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Abstract. In the present paper we prove in an elementary way that if for
a fixed λ ∈ (0, 1) the functions f, g : R −→ R satisfy the equation

f(b)− f(a)

b− a
= g (λa+ (1− λ)b)

for all b > a then f is a quadratic polynomial, and g = f ′. Moreover, if
λ �= 1

2
, then f is a linear polynomial and g = f ′. This result is obtained

with no regularity assumptions on f or g and generalizes a theorem from
[4].

1. Introduction

Roman Ger (cf. [5]) has drawn our attention to the paper [4] where the
authors ask the following questions:

Question 1. Which diferentiable functions f : R −→ R satisfy

(1.1)
f(b)− f(a)

b− a
= f ′

(
a+ b

2

)

for all b > a?
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Question 2. Let us fix a λ ∈ (0, 1). Which differentiable functions f : R −→ R
satisfy

(1.2)
f(b)− f(a)

b− a
= f ′ (λa+ (1− λ)b)

for all b > a?

The following theorem is proved in [4].

Theorem. Let us fix a λ ∈ (0, 1), and suppose that a (differentiable) function
f : R −→ R satisfies the condition

f(b)− f(a)

b− a
= f ′ (λa+ (1− λ)b)

for all a < b. Then f is a quadratic polynomial. If λ �= 1
2 , then f is a linear

polynomial.

In the proof the authors use triple differentiability of f. It has been known,
at least since J. Aczél’s result (cf. [1]) that no regularity is needed to solve
even a more general equation than (1.1). Indeed, Aczél has shown that

(1.3)
f(b)− f(a)

b− a
= g (a+ b) ,

has a unique solution and this is of the form

• f(x) = αx2 + βx+ γ

• g(x) = αx+ β

for some constants α, β and γ. Later J. Aczél and M. Kuczma published a
paper [2] where they proved, among others, the above result for functions f
and g defined in an interval I ⊆ R.

Functional equations stemming from the Mean Value Theorems have been
studied by several mathematicians, let me quote J. Aczél [1], J. Aczél and M.
Kuczma [2], S. Haruki [6], B. Koclȩga-Kulpa and T. Szostok [7], [8], [9] and
[10], B. Koclȩga-Kulpa, T. Szostok and Sz. Wa̧sowicz [11] and [12], A. Lisak
and M. S. [13], I. Pawlikowska [15], T. Riedel and M. S. [16], M. S. [17] and
[18], T. Szostok [23], and quite recent papers by Z. M. Balogh, O. O. Ibrogimov
and B. S. Mityagin [3], also M. Schwarzenberger [22], and above all by P. K.
Sahoo and T. Riedel in the book [20]. It is astonishing that the authors were
unaware of these items, especially the last one.

Let us observe that (1.2) may be written in more general form

(1.4)
f(b)− f(a)

b− a
= g (λa+ (1− λ)b)
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for all a < b. Here f and g are arbitrary functions mapping R into itself. Since
the left-hand side is symmetric in a, b we infer that

(1.5)
f(b)− f(a)

b− a
= g ((1− λ)a+ λb)

for all b < a. Denoting

mλ(a, b) =

{
λa+ (1− λ)b if a < b
(1− λ)a+ λb if a ≥ b,

(1.6)

we can write (1.4) and (1.5) as

f(b)− f(a)

b− a
= g (mλ(a, b))

for all a, b, a �= b, or, after multiplying both sides by b− a as

(1.7) f(b)− f(a) = g (mλ(a, b)) (b− a)

for all a, b ∈ R.
Let us substitute x := mλ(a, b) and y := b − a. This substitution is an

automorphism of R2 onto itself. Moreover, we have

(1.8)

{
a = x− (1− λ)y
b = x+ λy

if y > 0, and

(1.9)

{
a = x− λy
b = x+ (1− λ)y

if y ≤ 0. Now, substituting (1.8) or (1.9) into (1.7) we obtain

(1.10) g(x)y =

{
f(x+ λy)− f(x− (1− λ)y) if y > 0
f(x+ (1− λ)y)− f(x− λy) if y ≤ 0.

It is the above equation that we are going to solve.

1.1. Solution of (1.10)

Let us introduce the following operator acting in the space of functions of
two variables. For every function ϕ : (x, y) �−→ ϕ(x, y), and every pair (u, v)
we put

Γ(u,v)ϕ(x, y) := ϕ(x+ u, y + v)− ϕ(x, y),
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for (x, y) ∈ Domϕ fulfilling (x + u, y + v) ∈ Domϕ as well. Observe that in
particular we have for ϕ(x, y) = g(x)y the following

Γ(u,v)g(x)y = g(x+ u)(y + v)− g(x)y =

= [g(x+ u)− g(x)] y + g(x+ u)v =

= [∆ug(x)] y + g(x+ u)v,

(1.11)

where ∆ is the Fréchet difference operator. For arbitrary (x, y) ∈ R2 let us
choose arbitrarily u1 ∈ R, and select a v1 ∈ R so that u1 + λv1 = 0 (resp.
u1 + (1− λ)v1 = 0) depending on whether y > 0 or y ≤ 0. Applying Γ(u1,v1) to
both sides of (1.10) we obtain

(1.12) [∆u1
g(x)] y + g(x+ u1)v1 =

{
−Γ(u1,v1)f(x− (1− λ)y) if y > 0
−Γ(u1,v1)f(x− λy) if y ≤ 0.

