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Abstract. The mixed norm Hardy spaces Hﬁ(Rd) is investigated, where
7= (p1,...,pa) € (0,00]%. A general summability method, the so called
f-summability is considered for multi-dimensional Fourier transforms. Un-
der some conditions on 6, it is proved that the maximal operator of the
#-means is bounded from Hz(R?) to Ly(R?). This implies some norm and
almost everywhere convergence results for the f-means, amongst others the
generalization of the well known Lebesgue’s theorem.

1. Introduction

It is due to Lebesgue [16] that the Fejér means [6] of the trigonometric
Fourier transforms of a function f € L,(R) (1 < p < c0) converge almost ev-
erywhere to the function. In this paper we generalize this result to mixed norm
Lebesgue spaces and other summability methods as well. A general method of
summation, the so called #-summation method, which is generated by a single
function # and which includes all well known summations, is studied inten-
sively in the literature (see e.g. Butzer and Nessel [2], Trigub and Belinsky
[24], Gat [7, 8, 9], Goginava [10, 11, 12], Persson, Tephnadze and Wall [18], Si-
mon [19, 20] and Feichtinger and Weisz [4, 5, 27, 28, 29]). The means generated
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by the #-summation are defined for multi-dimensional functions by

i) = [0 (5) Ferr=au,

Rd

where | - | denotes the Euclidean norm and fthe Fourier transform of f. The
choice 0(u) = max(1 — |ul,0) yields the Fejér summation.

Stein, Taibleson and Weiss [22] proved for the Bochner-Riesz summability
that the maximal operator o¥ of the f-means is bounded from the Hardy space
Hy(R?) to L,(RY) if p > po (see also Grafakos [13] and Lu [17]). Later we
generalized this result to other summability methods in [4, 5, 27, 29].

In this paper, we generalize these results to mixed norm Lebesgue and
Hardy spaces, Lz(R?) and Hz(R?), where p= (p1,...,pa) € (0,00]%. We give
the atomic decomposition of this Hardy space. If 7'is the vector (p,...,p), then
we get back the classical Lebesgue and Hardy spaces. Under some conditions
on A, we will prove that the maximal operator ¢? is bounded from Hﬁ(Rd) to
L;(R?%) when each p; > pg. As a consequence, we prove some norm and almost
everywhere convergence results for the #-means. In this way, the well known
Lebesgue’s theorem is generalized. As special cases of the f-summation, we
consider the Riesz, Bochner-Riesz, Weierstrass, Picard and Bessel summations.

2. Mixed norm Lebesgue spaces

The L,(R?) space is equipped with the quasi-norm

1/p

1£llp = /uwwwx (0 < p < o),

with the usual modification for p = co. Here we integrate with respect to the
Lebesgue measure A\. The Lebesgue measure of a set H will be denoted also
by |H|. Benedek and Panzone [1] generalized this definition as follows. Let
7= (p1,-..,pa) € (0,00]%. The mized-norm Lebesque space Lz(R?) is defined
to be the set of all measurable functions f such that

HfHLG,J(Rd) =

p2/p1 p3/p2 1/pa

= / / /|f(ac1,...,xd)|p1 dxy dxo ... dxg < 00,
R

R R
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with the usual modifications if p; = oo for some i = 1,...,d. If = (p,...,p),
then we get back the space L,(R?). Let

p— = min{p1, -+ ,pa} and  p=min{p_,1}.

It is known that

(2.1) P L ey = F1E

sp(R4)”

Given a locally integrable function f, the Hardy-Littlewood mazimal oper-
ator M is defined by

Mf(2) = sup — / FWldy (e RY,
xEB|B‘

where the supremum is taken over all balls B of R? containing x. It is known
that M is bounded on L,(RY) if 1 < p < oo. This is extended to the mixed
norm spaces in Huang at al. [14].

Lemma 1. Ifp_ > 1 and f € Lz(R?), then
(2.2) IMfll ey < Clfllyma)-

The vector-valued extension of inequality (2.2) holds also. In the classical
case see Fefferman—Stein [3], for the mixed norm spaces see Huang at al. [14].

Lemma 2. If p_ > 1 and 1 <r < oo, then

o 1/T o 1/7‘
’ (Z(ij)r> c (Z |fj|r>

j=1
We will write A < B if there exists a constant C' such that A < CB.

