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Abstract. The mixed norm Hardy spaces H�p(Rd) is investigated, where
�p = (p1, . . . , pd) ∈ (0,∞]d. A general summability method, the so called
θ-summability is considered for multi-dimensional Fourier transforms. Un-
der some conditions on θ, it is proved that the maximal operator of the
θ-means is bounded from H�p(Rd) to L�p(Rd). This implies some norm and
almost everywhere convergence results for the θ-means, amongst others the
generalization of the well known Lebesgue’s theorem.

1. Introduction

It is due to Lebesgue [16] that the Fejér means [6] of the trigonometric
Fourier transforms of a function f ∈ Lp(R) (1 ≤ p < ∞) converge almost ev-
erywhere to the function. In this paper we generalize this result to mixed norm
Lebesgue spaces and other summability methods as well. A general method of
summation, the so called θ-summation method, which is generated by a single
function θ and which includes all well known summations, is studied inten-
sively in the literature (see e.g. Butzer and Nessel [2], Trigub and Belinsky
[24], Gát [7, 8, 9], Goginava [10, 11, 12], Persson, Tephnadze and Wall [18], Si-
mon [19, 20] and Feichtinger and Weisz [4, 5, 27, 28, 29]). The means generated
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by the θ-summation are defined for multi-dimensional functions by

σθ
T f(x) :=

∫

Rd

θ

(
|u|
T

)
f̂(u)e2πıx·u du,

where | · | denotes the Euclidean norm and f̂ the Fourier transform of f . The
choice θ(u) = max(1− |u|, 0) yields the Fejér summation.

Stein, Taibleson and Weiss [22] proved for the Bochner-Riesz summability
that the maximal operator σθ

∗ of the θ-means is bounded from the Hardy space
Hp(Rd) to Lp(Rd) if p > p0 (see also Grafakos [13] and Lu [17]). Later we
generalized this result to other summability methods in [4, 5, 27, 29].

In this paper, we generalize these results to mixed norm Lebesgue and
Hardy spaces, L�p(Rd) and H�p(Rd), where �p = (p1, . . . , pd) ∈ (0,∞]d. We give
the atomic decomposition of this Hardy space. If �p is the vector (p, . . . , p), then
we get back the classical Lebesgue and Hardy spaces. Under some conditions
on θ, we will prove that the maximal operator σθ

∗ is bounded from H�p(Rd) to
L�p(Rd) when each pi > p0. As a consequence, we prove some norm and almost
everywhere convergence results for the θ-means. In this way, the well known
Lebesgue’s theorem is generalized. As special cases of the θ-summation, we
consider the Riesz, Bochner-Riesz, Weierstrass, Picard and Bessel summations.

2. Mixed norm Lebesgue spaces

The Lp(Rd) space is equipped with the quasi-norm

‖f‖p :=



∫

Rd

|f(x)|p dx




1/p

(0 < p < ∞),

with the usual modification for p = ∞. Here we integrate with respect to the
Lebesgue measure λ. The Lebesgue measure of a set H will be denoted also
by |H|. Benedek and Panzone [1] generalized this definition as follows. Let
�p = (p1, . . . , pd) ∈ (0,∞]d. The mixed-norm Lebesgue space L�p(Rd) is defined
to be the set of all measurable functions f such that

‖f‖Lcp(Rd) :=

:=



∫

R

. . .



∫

R



∫

R

|f(x1, . . . , xd)|p1 dx1




p2/p1

dx2




p3/p2

. . . dxd




1/pd

< ∞,
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with the usual modifications if pi = ∞ for some i = 1, . . . , d. If �p = (p, . . . , p),
then we get back the space Lp(Rd). Let

p− := min{p1, · · · , pd} and p = min{p−, 1}.

It is known that

(2.1) ‖|f |s‖L�p(Rd) = ‖f‖sLs�p(Rd).

