or p; > 5,p? +1 =2 5.
If p? +1 = 2-5', then Stgrmer’s result [11, p. 26] gives that p; = 3 or 7,
neither of which can occur since p; = 2™ 4+ 1 must be a Fermat prime greater
than 5. Hence, the only possibility is that m = 1,p; = 5 and ¢ = 13. We
see that o**(N) = 22139 and N must have the other prime factor p, such that
N =5%p%2, o**(p5?) = 2-1397! and ¢**(139) = 10p5?. By Lemma 2.4, we must
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have ey < 4. However, if es > 2, then o**(p5?) must be divisible by 22, which
is impossible. If es = 2, then from Stgrmer’s result [11, p. 26] we obtain that
pa = 239,0%*(239?) = 2-13% and g = 5, noting that ps # 5. Thus 7 = (13+1)/2
must divide o**(c**(N))/2 = N = 5%p5? = 52 - 239%, which is absurd. Finally,
if eg = 1, then pp = 2-13971 — 1 and 0**(139) = 10py > 1513971 > 0**(139),
which is a contradiction. Now our proof is complete.
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