Lp(RY) Lp(RY)

3. Mixed norm Hardy spaces

Now we introduce the mized norm Hardy spaces and give the atomic de-
compositions. Denote by S(R?) the space of all Schwartz functions and by
S'(R?) the space of all tempered distributions. For N € N, let

Fn(RY) := {wGS(Rd) sup sup (1 + |2])¥[0%p(2)| < 1}7

llali <N zeRd
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where ||alj; = |a1| + -+ + |ag|. For t € (0,00) and £ € R?, let

Pe(€) ==t~ p(E/1).

For any d(1/p— —1)+1 < N < oo, the non-tangential grand maximal function
of f € S'(R) is defined by

fo(z) = sup sup [ 1hi(y)]-

YEFN(RT) 0<t<oo,|ly—z|<t

Let d(1/p— — 1) +1 < N < oo be a positive integer. The mixed norm Hardy
spaces H(R?) are consisting of all tempered distributions f € S’(R?) such that

”f”Hﬁ(]Rd) = HfDHLﬁ(Rd) < .

It is known that different integers N give the same space with equivalent norms.
Moreover, all f € Hz(R?) are bounded distributions, i.e. f* ¢ € Loo(R?) for
all ¢ € S(R?). Similarly to the classical case, one can show (see Huang at al.
[14]) that

Hp(R?) ~ Ly(R?)

whenever p_ > 1. If each p; = p, then we get back the classical Hardy
spaces H,(R?) investigated in Fefferman, Stein and Weiss [3, 23, 21], Lu [17],
Uchiyama [25].

The atomic decomposition is a useful characterization of the Hardy spaces
by the help of which some boundedness results, duality theorems, inequalities
and interpolation results can be proved. A measurable function a is called a
p-atom if there exists a ball B such that

(a) supp a C B,
1

b) lla @y S T
(b) llallL.. @a) X8Il Ly®a)

(¢) Jgaa(z)z*dz =0 for all multi-indices o with |o| <'s,

where d(1/p_ — 1) < s < oo is an integer. In the classical case, i.e., if each
p; = p, the atomic decomposition theorem can be formulated as follows (see
e.g. Latter [15], Lu [17]). Assume that 0 < p < 1. A tempered distribution f is
in H,(R?) if and only if there exist a sequence {a; };en of p-atoms with support
{Bi}ien and a sequence {\;}ien of positive numbers such that f = >,y Aia;
in S’(R%). Moreover,

1/p
I f1 a2, ety ~ inf (Z Af) .

€N
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It is easy to see that the right hand sides of the previous and next equations
are the same. Thus

p\ 1/p
I f1 a2, ety ~ inf Z oAb
ieN HXB,; L, (Rd)

And this form can be generalized to all 0 < p < oo as follows. The next theorem
is due to Huang at al. [14].

Lp(R?)

Theorem 1. A tempered distribution f € S'(R?) is in Hz(R?) if and only if
there exist a sequence {a;};en of P-atoms with support {B;}ien and a sequence
{Ai}ien of positive numbers such that

f=> Xai in SR

i€EN

py\ 1/p
: AiX B, T\
_(rdy ~ inf —_— ,
||fHHp(R ) (Z ('XBi”Lﬁ(Rd)) )

€N L,;(]Rd)

Moreover,

where the infimum is taken over all decompositions of f as above.
4. 6O-summability of Fourier transforms

The Fourier transform of a function f € L*(R?) is defined by

f@%:/f@f%”Wt (z € RY),

where 1 =+/—1 and z-t := ZZ:1 wity. Suppose first that f € L,(R?) for some
1 < p < 2. The Fourier inversion formula

fmz/ﬂm%”ﬁ (z € RY)
Rd

holds if fe L'(R4). This motivates the following definition of -summability,
which is a general summation generated by a single function 6 : [0,00) — R.
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This summation was considered in a great number of papers and books, see e.g.
Butzer and Nessel [2], Grafakos [13], Trigub and Belinsky [24] and Feichtinger
and Weisz [5, 27, 28, 29] and the references therein. Let 0y(x) := 6(]z|) and
suppose that

(4.1) 0 eCol0,00), 6(0)=1, b€ Li(RY, e L'(RY),

where Cy[0, 00) denotes the spaces of continuous functions vanishing at infinity
and |- | denotes the Euclidean norm. For T' > 0, the T'th 6-mean of the function
f € Ly(RY) (1< p<2)is given by

ol f(x) := /9 <;|> j?(u)ezm'“ du (z e RLT > 0).

Rd

This integral is well defined because 6 € LP(RY) and f € L, (R%), where
/p+1/p' =1
For an integrable function f, it is known that we can rewrite 0% f as

o0 f(x) = / fla— DKWyt = f+ KS(z) (¢ € RLT > 0),

where the T'th #-kernel is given by
t ~
Ki(z) = /0 <|T|) Mt dt = Ty (Tx)  (x € R T > 0).
Rd

We can extend the f-means to all f € Ly(R?) withp_ > 1and toall f € Hz(R?)
with p_ > 0 by
obf=fxK% (T >0).