Given a locally integrable function f , the Hardy-Littlewood maximal oper-
ator M is defined by

Mf(x) := sup
x∈B

1

|B|

∫

B

|f(y)|dy (x ∈ Rd),

where the supremum is taken over all balls B of Rd containing x. It is known
that M is bounded on Lp(Rd) if 1 < p < ∞. This is extended to the mixed
norm spaces in Huang at al. [14].

Lemma 1. If p− > 1 and f ∈ L�p(Rd), then

(2.2) ‖Mf‖L�p(Rd) ≤ C‖f‖L�p(Rd).

The vector-valued extension of inequality (2.2) holds also. In the classical
case see Fefferman–Stein [3], for the mixed norm spaces see Huang at al. [14].

Lemma 2. If p− > 1 and 1 < r < ∞, then

∥∥∥∥∥

( ∞∑
j=1

(Mfj)
r

)1/r∥∥∥∥∥
L�p(Rd)

≤ C

∥∥∥∥∥

( ∞∑
j=1

|fj |r
)1/r∥∥∥∥∥

L�p(Rd)

.

We will write A � B if there exists a constant C such that A ≤ CB.

3. Mixed norm Hardy spaces

Now we introduce the mixed norm Hardy spaces and give the atomic de-
compositions. Denote by S(Rd) the space of all Schwartz functions and by
S′(Rd) the space of all tempered distributions. For N ∈ N, let

FN (Rd) :=

{
ψ ∈ S(Rd) : sup

‖α‖1≤N

sup
x∈Rd

(1 + |x|)N |∂αψ(x)| ≤ 1

}
,
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where ‖α‖1 = |α1|+ · · ·+ |αd|. For t ∈ (0,∞) and ξ ∈ Rd, let

ψt(ξ) := t−dψ(ξ/t).

For any d(1/p− − 1)+ 1 < N < ∞, the non-tangential grand maximal function
of f ∈ S′(Rd) is defined by

f�(x) := sup
ψ∈FN (Rd)

sup
0<t<∞,|y−x|<t

|f ∗ ψt(y)|.

Let d(1/p− − 1) + 1 < N < ∞ be a positive integer. The mixed norm Hardy
spaces H�p(Rd) are consisting of all tempered distributions f ∈ S′(Rd) such that

‖f‖H�p(Rd) := ‖f�‖L�p(Rd) < ∞.

It is known that different integers N give the same space with equivalent norms.
Moreover, all f ∈ H�p(Rd) are bounded distributions, i.e. f ∗ φ ∈ L∞(Rd) for
all φ ∈ S(Rd). Similarly to the classical case, one can show (see Huang at al.
[14]) that

H�p(Rd) ∼ L�p(Rd)

whenever p− > 1. If each pi = p, then we get back the classical Hardy
spaces Hp(Rd) investigated in Fefferman, Stein and Weiss [3, 23, 21], Lu [17],
Uchiyama [25].

The atomic decomposition is a useful characterization of the Hardy spaces
by the help of which some boundedness results, duality theorems, inequalities
and interpolation results can be proved. A measurable function a is called a
�p-atom if there exists a ball B such that

(a) supp a ⊂ B,

(b) ‖a‖L∞(Rd) ≤
1

‖χB‖L�p(Rd)

,

(c)
∫
Rd a(x)x

αdx = 0 for all multi-indices α with |α| ≤ s,

where d(1/p− − 1) < s < ∞ is an integer. In the classical case, i.e., if each
pi = p, the atomic decomposition theorem can be formulated as follows (see
e.g. Latter [15], Lu [17]). Assume that 0 < p ≤ 1. A tempered distribution f is
in Hp(Rd) if and only if there exist a sequence {ai}i∈N of p-atoms with support
{Bi}i∈N and a sequence {λi}i∈N of positive numbers such that f =

∑
i∈N λiai

in S′(Rd). Moreover,

‖f‖Hp(Rd) ∼ inf

(∑
i∈N

λp
i

)1/p

.
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It is easy to see that the right hand sides of the previous and next equations
are the same. Thus

‖f‖Hp(Rd) ∼ inf

∥∥∥∥∥∥

(∑
i∈N

(
λiχBi

‖χBi
‖Lp(Rd)

)p)1/p
∥∥∥∥∥∥
Lp(Rd)

.