Now, let choose arbitrarily u2 ∈ R and select a v2 ∈ R so that u2−(1−λ)v2 = 0
(resp. u2 − λv2 = 0) depending on whether y > 0 or y ≤ 0. Applying Γ(u2,v2)

to both sides of (1.12) we obtain

(1.13) [∆u2
∆u1

g(x)] y + ψ(x, u1, u2) = 0,

where ψ(x, u1, u2) = ∆u1g(x+ u2)v2 +∆u2g(x+ u1)v1 does not depend on y.
The left-hand side of (1.13) is a polynomial in y, so we have

∆u2
∆u1

g(x) = 0,

for every x, u1, u2 ∈ R. But this means (cf. eg. [21]) that there exist a constant
β and an additive function A1 such that

(1.14) g(x) = β +A1(x)

for every x ∈ R. From (1.7), putting a = 0 and using equalities (1.6) we obtain

(1.15) f(b) = f(0) +

{
g((1− λ)b)b if 0 < b
g(λb)b if 0 ≥ b.

We insert the general forms (1.14) and (1.15) into (1.10) to obtain among others
that

A1(x)y + β(y) = [β +A1 ((1− λ)(x+ λy))] (x+ λy)−
− [β +A1 ((1− λ)(x− (1− λ)y))] (x− (1− λ)y)

(1.16)

for all x > 0, y ∈
(
0, x

1−λ

)
. Rearranging the terms in (1.16), and comparing

those containing x and y we obtain in particular the equality

A1(λx)y = A1((1− λ)y)x
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for all x > 0 and y ∈
(
0, x

1−λ

)
. Diving both sides by xy we get

A1(λx)

x
=

A1((1− λ)y)

y

or

(1.17) λ
A1(λx)

λx
= (1− λ)

A1((1− λ)y)

(1− λ)y

for all x > 0 and y ∈
(
0, x

1−λ

)
. Fix x > 0 and define α := A1(λx)

λx . Putting

z := (1− λ)y we get from (1.17)

(1.18) (1− λ)A1(z) = λαz

for all z ∈ (0, x). Thus A1 is continuous on an interval (0, x), and being additive
it has to be so on the whole R. From (1.17) we get λα = (1− λ)α or

(2λ− 1)α = 0.

Thus either λ = 1
2 or α = 0. In the case λ = 1

2 we get from (1.17) that
A1(x)

x = A1(y)
y for all y ∈ (0, 2x) and the linearity of A1 easily follows.

In other words we proved that if (f, g) yields a solution to (1.10) then

(1.19) g(x) =

{
β if λ �= 1

2
β + αx if λ = 1

2 .

Now, going back to formula (1.15) we see that (with γ = f(0))

(1.20) f(x) =

{
γ + βx if λ �= 1

2
γ + βx+ 1

2αx
2 if λ = 1

2 .

We summarize the results of the present section in

Theorem 1.1. Let f, g : R −→ R be functions and let λ ∈ (0, 1). The pair
(f, g) satisfies the equation

f(b)− f(a)

b− a
= g (λa+ (1− λ)b)

for all a < b if, and only if, f and g are given by (1.20) and (1.19), respectively.
In particular, g = f ′.
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2. Remarks

Remark 2.1. We do not assume any regularity of f or g. However, some reg-
ularity is ”tacitly” assumed. Namely, if we considered (1.7) with a, b belonging
to a linear space X over R then clearly g(λa + (1 − λ)b) would belong to the
space of additive mappings defined on X. Usually such a mapping needs not
to be linear or continuous (if the space X is endowed with a topology). In
our present case (X = R), following the authors of [4], we assume that acting
on the difference b− a is actually multiplying the coefficient by the argument.
This means that the additive mapping g(λa + (1 − λ)b) is highly regular, as
highly as possible.

Remark 2.2. The main problem was to get (1.7) so that instead of investi-
gating the problem for a < b, we have obtained an equation holding for all
arguments from R. This has an important meaning for the method of solving.
However, in (1.7) we have now an operation mλ appearing in the argument
of g. This prevents us from directly applying the general theory developed for
some general equations for functions with arguments and values in Abelian
groups (cf. [21], [18], [15], [13] and especially [19]). In all the mentioned papers
the operations appearing in arguments of unknown functions were of the form
(x, y) −→ µ(x) + ν(y) where µ and ν are homomorphims.

Remark 2.3. We are going to develop further the general theory with op-
erations not necessarily being sums of homomorphisms. The results will be
published elsewhere.
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