The maximal #-operator is introduced by
ol f = sup ‘U%f‘ .
T>0

For a ball B with center ¢ and radius p, let 7B denotes the ball with the
same center and with radius 7p (7 > 0). The following theorem can be proved
as in [26].

Theorem 2. Suppose that (4.1) is satisfied, 0o is (N + 1)-times differentiable
for some N € N and there exists d+ N < 8 < d+ N + 1 such that

(4.2) O .. 90y (x)| < Cla|™?  (x#0)
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whenever iy +...+ig=N orii+...+ig=N+1. Then
(4.3) |o?a(@)] < C lIxsllp g M x5 ()"

for all p-atoms a and all x ¢ 2B, where the ball B is the support of the atom.
If B = d+ N + 1, then it is enough to suppose that (4.2) holds whenever
h+...+ig=N+1.

5. Boundedness in Hz(R%)

In the proof of the boundedness of ¢, we will use the next lemma.

Lemma 3. Let (4.1) be satisfied. If limg_co fr. = f in the Hz(RY)-norm, then
limy, o 00 fr = 0¥ f in S'(R?) for all t > 0.

Proof. The proof is similar to that of Theorem 7 in [26], so we outline the
differences, only. We have to show that o f is a tempered distribution for each
f € HzR?) and t > 0. To this end, the man point is to show that f R,
is uniformly bounded in k if limy o0 hy = h in S(R?), where h(z) := h(—z).
We may suppose that h € Fn(R?), and hence that hj € Fy(R?) for large k’s.
Then for such a k,

‘(f * ﬁk)(x)‘ < fa(y) for every y with |z —y| < 1.

Thus, with the same x and v,

‘f * 7%(93)‘ <
1/2 1/2 1/2 p2/p1 p3/p2 1/pa
: / / / [fo (- ya) [ dyn dys .. dya <
—1/2 —1/2 \~1/2
< fllapmay,

which shows the uniform boundedness of f x hy. The proof can be finished as
Theorem 7 in [26]. |

Theorem 3. If (4.1) and (4.2) are satisfied and p— > d/§, then

o2l ey S W lmgqaey  (F € Hp(RD).
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Proof. By the atomic decomposition theorem, f € Hz(R?) can be written as
f = Z Aiai;
i€N
where \; is positive and a; is a p-atom with support B;. It is known (see
e.g. Weisz [28]) that the series converge in the H;(R?)-norm as well as in the

Li(RY)-norm if f € Hz(R?) N Hy(R?). It is easy to see that of is bounded on
the L;(R?) space, hence

ol(f) =Y Nol(a)  (t>0)

ieN
and so
ol(f) < Niol(as).
ieN
Then
lo? £l S ||D Xiol(ai)xas, +11D - Mol (@) xes.)e =
ieN L(RY) ieN Ly(R4)
=: A1 + AQ.

Using (2.1) and the fact that p <1, we can see

1/£
A <

> Xol(ai)Pxan,
€N

Ly/p(RY)

Let (p)’ = (p},...,p};) denote the conjugate index vector, where p% + ﬁ =1
for every i = 1,...,d. By Theorem 1 of Benedek and Panzone [1], there exists
9 € Lig/py (RY) with [lgr ey < 1 such that

= / > Nrol(ai)Pxan.g-

. d .
La/p(RY) 2y ieN

> Xiol(ai)Exes,

Sh

Choosing a real number r such that p;/p < r < oo for all i = 1,...,d and
applying Hoélder’s inequality, we deduce

AT < Z Xrol(a;)exap,9 <
fa i€N

< Z Ag”"f(ai)g)(z&
i€N

N Z Allo? (a2 . ey A2B)Y" Ix28. 91l 1., (ma)-
ieN

L@ llxes g, ®ey S
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Observe that of is bounded from L., (R%) to L., (R?). By the definition of the
p-atom,

1/r
1 /
AN2B) [~ / s <
) K3 i —
i€N /\(231)23&
’ 1/T/
(M) an
Ra €N
Again by Holder’s inequality,
F A\
% yX2Bi ’ (M(gr )) :
ieN Li/p(RY) Lg/pyr (RY)

Since p;/p < r < oo imply (p;/p)’ > 1" (i =1,...,d), we get by (2.1) and (2.2)
that