And this form can be generalized to all 0 < p < ∞ as follows. The next theorem
is due to Huang at al. [14].

Theorem 1. A tempered distribution f ∈ S′(Rd) is in H�p(Rd) if and only if
there exist a sequence {ai}i∈N of �p-atoms with support {Bi}i∈N and a sequence
{λi}i∈N of positive numbers such that

f =
∑
i∈N

λiai in S′(Rd).

Moreover,

‖f‖H�p(Rd) ∼ inf

∥∥∥∥∥∥

(∑
i∈N

(
λiχBi

‖χBi
‖L�p(Rd)

)p)1/p
∥∥∥∥∥∥
L�p(Rd)

,

where the infimum is taken over all decompositions of f as above.

4. θ-summability of Fourier transforms

The Fourier transform of a function f ∈ L1(Rd) is defined by

f̂(x) :=

∫

Rd

f(t)e−2πıx·t dt (x ∈ Rd),

where ı =
√
−1 and x · t :=

∑d
k=1 xktk. Suppose first that f ∈ Lp(Rd) for some

1 ≤ p ≤ 2. The Fourier inversion formula

f(x) =

∫

Rd

f̂(t)e2πıx·t dt (x ∈ Rd)

holds if f̂ ∈ L1(Rd). This motivates the following definition of θ-summability,
which is a general summation generated by a single function θ : [0,∞) → R.
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This summation was considered in a great number of papers and books, see e.g.
Butzer and Nessel [2], Grafakos [13], Trigub and Belinsky [24] and Feichtinger
and Weisz [5, 27, 28, 29] and the references therein. Let θ0(x) := θ(|x|) and
suppose that

(4.1) θ ∈ C0[0,∞), θ(0) = 1, θ0 ∈ L1(Rd), θ̂0 ∈ L1(Rd),

where C0[0,∞) denotes the spaces of continuous functions vanishing at infinity
and | · | denotes the Euclidean norm. For T > 0, the T th θ-mean of the function
f ∈ Lp(Rd) (1 ≤ p ≤ 2) is given by

σθ
T f(x) :=

∫

Rd

θ

(
|u|
T

)
f̂(u)e2πıx·u du (x ∈ Rd, T > 0).

This integral is well defined because θ0 ∈ Lp(Rd) and f̂ ∈ Lp′(Rd), where
1/p+ 1/p′ = 1.

For an integrable function f , it is known that we can rewrite σθ
T f as

σθ
T f(x) =

∫

Rd

f(x− t)Kθ
T (t) dt = f ∗Kθ

T (x) (x ∈ Rd, T > 0),

where the T th θ-kernel is given by

Kθ
T (x) :=

∫

Rd

θ

(
|t|
T

)
e2πıx·t dt = T dθ̂0(Tx) (x ∈ Rd, T > 0).

We can extend the θ-means to all f ∈ L�p(Rd) with p− ≥ 1 and to all f ∈ H�p(Rd)
with p− > 0 by

σθ
T f := f ∗Kθ

T (T > 0).

The maximal θ-operator is introduced by

σθ
∗f := sup

T>0

∣∣σθ
T f

∣∣ .

For a ball B with center c and radius ρ, let τB denotes the ball with the
same center and with radius τρ (τ > 0). The following theorem can be proved
as in [26].

Theorem 2. Suppose that (4.1) is satisfied, θ̂0 is (N + 1)-times differentiable
for some N ∈ N and there exists d+N < β ≤ d+N + 1 such that

(4.2)
∣∣∣∂i1

1 . . . ∂id
d θ̂0(x)

∣∣∣ ≤ C|x|−β (x �= 0)
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whenever i1 + . . .+ id = N or i1 + . . .+ id = N + 1. Then

(4.3)
∣∣σθ

∗a(x)
∣∣ ≤ C ‖χB‖−1

L�p(Rd) |MχB(x)|β/d

for all �p-atoms a and all x /∈ 2B, where the ball B is the support of the atom.
If β = d + N + 1, then it is enough to suppose that (4.2) holds whenever
i1 + . . .+ id = N + 1.

5. Boundedness in H�p(Rd)

In the proof of the boundedness of σθ
∗, we will use the next lemma.

Lemma 3. Let (4.1) be satisfied. If limk→∞ fk = f in the H�p(Rd)-norm, then
limk→∞ σθ

t fk = σθ
t f in S′(Rd) for all t > 0.

Proof. The proof is similar to that of Theorem 7 in [26], so we outline the
differences, only. We have to show that σθ

t f is a tempered distribution for each

f ∈ H�p(Rd) and t > 0. To this end, the man point is to show that f ∗ h̆k

is uniformly bounded in k if limk→∞ hk = h in S(Rd), where h̆(x) := h(−x).
We may suppose that h ∈ FN (Rd), and hence that hk ∈ FN (Rd) for large k’s.
Then for such a k,

∣∣∣(f ∗ h̆k)(x)
∣∣∣ ≤ f�(y) for every y with |x− y| ≤ 1.

Thus, with the same x and y,
∣∣∣f ∗ h̆k(x)

∣∣∣ ≤

≤




1/2∫

−1/2

. . .




1/2∫

−1/2




1/2∫

−1/2

|f�(y1, . . . , yd)|p1 dy1




p2/p1

dy2




p3/p2

. . . dyd




1/pd

≤

≤ ‖f‖H�p(Rd),

which shows the uniform boundedness of f ∗ h̆k. The proof can be finished as
Theorem 7 in [26]. �

Theorem 3. If (4.1) and (4.2) are satisfied and p− > d/β, then

∥∥σθ
∗f

∥∥
L�p(Rd)

� ‖f‖H�p(Rd)

(
f ∈ H�p(Rd)

)
.
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Proof. By the atomic decomposition theorem, f ∈ H�p(Rd) can be written as

f =
∑
i∈N

λiai,

where λi is positive and ai is a �p-atom with support Bi. It is known (see
e.g. Weisz [28]) that the series converge in the H1(Rd)-norm as well as in the
L1(Rd)-norm if f ∈ H�p(Rd) ∩H1(Rd). It is easy to see that σθ

t is bounded on
the L1(Rd) space, hence

σθ
t (f) =

∑
i∈N

λiσ
θ
t (ai) (t > 0)

and so
σθ
∗(f) ≤

∑
i∈N

λiσ
θ
∗(ai).

Then

‖σθ
∗f‖L�p(Rd) �

∥∥∥∥
∑
i∈N

λiσ
θ
∗(ai)χ2Bi

∥∥∥∥
L�p(Rd)

+

∥∥∥∥
∑
i∈N

λiσ
θ
∗(ai)χ(2Bi)c

∥∥∥∥
L�p(Rd)

=

=: A1 +A2.

Using (2.1) and the fact that p ≤ 1, we can see

A1 ≤
∥∥∥∥
∑
i∈N

λ
p

i σ
θ
∗(ai)

pχ2Bi

∥∥∥∥
1/p

L�p/p(Rd)

.

Let (�p)′ = (p′1, . . . , p
′
d) denote the conjugate index vector, where 1

pi
+ 1

p′
i
= 1

for every i = 1, . . . , d. By Theorem 1 of Benedek and Panzone [1], there exists
g ∈ L(�p/p)′(Rd) with ‖g‖L(�p/p)′ (Rd) ≤ 1 such that

∥∥∥∥
∑
i∈N

λ
p

i σ
θ
∗(ai)

pχ2Bi

∥∥∥∥
L�p/p(Rd)

=

∫

Rd

∑
i∈N

λ
p

i σ
θ
∗(ai)

pχ2Big.