1/p , 111/pr’
Al S 4y X2B; ‘M(gr)‘ - S
ieN R ) Ly/p(RY) L/ /o (R
1/p
- 1/p
< ol o 5
i€EN Lp/p(R
b 1/p
AiX2B; =
< (Z e — S 1 ey
ieN il Lp(RY) Ly(R)
On the other hand, using (4.3) and Lemma 2, we establish that
As S i lxs: ey [Mxs. 17 X 28, <
ieN Ly(RY)
B/ax 4/8)B/d
< (Z (N2 s, 157 1M, ) <
i€N Lggya(RY)
d/BB/d
ieN Lgp/a(R?)
ZXB
< S Il ay,
1€N L(R?)

which proves the theorem for f € Hz(R?) N H;(R?). Note that 8/d > 1 and
p— > d/B. Using lemma 3, the proof can be finished by a standard density
argument as in [26]. [ |
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Note that if each p; = p, then we get back the classical result (see Weisz
[27, 28]). The classical result was proved in a special case, for the Bochner-
Riesz means in Stein, Taibleson and Weiss [22], Grafakos [13] and Lu [17]. For
the same case [22] contains a counterexample which shows that the theorem is
not true for p < n/p.

Using Theorem 3 and a usual density argument, we obtain the next con-
vergence results. We do not give the details here, because they can be found
in similar cases in [26].

Corollary 1. Suppose that (4.1) and (4.2) are satisfied and p— > d/B. If
f € HzR?), then o4 f converges almost everywhere as well as in the Lz(R?)-
norm as T — oo.

For functions from the Hardy spaces, the limit of 0% f will be exactly the
function.

Corollary 2. Suppose that (4.1) and (4.2) are satisfied and p— > d/p. If
f € HzR?) and there exists an interval I C R? such that the restriction
fl; € Le(I) with r— > 1, then

Tlim ol-f(z) = f(z) for a.e. x € I as well as in the Ly(I)-norm.
— 00

The next consequence follows from the fact that Lz(RY) is equivalent to
HzRY) if p_ > 1.

Corollary 3. Suppose that (4.1) and (4.2) are satisfied and p— > d/B. If
p— > 1 and f € L;(R?), then

Tlirn o f(x) = f(z) for a.e. x € RY as well as in the Lz(R%)-norm.
— 00

6. Some summability methods

As special cases, we consider some summability methods. The details of
the necessary computations are left to the reader.

6.1. Riesz summation

The function

(t e RY)

Oo(t) = { (L= [t if [t > 15

0, if [t < 1
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defines the Riesz summation if 0 < a < oo and + is a positive integer. It is
called Bochner-Riesz summation if v+ = 2. The next lemma can be found in
Stein and Weiss [23] (see also Lu [17, p. 132] and Weisz [29]).

Lemma 4. Condition (4.1) is satisfied if o« > “=1 and
ol ...OffHAo(x) < Ola|~Y/?1/2 (x #0)
foralliy,...,iq € N.
The following result follows from Theorem 3.

Corollary 4. If

d—1
d2tatip P

then
o2l ey S Wiy (F € Hp(R).
Moreover, the corresponding Corollaries 1-3 hold as well.

6.2. Weierstrass summation

The Weierstrass summation is defined by

(6.1) Bo(t) = e /2 (teRY)
or by
(6.2) 0o (t) = e~ (t e RY),

or, in the one-dimensional case, by
(6.3) Oo(t) =e " (teR,1 <7y < o0).

It is called A2be1 summation if v = 1. It is known that in the first case
o(z) = e~ 1*I"/2 and in the second one Oy(x) = cq/(1 + |z|?)(*+D/2 for some
cq € R (see Stein and Weiss [23, p. 6.]). The following lemma is easy to verify.

Lemma 5. Let 0y be as in (6.1) orin (6.2) orin (6.3). Then condition (4.1)
is satisfied and for any N € N,

O .. 90y (x)| < Cla|~NTL (x££ 0),

where i1 +...+1g =N + 1.
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The following result is an easy consequence of Theorem 3.

Corollary 5. Let 0y be as in (6.1) or in (6.2) or in (6.3). Then
HO—ZfHLT;(]Rd) S ”fHHﬁ(Rd) (f € Hﬁ(Rd))'

Moreover, the corresponding Corollaries 1-3 and hold as well.
6.3. Picard—Bessel summation

Now let

1

(6.4) bo(t) = A+ ()@

(t e RY).

Here 97)(90) = cge~ %! for some ¢4 € RY.

Corollary 6. Let 0y be as in (6.4). Then Lemma 5 and Corollary 5 hold.
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