Choosing a real number r such that pi/p < r < ∞ for all i = 1, . . . , d and
applying Hölder’s inequality, we deduce

A
p

1 ≤
∫

Rd

∑
i∈N

λ
p

i σ
θ
∗(ai)

pχ2Bi
g ≤

≤
∑
i∈N

λ
p

i ‖σ
θ
∗(ai)

pχ2Bi
‖Lr(Rd)‖χ2Bi

g‖Lr′ (Rd) �

�
∑
i∈N

λ
p

i ‖σ
θ
∗(ai)

p‖L∞(Rd)λ(2Bi)
1/r‖χ2Big‖Lr′ (Rd).
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Observe that σθ
∗ is bounded from L∞(Rd) to L∞(Rd). By the definition of the

�p-atom,

A
p

1 �
∑
i∈N

λ
p

i ‖χBi‖
−p

L�p(Rd)
λ(2Bi)


 1

λ(2Bi)

∫

2Bi

gr
′




1/r′

≤

≤
∫

Rd

∑
i∈N

λ
p

i ‖χBi
‖−p

L�p(Rd)
χ2Bi

(
M(gr

′
)
)1/r′

dλ.

Again by Hölder’s inequality,

A
p

1 �

∥∥∥∥
∑
i∈N

λ
p

i ‖χBi‖
−p

L�p(Rd)
χ2Bi

∥∥∥∥
L�p/p(Rd)

∥∥∥∥
(
M(gr

′
)
)1/r′

∥∥∥∥
L(�p/p)′ (Rd)

.

Since pi/p < r < ∞ imply (pi/p)
′ > r′ (i = 1, . . . , d), we get by (2.1) and (2.2)

that

A1 �

∥∥∥∥
∑
i∈N

λ
p

i ‖χBi
‖−p

L�p(Rd)
χ2Bi

∥∥∥∥
1/p

L�p/p(Rd)

∥∥∥M(gr
′
)
∥∥∥
1/pr′

L((�p/p)′)/r′ (Rd)
�

�

∥∥∥∥
∑
i∈N

λ
p

i ‖χBi‖
−p

L�p(Rd)
χ2Bi

∥∥∥∥
1/p

L�p/p(Rd)

‖g‖1/p
L(�p/p)′ (Rd)

�

�

∥∥∥∥
(∑

i∈N

(
λiχ2Bi

‖χ2Bi
‖L�p(Rd)

)p)1/p∥∥∥∥
L�p(Rd)

� ‖f‖H�p(Rd).

On the other hand, using (4.3) and Lemma 2, we establish that

A2 �

∥∥∥∥
∑
i∈N

λi ‖χBi
‖−1
L�p(Rd) |MχBi

|β/dχ(2Bi)c

∥∥∥∥
L�p(Rd)

≤

≤
∥∥∥∥
(∑

i∈N

(
λ
d/β
i ‖χBi‖

−d/β
�p |MχBi |

)β/d
)d/β∥∥∥∥

β/d

Lβ�p/d(Rd)

≤

≤
∥∥∥∥
(∑

i∈N
λi ‖χBi

‖−1
L�p(Rd) χBi

)d/β∥∥∥∥
β/d

Lβ�p/d(Rd)

�

�

∥∥∥∥
∑
i∈N

λiχBi

‖χBi
‖L�p(Rd)

∥∥∥∥
L�p(Rd)

� ‖f‖H�p(Rd),

which proves the theorem for f ∈ H�p(Rd) ∩ H1(Rd). Note that β/d > 1 and
p− > d/β. Using lemma 3, the proof can be finished by a standard density
argument as in [26]. �
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Note that if each pi = p, then we get back the classical result (see Weisz
[27, 28]). The classical result was proved in a special case, for the Bochner-
Riesz means in Stein, Taibleson and Weiss [22], Grafakos [13] and Lu [17]. For
the same case [22] contains a counterexample which shows that the theorem is
not true for p ≤ n/β.

Using Theorem 3 and a usual density argument, we obtain the next con-
vergence results. We do not give the details here, because they can be found
in similar cases in [26].

Corollary 1. Suppose that (4.1) and (4.2) are satisfied and p− > d/β. If
f ∈ H�p(Rd), then σθ

T f converges almost everywhere as well as in the L�p(Rd)-
norm as T → ∞.

For functions from the Hardy spaces, the limit of σθ
T f will be exactly the

function.

Corollary 2. Suppose that (4.1) and (4.2) are satisfied and p− > d/β. If
f ∈ H�p(Rd) and there exists an interval I ⊂ Rd such that the restriction
f |I ∈ L�r(I) with r− ≥ 1, then

lim
T→∞

σθ
T f(x) = f(x) for a.e. x ∈ I as well as in the L�p(I)-norm.

The next consequence follows from the fact that L�p(Rd) is equivalent to
H�p(Rd) if p− > 1.

Corollary 3. Suppose that (4.1) and (4.2) are satisfied and p− > d/β. If
p− > 1 and f ∈ L�p(Rd), then

lim
T→∞

σθ
T f(x) = f(x) for a.e. x ∈ Rd as well as in the L�p(Rd)-norm.

6. Some summability methods

As special cases, we consider some summability methods. The details of
the necessary computations are left to the reader.

6.1. Riesz summation

The function

θ0(t) =

{
(1− |t|γ)α, if |t| > 1;
0, if |t| ≤ 1

(t ∈ Rd)
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defines the Riesz summation if 0 < α < ∞ and γ is a positive integer. It is
called Bochner-Riesz summation if γ = 2. The next lemma can be found in
Stein and Weiss [23] (see also Lu [17, p. 132] and Weisz [29]).

Lemma 4. Condition (4.1) is satisfied if α > d−1
2 and

∣∣∣∂i1
1 . . . ∂id

d θ̂0(x)
∣∣∣ ≤ C|x|−d/2−α−1/2 (x �= 0)

for all i1, . . . , id ∈ N.

The following result follows from Theorem 3.

Corollary 4. If

α >
d− 1

2
,

d

d/2 + α+ 1/2
< p− < ∞,

then ∥∥σθ
∗f

∥∥
L�p(Rd)

� ‖f‖H�p(Rd) (f ∈ H�p(Rd)).

Moreover, the corresponding Corollaries 1–3 hold as well.

6.2. Weierstrass summation

The Weierstrass summation is defined by

(6.1) θ0(t) = e−|t|2/2 (t ∈ Rd)

or by

(6.2) θ0(t) = e−|t| (t ∈ Rd),

or, in the one-dimensional case, by

(6.3) θ0(t) = e−|t|γ (t ∈ R, 1 ≤ γ < ∞).

It is called Abel summation if γ = 1. It is known that in the first case
θ̂0(x) = e−|x|2/2 and in the second one θ̂0(x) = cd/(1 + |x|2)(d+1)/2 for some
cd ∈ R (see Stein and Weiss [23, p. 6.]). The following lemma is easy to verify.

Lemma 5. Let θ0 be as in (6.1) or in (6.2) or in (6.3). Then condition (4.1)
is satisfied and for any N ∈ N,

∣∣∣∂i1
1 . . . ∂id

d θ̂0(x)
∣∣∣ ≤ C|x|−d−N−1 (x �= 0),

where i1 + . . .+ id = N + 1.
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The following result is an easy consequence of Theorem 3.

Corollary 5. Let θ0 be as in (6.1) or in (6.2) or in (6.3). Then

∥∥σθ
∗f

∥∥
L�p(Rd)

� ‖f‖H�p(Rd) (f ∈ H�p(Rd)).

Moreover, the corresponding Corollaries 1–3 and hold as well.

6.3. Picard–Bessel summation

Now let

(6.4) θ0(t) =
1

(1 + |t|2)(d+1)/2
(t ∈ Rd).

Here θ̂0(x) = cde
−|x| for some cd ∈ Rd.

Corollary 6. Let θ0 be as in (6.4). Then Lemma 5 and Corollary 5 hold.
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